1. dois nós: B e F. 2. três ramos: BAEF, BDF e BCGF. 3. três malhas: ABDFEA, BCGFDB e ABCGFEA A SOMA ALGÉBRICA DAS CORRENTES EM UM NÓ

Tamanho: px
Começar a partir da página:

Download "1. dois nós: B e F. 2. três ramos: BAEF, BDF e BCGF. 3. três malhas: ABDFEA, BCGFDB e ABCGFEA A SOMA ALGÉBRICA DAS CORRENTES EM UM NÓ"

Transcrição

1 Capítulo 6 Leis de Kirchhoff 6.1 Definições Em alguns casos, um circuito não pode ser resolvido através de associações em série e paralelo. Nessas situações geralmente são necessárias outras leis, além da lei de Ohm, para sua resolução. Estas leis adicionais são as leis de Kirchhoff, as quais propiciam uma maneira geral e sistemática de análise de circuitos. Elas são duas, a saber: Primeira lei de Kirchhoff ou lei das Correntes Segunda lei de Kirchhoff ou lei das Tensões Para o uso destas leis são necessárias algumas definições: Nó: é um ponto do circuito onde se conectam no mínimo três elementos. É um ponto onde várias correntes se juntam ou se dividem. Ramo ou braço: é um trecho de um circuito compreendido entre dois nós consecutivos. Todos os elementos pertencentes ao ramo são percorridos pela mesma corrente elétrica. Malha: é um trecho de circuito que forma uma trajetória eletricamente fechada. 1. dois nós: B e F 2. três ramos: BAEF, BDF e BCGF 3. três malhas: ABDFEA, BCGFDB e ABCGFEA 6.2 Primeira Lei de Kirchhoff Uma boa introdução à Primeira Lei de Kirchhoff já foi vista no circuito paralelo. Num dado nó entrava a corrente total do circuito e do mesmo nó partiam as correntes parciais para cada resistor. Como no nó não há possibilidade de armazenamento de cargas ou vazamento das mesmas, tem-se que a quantidade de cargas que chegam ao nó é exatamente igual à quantidade de cargas que saem do nó. Desta constatação surge o enunciado da primeira lei de Kirchhoff: A SOMA ALGÉBRICA DAS CORRENTES EM UM NÓ É SEMPRE IGUAL A ZERO. n i=0 I i = 0 (6.1) Por convenção, consideram-se as correntes que entram em um nó como positivas e as que saem como negativas. Considere o circuito da figura 6.2. Ao se aplicar a lei de Kirchhoff das correntes aos nós B e F, obtém-se: Nó B: I 1 + I 2 I3 = 0 Nó F: I 1 I 2 + I3 = 0 Figura 6.1: Circuito elétrico com dois nós Na figura 6.1, por exemplo, identifica-se: Observa-se que as equações dos nós B e F são na realidade as mesmas, ou seja, a aplicação da lei das correntes de Kirchhoff ao nó F não aumenta a informação sobre o circuito. Assim, o número de equações independentes que se pode obter com a aplicação da lei das correntes de Kirchhoff em um circuito elétrico é igual ao número de nós menos um. Se equação do nó B, isolarmos de um lado da igualdade as correntes que chegam no nó (nesse caso I 1 e I 2 ) e 57

2 um potencial mais elevado. Nas quedas de tensão as cargas se dirigem para um potencial mais baixo havendo o consumo da energia das cargas convertendo-a para uma forma de energia não-elétrica, por exemplo, calor, luz etc. Assim, ao percorrer uma malha fechada, percebese que toda a energia entregue às cargas num trecho do circuito elétrico é dissipada num outro trecho. A tensão, por definição, está associada à energia cedida às cargas ou retirada das mesmas durante o seu movimento. Daí é obtido o enunciado da Segunda Lei de Kirchhoff: Figura 6.2: A SOMA ALGÉBRICA DAS TENSÕES (f.e.m.s e quedas de tensão) AO LONGO DE UMA MALHA ELÉTRICA É IGUAL A ZERO. do outro lado as correntes que saem do mesmo nó (nesse caso apenas a I 3 ), temos: I 1 + I 2 = I3 Observando o resultado da equação podemos concluir que a soma das correntes que entram no nó é igual a soma das correntes que saem dele. Essa é uma outra forma de se interpretar a primeira lei de Kirchhoff. 6.3 Segunda Lei de Kirchhoff A lei de Kirchhoff das tensões é aplicada nas malhas. Ela já foi usada no estudo dos circuitos de resistores em série, onde a soma das quedas de tensão nos resistores é igual à f.e.m. da fonte. Se no circuito existe mais de uma fonte de f.e.m. deve-se determinar a resultante das mesmas, ou seja, somá-las considerando os seus sentidos relativos. n i=0 V i = 0 (6.2) Para a aplicação da lei de Kirchhoff das tensões, fazse necessário adotar alguns procedimentos que são descritos a seguir: 1. Atribuir sentidos arbitrários para as correntes em todos os ramos; 2. Polarizar as fontes de f.e.m. com positivo sempre na placa maior da fonte, conforme a figura 6.4; Figura 6.4: 3. Polarizar as quedas de tensão nos resistores usando a convenção de elemento passivo e sentido convencional de corrente elétrica. Isto equivale a colocar a polaridade positiva da queda de tensão no resistor no terminal por onde a corrente entra no mesmo, conforme a figura 6.5; Figura 6.3: E t = V AB +V BC +V CD Como a tensão em um resistor pode ser calculada pela lei de Ohm, temos: E 1 E 2 = R 1 I + R 2 I + R 3 I +E 2 E 1 + R 1 I + R 2 I + R 3 I = 0 Entenda-se que, na fonte de f.e.m., uma forma de energia não-elétrica é convertida para elétrica cedendo energia para as cargas, ou seja, colocando as cargas em Figura 6.5: 4. Montar a equação percorrendo a malha e somando algebricamente as tensões. O sinal da tensão corresponde ao sinal da polaridade pela qual se ingressa no componente, independentemente do sentido da corrente elétrica. De acordo com o circuito apresentado na figura 6.6, ao se aplicar a lei das tensões de Kirchhoff às malhas ABDFEA e BCGFDB, no sentido horário, obtém-se: RODRIGO SOUZA E ALVACIR TAVARES 58 CURSO DE ELETROMECÂNICA/IFSUL

3 Malha ABDFEA: R 1 I 1 + E 2 R 2 I 2 + R 4 I 1 + E 1 = 0 Malha BCGFDB: E 1 + R 3 I 3 + E 4 + R 2 I 2 E 2 = 0 3. Polarizar as fontes de tensão; 4. Polarizar as quedas de tensão nos resistores de acordo com o sentido adotado para a corrente; 5. Havendo nós, aplicar a 1 a Lei de Kirchhoff, obtendo-se N e1 equações (N e1 = n 1); 6. Se o número de equações ainda não for suficiente para resolver o circuito, aplicar a 2 a Lei de Kirchhoff, onde o número de equações é dado por N e2 = (r n + 1); 7. Escolher um ponto de partida e adotar um sentido de percurso para analisar a(s) malha(s). Exemplo 6.1 : Calcule o sentido e o módulo da corrente elétrica no circuito da figura 6.7. Figura 6.6: No circuito da figura 6.6, existe ainda mais uma malha (a malha externa ABCGFEA). Nesta malha poderia ser aplicada também a lei das tensões de Kirchhoff. Entretanto, como no caso da lei das correntes, a equação resultante seria dependente das duas já obtidas. Portanto, esta equação seria inútil. Supondo-se que, no circuito da figura 6.6, fossem conhecidos os valores de todas as f.e.m.s das fontes de tensão e todas as resistências, restariam como incógnitas as três correntes. Para resolver um sistema de equações lineares com três incógnitas são necessárias três equações. Uma equação já foi obtida com a aplicação da lei da correntes de Kirchhoff. Portanto, são necessárias mais duas, que podem ser obtidas pela aplicação da lei das tensões de Kirchhoff. Em síntese, pode-se concluir que, em um circuito elétrico com r ramos e n nós, tem-se r correntes, uma em cada ramo. A lei das correntes de Kirchhoff fornece N e1 = n 1 equações e, portanto, a lei das tensões de Kirchhoff deve fornecer N e2 = r n + 1 equações para que o problema possa ser resolvido. Por exemplo, no circuito da figura 6.6, tem-se r = 3, n = 2. Se r = 3, o número de correntes é 3. O número de equações fornecidas pela lei das correntes é N e1 = 2 1 = 1 e o número de equações fornecidas pela lei das tensões é N e2 = 3 1 = 2, conforme discutido anteriormente. A seguir, apresenta-se um resumo para aplicação da LKC e LKT. Resumo para aplicação das Leis de Kirchhoff 1. Identificar os nós, ramos e malhas do circuito elétrico; 2. Atribuir para cada ramo do circuito um sentido para a corrente elétrica; Resolução: Figura 6.7: 1. Escolhe-se um sentido para a corrente elétrica no circuito. Por exemplo, o sentido indicado na figura Polarizam-se as quedas de tensão nos resistores (polaridade positiva no terminal por onde a corrente entra) e as f.e.m.s das fontes (o terminal maior é o positivo). 3. Percorre-se a malha, somando algebricamente as tensões (o sinal da tensão corresponde ao sinal da polaridade da tensão encontrada na entrada do componente). Estas etapas estão mostradas na figura 6.8 e na equação abaixo. Figura 6.8: 1I + 4,7I + 3,3I = 0 9I = 9 I = 1A RODRIGO SOUZA E ALVACIR TAVARES 59 CURSO DE ELETROMECÂNICA/IFSUL

4 O sinal negativo que aparece para o valor da corrente I significa que o sentido escolhido para ela está invertido. Neste exemplo, o sentido correto da corrente elétrica I é para baixo na figura 6.8 e não para cima como foi arbitrado no início da resolução. Exemplo 6.2 : No circuito da figura 6.9, calcule os valores das correntes I 1, I 2 e I 3 a partir dos valores das f.e.m.s e das resistências elétricas usando as leis de Kirchhoff. das correntes. Então, simplificando-se as equações e colocando-as na forma de um sistema, obtém-se: I 1 +I 2 I 3 = 0 4I 1 = 24 4I 1 +6I 2 = 0 6. Existem vários métodos para se resolver um sistema de equações. Nesse caso foi usado o método da substituição: Da segunda equação obtém-se: I 1 = 24 4 = 6A Substituindo-se o valor de I 1 na terceira equação obtém-se: I 2 = 0; Logo: I 2 = 24 6 = 4A Resolução: Figura 6.9: 1. O circuito possui 2 nós, 3 ramos e 3 malhas. 2. Os sentidos de corrente e polaridades foram arbitrados conforme Então, substituindo-se os valores de I 1 e I 2 na primeira equação obtém-se: I 3 = 0; Logo: I 3 = 10A 6.4 Técnica da Análise de Malhas Partindo das Leis de Kirchhoff, várias técnicas foram desenvolvidas com o objetivo de facilitar a resolução de circuitos elétricos. Uma das mais conhecidas é a Técnica de Análise de Malhas que será estudada nesta seção. Consideremos então o circuito da figura 6.11, em que foi atribuída uma corrente em cada ramo. Figura 6.10: 3. Aplicando-se a lei de Kirchhoff das correntes temse apenas uma equação obtida em relação aos nós, pois nos dois nós a equação será a mesma: I 1 + I 2 I 3 = 0 4. Aplicando-se a lei de Kirchhoff das tensões, tem-se duas equações obtidas pelas malhas: Malha ACDA: Começando pelo nó A, percorrendo a malha no sentido horário e chegando novamente ao no A tem-se: +4I = 0 Malha ABCA: Começando pelo nó A, percorrendo a malha no sentido horário e chegando novamente ao no A tem-se: +3,3I 2 + 2,7I 2 4I 1 = 0 5. Fica-se então com três equações e três incógnitas, o que nos permite encontrar o valor de cada uma Figura 6.11: Circuito para análise de malhas Pela aplicação da Lei de Kirchhoff das correntes temos: I 1 I 2 I 3 = 0 Isolando-se I3: I 3 = I 1 I 2 Logo, podemos indicar as correntes no circuito desprezando a existência de I 3, pois esta pode ser escrita como I 1 I 2. Então as correntes no circuito ficam como na figura Consideremos agora, o mesmo circuito com uma ligeira modificação, utilizaremos correntes de malha. RODRIGO SOUZA E ALVACIR TAVARES 60 CURSO DE ELETROMECÂNICA/IFSUL

5 Figura 6.12: Circuito sem a corrente I 3 Definimos correntes de malha como a corrente que flui apenas no perímetro de uma malha. A corrente de malha é indicada por uma seta curva que quase fecha em si mesma sem cortar nenhum ramo. Por conveniência, as correntes de malha são colocadas sempre no sentido horário e, a lei de Kirchhoff das tensões, também é aplicada nesse mesmo sentido. Utilizando-se essa técnica, não é necessário a aplicação da lei de Kirchhoff das correntes, o que simplifica a resolução do circuito. Portanto, as correntes de malha são indicadas no circuito analisado conforme a figura O método da soma é um dos mais simples para se resolver sistemas com duas equações, porém só é possível sua utilização quando as equações são dispostas de forma que, ao subtrair ou somar os polinômios das equações, todas as incógnitas, exceto uma, se anulam. Muitas vezes é necessário multiplicar uma das equações por algum valor de modo que essa situação ocorra. Esse é o caso do sistema de equações deste exemplo. Então devemos multiplicar a segunda equação por 3, ficando com: { 9IA 3I B = 42 9I A +21I B = 30 Então, somando-se as duas equações do sistema, tem-se: 18I B = 74 Logo: I B = 4A Substituindo-se o valor de I B na primeira equação temos: 9I A 3(4) = 42 Então: I A = 6A Figura 6.13: Circuito com correntes de malha Conforme foi comentado anteriormente, para resolver o circuito e encontrar o valor das correntes, basta aplicar a lei de Kircchoff das tensões às malhas da figura Como no ramos central passam duas correntes de malha, o valor real da corrente que circula nesse ramo é a diferença entre as correntes de malha. Então as equações das malhas fica assim: Malha A: I A + 3(I A I B ) = 0 Simplificando-se a equação resulta em: 9I A 3I B = 42 Malha B: (I B I A ) + 4I B = 0 Após simplificação fica-se com: 3I A + 7I B = 10 Então, para encontrar o valor das correntes, devese resolver o seguinte sistema de equações: { 9IA 3I B = 42 3I A +7I B = 10 A corrente de malha I A corresponde à corrente I 1 do circuito da figura Enquanto a corrente I B corresponde à corrente I 2. Porém para obtermos a corrente I 3 (que passa no ramos central) é necessário subtrair as duas correntes, ou seja: I 3 = I A I B = 6 4 = 2A Como o valor de I A é maior do que I B, então o sentido correto da corrente I 3 é o próprio sentido de I A. 6.5 Execícios 1. Determine os valores das correntes desconhecidas no circuito da figura Determine os valores das tensões desconhecidas no circuito da figura Calcule o valor da corrente I no circuito da figura Calcule o valor da resistência do resistor R 3 no circuito da figura Sabendo que a corrente através do resistor R 3 no circuito da figura 6.18 vale 4A, calcule os valores e os sentidos corretos das outras correntes e o valor do resistor R 3. RODRIGO SOUZA E ALVACIR TAVARES 61 CURSO DE ELETROMECÂNICA/IFSUL

6 Figura 6.14: Figura 6.18: 6. Calcule os valores das correntes I 2 e I 3 e do resistor R 2, no circuito da figura 6.19, sabendo que a intensidade da corrente I 1 vale 0,2A. Figura 6.15: Figura 6.19: 7. Calcule o valor e o sentido correto das correntes nos ramos no circuito da figura Figura 6.16: Figura 6.20: 8. Calcule os valores das correntes I 1 e I 2 no circuito da figura No circuito da figura 6.22, calcule o valor da corrente I. 10. No circuito da figura 6.23, calcule os valores da tensão V S e da resistência R. Figura 6.17: 11. Determine a potência dissipada em R 1 e R 2 do circuito da figura RODRIGO SOUZA E ALVACIR TAVARES 62 CURSO DE ELETROMECÂNICA/IFSUL

7 12. Qual deve ser o valor do resistor R para que a corrente no ramo AB da figura 6.25 seja nula? Figura 6.21: Figura 6.25: Respostas dos exercícios numéricos 1. I 1 = 1A; I 2 = 18A; I 3 = 9A Figura 6.22: 2. V 1 = 11V ; V 2 = 2V ; V 3 = 1V 3. I = 0,3A 4. R 3 = 1Ω 5. I 1 = 4A; I 2 = 0; R 3 = 1,5Ω 6. I 2 = 0,8A; I 3 = 0,6A; R 2 = 2,5Ω 7. I 1 = 6A; I 2 = 4A; I 3 = 10A 8. I 1 = 9A; I 2 = 1,5A 9. I = 3A para cima 10. V s = 14V ; R = 4Ω Figura 6.23: 11. P 1 = 20mW; P 2 = 22,5mW 12. R = 26kΩ Figura 6.24: RODRIGO SOUZA E ALVACIR TAVARES 63 CURSO DE ELETROMECÂNICA/IFSUL

Aula 04 -Potência Elétrica e Leis de Kirchhoff

Aula 04 -Potência Elétrica e Leis de Kirchhoff Introdução Aula 04 -Potência Elétrica e Leis de Kirchhoff Eletrotécnica Quando ligamos um aparelho em uma máquina elétrica a uma fonte de eletricidade, produz-se certa quantidade de trabalho, às custas

Leia mais

10 - LEIS DE KIRCHHOFF

10 - LEIS DE KIRCHHOFF 0 - LS KRCHHOFF 0.- FNÇÃO NÓ, RAMO MALHA Quando em um circuito elétrico existe mais do que uma fonte de tensão e mais do que um resistor, geralmente são necessárias outras leis, além da lei de Ohm, para

Leia mais

Eletricidade Aula 4. Leis de Kirchhoff

Eletricidade Aula 4. Leis de Kirchhoff Eletricidade Aula 4 Leis de Kirchhoff Fonte de Alimentação Vídeo 6 É um dispositivo capaz de fornecer energia elétrica para um circuito. A fonte de alimentação também pode ser chamada de gerador, e outras

Leia mais

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série. Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos

Leia mais

CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF

CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF UNIDADE 1 1. Circuitos Concentrados CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF É qualquer ligação de elemento concentrado, de tal forma que as dimensões sejam pequenas comparadas com o comprimento de onda

Leia mais

Métodos de Análise de Circuitos

Métodos de Análise de Circuitos 1 utor: Prof Paulo icardo Telles angel Elétricos 1 Introdução Os métodos de análise de circuitos elétricos são ferramentas que envolvem os conceitos de eletricidade, como a Lei de Ohm, em conjunto com

Leia mais

Circuitos Elétricos: Circuitos em Paralelo

Circuitos Elétricos: Circuitos em Paralelo Circuitos Elétricos: Circuitos em Paralelo Maurício Romani, Prof. Universidade Federal do Paraná romani@ufpr.br - mromani.weebly.com 07 de abril de 2016 Maurício Romani, Prof. (UFPR) Circuitos Elétricos

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: ricardo.henriques@ufjf.edu.br Aula Número: 06 Revisão Aula Anterior... Revisão

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua UNVESDDE nstituto de Física de São Carlos Nesta prática estudaremos as leis de Kirchoff para análise de circuitos de corrente contínua. Nos experimentos, investigaremos alguns circuitos simples formados

Leia mais

Resolução de circuitos usando lei de Kirchhoff

Resolução de circuitos usando lei de Kirchhoff Resolução de circuitos usando lei de Kirchhoff 1º) Para o circuito abaixo, calcular todas as correntes. a) Definimos as correntes nas malhas e no ramo central e damos nomes a elas. A definição do sentido

Leia mais

LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE

LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE LISTA DE EXECÍCIOS AULA 3 FÍSICA ELETRICIDADE DENSIDADE DE CORRENTE E VELOCIDADE DE ARRASTE 1) A American Wire Gauge (AWG) é uma escala americana normalizada usada para padronização de fios e cabos elétricos.

Leia mais

Leis de Kirchhoff. Leis de Kirchhoff. Prof. Augusto Melo MENU

Leis de Kirchhoff. Leis de Kirchhoff. Prof. Augusto Melo MENU MENU 1 Introdução 2 1ª Lei de Kirchhoff Lei dos nós 3 Exemplo 1 1ª Lei 4 Exemplo 2 1ª Lei 5 2ª Lei de Kirchhoff Lei das Malhas 6 A explicação para a 2ª Lei 7 Referenciais Introdução 8 Referenciais Gerador

Leia mais

Capítulo 27: Circuitos

Capítulo 27: Circuitos Capítulo 7: Circuitos Índice Força letromotriz Trabalho, nergia e Força letromotriz Calculo da Corrente de um Circuito de uma Malha Diferença de Potencial entre dois Pontos Circuitos com mais de uma Malha

Leia mais

Aula 5. Divisor de tensão Divisor de corrente

Aula 5. Divisor de tensão Divisor de corrente Aula 5 Divisor de tensão Divisor de corrente Simulador de circuitos online Site: http://everycircuit.com/ Simulador online de circuito Exemplos desta aula: http://everycircuit.com/circuit/5500995385163776

Leia mais

Corrente e resistência

Corrente e resistência Cap. 27 Corrente e resistência Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Circuito 1 Força eletromotriz Quando as cargas de movem em através de um material condutor, há diminuição da sua

Leia mais

Ánalise de Circuitos. 1. Método Intuitivo

Ánalise de Circuitos. 1. Método Intuitivo Ánalise de Circuitos 1. Método Intuitivo Ramo de um circuito: é um componente isolado tal como um resistor ou uma fonte. Este termo também é usado para um grupo de componentes sujeito a mesma corrente.

Leia mais

AULA 08 CIRCUITOS E LEIS DE KIRCHHOFF. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 08 CIRCUITOS E LEIS DE KIRCHHOFF. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 08 CIRCUITOS E LEIS DE KIRCHHOFF OS ELEMENTOS DO CIRCUITO Sabemos que o circuito é o caminho percorrido pela corrente elétrica. Nessa aula iremos analisar esses circuitos. Mas antes

Leia mais

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Circuito Elétrico Chamamos de circuito elétrico a um caminho fechado, constituído de condutores,

Leia mais

Capítulo 4. Análise de circuitos elétricos básicos: em série, em paralelo e misto. Figura 3.32 Associação em série-paralelo de geradores.

Capítulo 4. Análise de circuitos elétricos básicos: em série, em paralelo e misto. Figura 3.32 Associação em série-paralelo de geradores. ELETRôNCA Figura 3.3 Associação em série-paralelo de geradores. Capítulo 4 A figura 3.33 mostra as simplificações sucessivas do circuito da figura 3.3. Figura 3.33 Simplificações sucessivas do circuito

Leia mais

Revisão de conceitos. Aula 2. Introdução à eletrónica médica João Fermeiro

Revisão de conceitos. Aula 2. Introdução à eletrónica médica João Fermeiro Revisão de conceitos Aula 2 Introdução à eletrónica médica João Fermeiro Objetivos Rever as grandezas elétricas e elementos de circuito passivos. Considerações sobre resistência/indutância/capacitância

Leia mais

Lista de exercícios - Regra de Kirchhoff

Lista de exercícios - Regra de Kirchhoff Lista de exercícios - Regra de Kirchhoff Circuitos Complexos Regra de Kirchhoff Existem alguns circuitos em que não é possível fazer a separação de partes em série e/ou em paralelo e além disto podem ter

Leia mais

O símbolo usado em diagramas de circuito para fontes de tensão é:

O símbolo usado em diagramas de circuito para fontes de tensão é: Circuitos Elétricos Para fazer passar cargas elétricas por um resistor, precisamos estabelecer uma diferença de potencial entre as extremidades do dispositivo. Para produzir uma corrente estável é preciso

Leia mais

Aula 2. Revisão Circuitos Resistivos

Aula 2. Revisão Circuitos Resistivos Aula 2 Revisão Circuitos Resistivos Conceitos básicos Corrente (A) Tensão (V) Potência (W) i = dq dt v = dw dq p = dw dt Energia (J) w = න Pdt Corrente: Fluxo de cargas; Tensão: Diferença de potencial

Leia mais

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Dado o circuito da figura, determinar a corrente I, a potência dissipada pelo resistor R 2.

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Dado o circuito da figura, determinar a corrente I, a potência dissipada pelo resistor R 2. FSP CRCUTOS ELÉTRCOS EXERCÍCOS RESOLVDOS 00 CRCUTOS ELÉTRCOS EXERCÍCOS 00 ) Dado o circuito da figura, determinar a corrente, a potência dissipada pelo resistor R. ssumindo que a corrente flui no sentido

Leia mais

Teorema da superposição

Teorema da superposição Teorema da superposição Esse teorema é mais uma ferramenta para encontrar solução de problemas que envolvam mais de uma fonte que não estejam em paralelo ou em série. A maior vantagem desse método é a

Leia mais

ANÁLISE DE REDES DC Métodos: Corrente nas malhas, tensão nodal e superposição

ANÁLISE DE REDES DC Métodos: Corrente nas malhas, tensão nodal e superposição ANÁLISE DE REDES DC Métodos: Corrente nas malhas, tensão nodal e superposição ANÁLISE DE UMA REDE DC ATRAVÉS DA CORRENTE NAS MALHAS: No circuito a seguir utilizaremos as Leis de Kirchhoff para sua resolução

Leia mais

defi departamento de física

defi departamento de física defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Circuito Série Paralelo Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida,

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CIRCUITOS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CIRCUITOS. Prof. CENTO DE CIÊNCIAS E TECNOLOGIA AGOALIMENTA UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CICUITOS Prof. Bruno Farias Circuitos elétricos Circuito elétrico é um caminho fechado que

Leia mais

Método das Malhas. Abordagem Geral

Método das Malhas. Abordagem Geral Método das Malhas Abordagem Geral Método das Malhas 1. Associe uma corrente no sentido horário a cada malha fechada e independente do circuito. Não é necessário escolher o sentido horário para todas as

Leia mais

Circuitos elétricos. Prof. Fábio de Oliveira Borges

Circuitos elétricos. Prof. Fábio de Oliveira Borges Circuitos elétricos Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

A tensão em cada ramo do circuito é a diferença de potencial existente entre os seus terminais. Figura 1 - Circuito eléctrico com malhas distintas.

A tensão em cada ramo do circuito é a diferença de potencial existente entre os seus terminais. Figura 1 - Circuito eléctrico com malhas distintas. . Leis de Kirchhoff.. DEFINIÇÕES Os circuitos eléctricos podem ser definidos como sendo dispositivos que permitem um ou vários trajectos fechados para a corrente eléctrica constituindo uma rede eléctrica.

Leia mais

Capítulo 4. Métodos de Análise

Capítulo 4. Métodos de Análise Capítulo 4 Métodos de Análise 4. Análise Nodal Análise de circuitos mais gerais acarreta na solução de um conjunto de equações. Análise nodal: Tensões são as incógnitas a serem determinadas. Dee-se escolher

Leia mais

Aula 2 Circuito série de corrente contínua.

Aula 2 Circuito série de corrente contínua. Aula 2 Circuito série de corrente contínua marcela@edu.estacio.br Circuito em série Polaridade das quedas de tensão Potência total em circuito em série Queda de tensão por partes proporcionais Fontes de

Leia mais

ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF

ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF Introdução Associação de Resistores Em muitas aplicações na engenharia elétrica e eletrônica é muito comum fazer associações de resistores com o objetivo de

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 3

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 3 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica COB781 Módulo 3 Conteúdo 3 - Teoremas e análise sistemática de redes...1 3.1 - Revisão de definições...1 3.2 - Teoremas de

Leia mais

Aula 01. Análise de Circuitos Elétricos. Prof. Alexandre Akira Kida, Msc., Eng. IFBA

Aula 01. Análise de Circuitos Elétricos. Prof. Alexandre Akira Kida, Msc., Eng. IFBA Aula 01 Análise de Circuitos Elétricos Prof. Alexandre Akira Kida, Msc., Eng. IFBA 1 Plano de aula 1. Associação de fontes de tensão 2. Leis de Kirchhoff 3. Método de Maxwell 4. Transformação Y - 2 Introdução

Leia mais

No circuito abaixo determinar as correntes nos ramos, seus verdadeiros sentidos e quais elementos são geradores e receptores.

No circuito abaixo determinar as correntes nos ramos, seus verdadeiros sentidos e quais elementos são geradores e receptores. No circuito abaixo determinar as correntes nos ramos, seus verdadeiros sentidos e quais elementos são geradores e receptores. Dados do problema Resistores: R 1 = 0, Ω; R = 0, Ω; R 3 = 1 Ω; R 4 = 0, Ω;

Leia mais

Circuitos com Cargas em Série e em Paralelo

Circuitos com Cargas em Série e em Paralelo PONTFÍCA UNERSDADE CATÓLCA DE GOÁS DEPARTAMENTO DE ENGENHARA ENG04 Circuitos Elétricos Exper. 3 Circuitos com Cargas em Série e em Paralelo Objetivo dentificar, em um circuito resistivo, as associações

Leia mais

I Exercício de Simulação Computacional

I Exercício de Simulação Computacional Escola de Engenharia de São Carlos Universidade de São Paulo Departamento de Engenharia Elétrica e Computação I Exercício de Simulação Computacional SEL 602 - Circuitos Elétricos Professor Dr. Mário Oleskovicz

Leia mais

PSI3262 FCEDA Aula 02

PSI3262 FCEDA Aula 02 PSI3262 FCEDA Aula 02 Magno T. M. Silva Escola Politécnica da USP Agosto de 2016 Vários desses slides foram inspirados nas transparências da Profa. Denise Consonni Sumário 1 Geradores ideais 2 Geradores

Leia mais

ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF

ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF Introdução Associação de Resistores Em muitas aplicações na engenharia elétrica e eletrônica é muito comum fazer associações de resistores com o objetivo de

Leia mais

Energia envolvida na passagem de corrente elétrica

Energia envolvida na passagem de corrente elétrica Eletricidade Supercondutividade Baixando-se a temperatura dos metais a sua resistividade vai diminuindo Em alguns a resistividade vai diminuindo com a temperatura, mas não se anula Noutros a resistividade

Leia mais

Universidade Federal de Santa Catarina UFSC Centro de Blumenau BNU Curso Pré-Vestibular - Pré UFSC Prof.: Guilherme Renkel Wehmuth

Universidade Federal de Santa Catarina UFSC Centro de Blumenau BNU Curso Pré-Vestibular - Pré UFSC Prof.: Guilherme Renkel Wehmuth Universidade Federal de Santa Catarina UFSC Centro de Blumenau BNU Curso Pré-Vestibular - Pré UFSC Prof.: Guilherme Renkel Wehmuth Eletromagnetismo Corrente Elétrica, Resistores, Capacitores, Fontes e

Leia mais

Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta

Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Introdução Observe o circuito representado na figura ao lado em que uma

Leia mais

Conteúdo. 1 Introdução Teórica Análise Nodal Análise de Malha Objetivos 6. 3 Materiais Utilizados 6

Conteúdo. 1 Introdução Teórica Análise Nodal Análise de Malha Objetivos 6. 3 Materiais Utilizados 6 Lista de Figuras 1 Princípio de Funcionamento........................... 3 2 Sentido convencional da corrente......................... 4 3 Nós de referência................................. 4 4 Exemplos

Leia mais

Circuitos Elétricos Simples

Circuitos Elétricos Simples Circuitos Elétricos Simples Circuitos elétricos que contém apenas resistores e fontes. A corrente elétrica se move sempre no mesmo sentido, ou seja, são circuitos de corrente contínua. Circuitos com mais

Leia mais

O circuito elétrico em série é um divisor de tensão.

O circuito elétrico em série é um divisor de tensão. 01 O circuito elétrico em série é um divisor de tensão. Como as lâmpadas são idênticas, tem-se: U 1 = U 2 = U 3 = U 4 = U = lâmpada i Assim: U 1 + U 2 + U 3 + U 4 = 220 4U = 220 U = 55 V esposta: A 1 02

Leia mais

CADERNO DE ATIVIDADES

CADERNO DE ATIVIDADES 0 Mestrado em Ensino de Ciências e Matemática Área de Concentração: Matemática CADERNO DE ATIVIDADES Utilização de Resolução de Problemas em Fenômenos Físicos da área Eletroeletrônica Mestranda: Vânia

Leia mais

Painel para análise de circuitos resistivos CC. (Revisão 00) Lei de Kirchhoff

Painel para análise de circuitos resistivos CC. (Revisão 00) Lei de Kirchhoff 1 Painel para análise de circuitos resistivos CC (Revisão 00) Lei de Kirchhoff 1 2 Leis de Kirchhoff As leis de Kirchhoff, chamadas em homenagem ao cientista alemão Gustav Robert Kirchhoff. As duas leis

Leia mais

Eletricidade (EL63A) LEIS BÁSICAS

Eletricidade (EL63A) LEIS BÁSICAS Eletricidade (EL63A) LEIS BÁSICAS Prof. Luis C. Vieira vieira@utfpr.edu.br http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Como determinar os valores de tensão, corrente e potência

Leia mais

Leis de Kirchhoff Análise Nodal Análise de Malhas

Leis de Kirchhoff Análise Nodal Análise de Malhas Ramo: Representa um elemento único como fonte de tensão ou resistor. Qualquer elemento de dois terminais. Nó: Ponto de conexão entre dois ou mais ramos. Obs.: se um curto-circuito conecta dois nós, os

Leia mais

Eletricidade básica. Aula 06: Circuitos em série

Eletricidade básica. Aula 06: Circuitos em série Eletricidade básica Aula 06: Circuitos em série Fonte elétrica As fontes elétricas são fundamentais na compreensão da eletrodinâmica, pois elas que mantém a diferença de potencial (ddp) necessária para

Leia mais

Princípios de Circuitos Elétricos. Prof. Dr. Eduardo Giometti Bertogna

Princípios de Circuitos Elétricos. Prof. Dr. Eduardo Giometti Bertogna Princípios de Circuitos Elétricos Prof. Dr. Eduardo Giometti Bertogna Agenda Lei de Ohm; Potência; Energia; Eficiência Energética; Circuitos em Série; Circuitos em Paralelo; Circuitos em Série-Paralelo.

Leia mais

LEIS DE KIRCHHOFF LKC e LKT I = 0

LEIS DE KIRCHHOFF LKC e LKT I = 0 LEIS DE KIRCHHOFF LKC e LKT 1. LKC Comprovação 2. LKT Comprovação 3. Análise das equações As Leis de Kirchhoff são assim denominadas em homenagem ao físico alemão Gustav Kirchhoff 1. Formuladas em 1845,

Leia mais

EELi04 Eletricidade Aplicada I Aula 4

EELi04 Eletricidade Aplicada I Aula 4 UNIFEI - campus ITABIRA EELi04 Eletricidade Aplicada I Aula 4 Professor: Valmor Ricardi Junior Transparências: Prof. Clodualdo Sousa Prof. Tiago Ferreira Prof. Valmor Junior Sumário Circuito CC série (revisão):

Leia mais

Capítulo 8 Métodos de análise e tópicos selecionados (CC)

Capítulo 8 Métodos de análise e tópicos selecionados (CC) Capítulo 8 Métodos de análise e tópicos selecionados (CC) slide 1 FONTES DE CORRENTE Nos capítulos anteriores, a fonte de tensão era a única fonte que aparecia na análise do circuito. Isso se dava fundamentalmente

Leia mais

Circuitos de uma malha (ou redutíveis a uma malha)

Circuitos de uma malha (ou redutíveis a uma malha) Circuitos de uma malha (ou redutíveis a uma malha) 1 Fig,24.1 24.1. Em certas ocasiões podemos ter circuitos elétricos muito complexos, com o aspecto de uma verdadeira rede. Qualquer circuito poligonal

Leia mais

No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos.

No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos. No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos. Dados do problema Resistores R 1 = Ω; R = Ω R = Ω; R 4 = Ω R = Ω; R 6 = Ω; R 7 = Ω; R 8 = Ω. f.e.m. das pilhas E 1 = V;

Leia mais

Uma abordagem de Circuitos Elétricos utilizando Sistemas Lineares

Uma abordagem de Circuitos Elétricos utilizando Sistemas Lineares Uma abordagem de Circuitos Elétricos utilizando Sistemas Lineares Giovane Rodrigues de Oliveira Instituto Federal de Santa Catarina IFSC - Campus Rau Jaraguá do Sul, Brasil giovane.ro@ifsc.edu.br Sander

Leia mais

Circuitos de Corrente Contínua e Associação de Resistores Aula 7

Circuitos de Corrente Contínua e Associação de Resistores Aula 7 Circuitos de Corrente Contínua e Associação de Resistores Aula 7 Circuito elétrico é todo caminho condutor fechado onde se produz uma corrente elétrica. Corrente Elétrica Contínua é toda aquela que tem

Leia mais

ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF

ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF Introdução Associação de Resistores Em muitas aplicações na engenharia elétrica e eletrônica é muito comum fazer associações de resistores com o objetivo de

Leia mais

/augustofisicamelo. Menu

/augustofisicamelo. Menu Menu 1 Conceitos iniciais 2 Elementos de um circuito (1) 3 Elementos de um circuito (2) 4 Lei de Pouillet 5 Introdução às Leis de Kirchhoff 6 1ª Lei de Kirchhoff 7 2ª Lei de Kirchhoff 8 Convenções para

Leia mais

Programa de engenharia biomédica

Programa de engenharia biomédica Programa de engenharia biomédica princípios de instrumentação biomédica COB 781 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto

Leia mais

PROJETO DE RECUPERAÇÃO PARALELA 1º Trimestre

PROJETO DE RECUPERAÇÃO PARALELA 1º Trimestre PROJETO DE RECUPERAÇÃO PARALELA 1º Trimestre - 2018 Disciplina: Física Série: 3ª série do E. Médio Professor: Wagner Fonzi Objetivo: Favorecer ao aluno nova oportunidade para superar as dificuldades apresentadas

Leia mais

Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta

Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Introdução Observe o circuito representado na figura ao lado em que uma

Leia mais

12/04/2012 a 11/08/2012

12/04/2012 a 11/08/2012 ELETRICIDADE PARTE 1 1º SEMESTRE 2012 12/04/2012 a 11/08/2012 Professor: Júlio César Madureira Silva < jmadureira@ifes.edu.br > 1 EMENTA: 1. Revisão sobre unidades de medida no SI. múltiplos m e submúltiplos

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Técnico Integrado em Informática. Resposta: Resposta:

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Técnico Integrado em Informática. Resposta: Resposta: INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE 4ª Lista de Exercícios Eletricidade Instrumental Técnico Integrado em Informática Aluno (a): Ano/Série: Matrícula: Professor:

Leia mais

Física C Semiextensivo V. 3

Física C Semiextensivo V. 3 GABAITO Física C Semiextensivo V. Exercícios 01) D 0) A Para que a corrente elétrica total seja a maior possível, o circuito deve possuir a menor resistência equivalente, ou seja, o menor número de resistência

Leia mais

EXPERIMENTO 3: CIRCUITOS DE CORRENTE CONTÍNUA

EXPERIMENTO 3: CIRCUITOS DE CORRENTE CONTÍNUA EXPERIMENTO 3: CIRCUITOS DE CORRENTE CONTÍNUA 3.1 OBJETIVOS Verificar experimentalmente as Leis de Kirchhoff 3.2 INTRODUÇÃO Para a resolução de um circuito de corrente contínua (cc), com várias malhas,

Leia mais

Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i

Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i 3 6 ADL aula 2 Função de Transferência Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, onde c(t) é a saída, r(t) é a entrada e os a i, b i e a forma

Leia mais

Aula 4. Leis de Kirchhoff

Aula 4. Leis de Kirchhoff Aula 4 Leis de Kirchhoff Revisão Corrente (A) i = dq dt Potência (W) p = dω dt Tensão (V) v = dω dq Energia (J) ω = p dt Para a corrente indicamos a direção do fluxo da corrente Para a tensão indicamos

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica COB781 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 - Elementos básicos de circuito e suas associações...1

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica

Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica 1 Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Aula de Laboratório 02 (22

Leia mais

5) No circuito abaixo, determine a potência gerada pela bateria de 5 V.

5) No circuito abaixo, determine a potência gerada pela bateria de 5 V. ) Determine Vab (i7 é desconhecido). V = 0V ab ) Obtenha os circuitos equivalentes de Thévenin e Norton do seguinte circuito. R.: 3) Determine a resistência equivalente R ab vista dos terminais ab do circuito

Leia mais

CIRCUITOS DE CORRENTE CONTÍNUA

CIRCUITOS DE CORRENTE CONTÍNUA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T5 Física Experimental I - 2007/08 CIRCUITOS DE CORRENTE CONTÍNUA 1. Objectivo Verificar as leis fundamentais de conservação da

Leia mais

6. CIRCUITOS DE CORRENTE CONTÍNUA

6. CIRCUITOS DE CORRENTE CONTÍNUA 6. CCUTOS DE COENTE CONTÍNUA 6.. Força Electromotriz 6.2. esistências em Série e em Paralelo. 6.3. As egras de Kirchhoff 6.4. Circuitos C 6.5. nstrumentos Eléctricos Análise de circuitos simples que incluem

Leia mais

Aula 14 Leis de Kirchhoff

Aula 14 Leis de Kirchhoff Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 9-, 9-4, 9-5, 9-6 S. 7- T. - Aula 4 Leis de Kirchhoff

Leia mais

Circuitos com Amperímetro e Voltímetro

Circuitos com Amperímetro e Voltímetro Circuitos com Amperímetro e Voltímetro 1. (Pucrs 2014) Considere o texto e a figura para analisar as afirmativas apresentadas na sequência. No circuito elétrico mostrado na figura a seguir, um resistor

Leia mais

FÍSICA GERAL E EXPERIMENTAL II PROF JOÃO RODRIGO ESCALARI ESQ. - EXERCÍCIOS DE FÍSICA II GERADORES E LEI DE POULIETT

FÍSICA GERAL E EXPERIMENTAL II PROF JOÃO RODRIGO ESCALARI ESQ. - EXERCÍCIOS DE FÍSICA II GERADORES E LEI DE POULIETT FÍSIC GERL E EXPERIMENTL II PROF JOÃO RODRIGO ESCLRI - 2012 ESQ. - EXERCÍCIOS DE FÍSIC II GERDORES E LEI DE POULIETT 1. 4. figura representa um trecho de um circuito percorrido por uma corrente com intensidade

Leia mais

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico Conteúdo programático: Quadripolos Notas de aula e exercícios: 1. Apresentação do Tópico Um dos principais métodos de análise de circuitos consiste na substituição de blocos complexos em circuitos equivalentes

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto circuito...2

Leia mais

. Medição de tensões contínuas (DC) : Volt [V]. Medição de tensões alternas (AC)

. Medição de tensões contínuas (DC) : Volt [V]. Medição de tensões alternas (AC) Medição de Tensões e de Correntes Eléctricas. Leis de Ohm e de Kirchoff 1. Objectivo: Aprender a medir tensões e correntes eléctricas com um osci1oscópio e um multímetro digital. Conceito de resistência

Leia mais

Roteiro-Relatório da Experiência N o 02 LEIS DE KIRCHHOFF

Roteiro-Relatório da Experiência N o 02 LEIS DE KIRCHHOFF COMPONENTES DA EQUPE: Roteiro-Relatório da Experiência N o 02 LES DE KRCHHOFF ALUNOS NOTA 1 2 3 Data: / / : h 1. OBJETVOS: Verificação experimental da Lei de Kirchhoff das Tensões e a Lei de Kirchhoff

Leia mais

TEOREMAS: - SUPERPOSIÇÃO

TEOREMAS: - SUPERPOSIÇÃO TEOREMAS: - SUPERPOSIÇÃO - THEVENIN e NORTON - MILLMAN - MÁXIMA TRANSFERÊNCIA DE POTÊNCIA Professor: Paulo Cícero Fritzen E-mail: pcfritzen@utfpr.edu.br TEOREMAS PARA ANÁLISE EM CIRCUITOS ELÉTRICOS Os

Leia mais

Associação de Resistores

Associação de Resistores Exper. 4 Objetivo Associação de esistores dentificar em um circuito resistivo as associações serie, paralela e mista. Determinar a resistência equivalente entre dois pontos de um circuito elétrico resistivo,

Leia mais

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. Habilidades: Diferenciar as formas de associação de resistores, bem como determinar

Leia mais

UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA

UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA Um circuito série é aquele que permite somente um percurso para a passagem da corrente. Nos

Leia mais

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita Eletricidade Aplicada Aulas Teóricas Professor: Jorge Andrés Cormane Angarita Métodos de Análise de Circuitos Eletricidade Aplicada Métodos de Análise de Circuitos Etapas para a análise de circuitos em

Leia mais

3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada.

3) Cite 2 exemplos de fontes de Alimentação em Corrente Continua e 2 exemplos em Corrente Alternada. Lista de exercícios Disciplina: Eletricidade Aplicada Curso: Engenharia da Computação Turma: N30 1 -) Assinale a alternativa correta. Descreva o que é tensão elétrica. a - A diferença de potencial elétrico

Leia mais

Corrente elétrica. GRANDE revolução tecnológica. Definição de corrente Controle do movimento de cargas

Corrente elétrica. GRANDE revolução tecnológica. Definição de corrente Controle do movimento de cargas Definição de corrente Controle do movimento de cargas corrente elétrica{ GANDE revolução tecnológica fi eletrotécnica, eletrônica e microeletrônica (diversidade de aplicações!!) Ex. motores elétricos,

Leia mais

CURSINHO COMUNITÁRIO PRÉ-VESTIBULAR CUCA-FRESCA

CURSINHO COMUNITÁRIO PRÉ-VESTIBULAR CUCA-FRESCA CURSINHO COMUNITÁRIO PRÉ-VESTIBULAR CUCA-FRESCA UNIVERSIDADE ESTADUAL PAULISTA Júlio de Mesquita Filho Rua Geraldo Alckmin, 519 N. Srª de Fátima / Itapeva SP www.cursinhocucafresca.wordpress.com Tel: (15)

Leia mais

defi departamento de física

defi departamento de física defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Leis de Kirchhoff em c.c. nstituto Superior de Engenharia do Porto- Departamento de Física ua Dr. António Bernardino de Almeida,

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLÇÃO ATIQ M CASA SOLÇÃO C. [D] A lâmpada estará acesa se os contatos fornecerem uma ddp em seus terminais. Assim a combinação dos contatos que fornecem tal ddp é e 3 ou e 4. SOLÇÃO C. [C] elas especificações

Leia mais

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A resistências & lei de Ohm R A V R 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série Paralelo corrente Rsérie R R Rparalelo R R2 2 SÉREigual corrente

Leia mais

CIRCUITOS ELÉTRICOS II 3 1. EQUAÇÃO DO CIRCUITO ELÉTRICO SIMPLES 3 2. GENERALIZAÇÃO DO TEOREMA DA DDP 3 3. CIRCUITO DE MALHAS MÚLTIPLAS

CIRCUITOS ELÉTRICOS II 3 1. EQUAÇÃO DO CIRCUITO ELÉTRICO SIMPLES 3 2. GENERALIZAÇÃO DO TEOREMA DA DDP 3 3. CIRCUITO DE MALHAS MÚLTIPLAS SUMÁRIO CIRCUITOS ELÉTRICOS II 3 1. EQUAÇÃO DO CIRCUITO ELÉTRICO SIMPLES 3 2. GENERALIZAÇÃO DO TEOREMA DA DDP 3 3. CIRCUITO DE MALHAS MÚLTIPLAS 4 3.1. NOMENCLATURA 4 3.2. MÉTODO DE KIRCHHOFF 5 3.3. O MÉTODO

Leia mais

6. CIRCUITOS DE CORRENTE CONTÍNUA

6. CIRCUITOS DE CORRENTE CONTÍNUA 6. CCUTOS DE COENTE CONTÍNUA 6. Força Electromotriz 6.2 esistências em Série e em Paralelo. 6.3 As egras de Kirchhoff 6.4 Circuitos C 6.5 nstrumentos Eléctricos Análise de circuitos simples que incluem

Leia mais

Universidade de Mogi das Cruzes Engenharia Curso Básico Prof. José Roberto Marques EXERCÍCIOS RESOLVIDOS DE ELETRICIDADE BÁSICA FORMULÁRIO UTILIZADO

Universidade de Mogi das Cruzes Engenharia Curso Básico Prof. José Roberto Marques EXERCÍCIOS RESOLVIDOS DE ELETRICIDADE BÁSICA FORMULÁRIO UTILIZADO rof. José oberto Marques XCÍCOS SOLDOS D LTCDAD BÁSCA FOMULÁO UTLZADO L D OHM Usamos quando se trata de uma de tensão elétrica e quando se trata da tensão sobre um resistor elétrico. Quando estamos alimentando

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. de modelagem com Circuitos Elétricos 2. Sistemática para Obtenção de Equações de Estado pag.1 Teoria de Sistemas Lineares Aula 4 Descrição Matemática de Sistemas Exemplo

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 3 - Teoremas e análise sistemática de redes...1 3.1 - Revisão de definições...1 3.2 - Teoremas de rede e transformações de fontes...1

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 09 CIRCUITO RC

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 09 CIRCUITO RC ELETROMAGNETISMO AULA 09 CIRCUITO RC A PONTE DE WHITESTONE Antes de inserirmos um novo elemento em nosso circuito vamos estudar um caso especial de montagem (de circuito) que nos auxilia na determinação

Leia mais