Programa de engenharia biomédica

Tamanho: px
Começar a partir da página:

Download "Programa de engenharia biomédica"

Transcrição

1 Programa de engenharia biomédica princípios de instrumentação biomédica COB 781 Conteúdo 2 - Elementos básicos de circuito e suas associações Resistores lineares e invariantes Curto circuito Circuito aberto Resistores não lineares e invariantes Interruptor Diodo Associação de Resistores Série Paralelo Fonte de tensão independente Fonte de tensão ideal Fonte de tensão real Associação de fontes de tensão Fonte de corrente independente Fonte de corrente ideal Fonte de corrente real Associações de fontes de corrente Modelo de Thévenin e Norton Associação de fontes e resistores Divisor de tensão...12

2 Divisor de corrente Fontes controladas Exercícios...15 Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 2

3 2 Elementos básicos de circuito e suas associações Resistor, diodo, transistor, válvula, capacitor, indutor e transformador, entre outros elementos de circuito, são elementos reais que podem ser representados por modelos ou associação de modelos, cada qual apresentando apenas 1 propriedade física. 2.1 Resistores lineares e invariantes Os resistores são os elementos de circuito mais comuns e representam uma oposição a passagem da corrente elétrica. Existem diversos símbolos para o resistor: Na Europa se utiliza um retângulo (como os elementos apresentados no capítulo anterior), nos Estados Unidos e no Brasil o símbolo mais comum é apresentado na figura abaixo. O resistor é caracterizado pelas seguintes relações: v t =R i t, onde R é resistência (Ohm Ω). Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 1

4 i t =G v t, onde G é condutância (Siemens S) R=G 1 Normalmente R e G são lineares (como no gráfico da figura acima) e invariantes com o tempo, mas isto não é uma exigência. OBS.: São condições essenciais para a linearidade: f x = f x f x 1 x 2 = f x 1 f x Curto circuito R=0. Isto significa que a diferença de tensão entre dois terminais de um curto circuito é zero, independente da corrente que circula por este elemento. Idealmente o curto circuito é representado por um fio. Num gráfico v x i o curto circuito se caracteriza por ser uma reta paralela ao eixo da corrente e passando pela origem Circuito aberto R=. Isto significa que não há circulação de corrente pelo circuito aberto, independente da tensão aplicada a seus terminais. Idealmente o curto circuito é representado por dois nós não conectados. Num gráfico v x i o curto circuito se caracteriza por ser uma reta paralela ao eixo da tensão e passando pela origem. 2.2 Resistores não lineares e invariantes Interruptor Uma chave ideal pode ser modelada por por um curto circuito ou por circuito aberto dependendo de estar fechada ou aberta respectivamente. Um modelo mais realístico pode representar as resistência de contatos elétricos (R1) quando a chave está fechada e uma Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 2

5 resistência de isolação (R2) de quando a chave esta aberta. Outros modelos para a chave podem ser utilizados, como na figura abaixo Diodo Um elemento com comportamento muito semelhante ao de uma chave comutada por tensão é o diodo eletrônico, cujo símbolo e curva v x i são apresentados abaixo. q v t i t =I S e 1 K T onde K T q 26mV para a temperatura ambiente. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 3

6 É muito comum, na prática, simplificar os cálculos de circuitos que utilizam diodos substituindo seu comportamento real (descrito pela exponencial acima) por uma chave controlada (um curto circuito ou circuito aberto). Eventualmente este modelo pode estar associada com outros elementos como fontes e resistores, como veremos em breve. O diodo comum apresenta curvas não simétricas com relação a origem o que significa que estes elementos tem polaridade. 2.3 Associação de Resistores Série A associação série de resistores é aquela onde um terminal de um resistor se conecta a um terminal do próximo formando uma seqüência de resistores. Esta associação, ilustrada na figura abaixo pelos resistores R 1 e R 2, tem um comportamento elétrico semelhante ao de uma resistência equivalente R EQ entre os nós A e C da associação. O valor da resistência equivalente pode ser calculada da seguinte maneira: v=v R1 v R2 v=i R 1 I R 2 v= I R 1 R 2 v=i R EQ Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 4

7 R EQ =R 1 R 2 Genericamente R EQ = R n (a resistência equivalente é maior que todas as resistências individuais da associação). Cabe ressaltar que a resistência equivalente da associação é equivalente apenas do ponto de vista da tensão e da corrente nós A e C (na figura acima) pois a potência dissipada por cada resistor será diferente da potência dissipada pelo equivalente assim como a tensão sobre cada resistor será diferente da tensão sobre o resistor equivalente. A figura acima também apresenta um símbolo não utilizado anteriormente. Um triângulo interligado ao nó C. Este símbolo marca o nó como um nome e costuma ser utilizado para representar uma referência de tensão (também chamado de terra, massa, chassi, retorno...). Quando ele está presente no circuito as medidas de diferença de tensão são dadas com relação a este ponto. Abaixo vemos curvas de tensão em função da corrente para a associação série apresentada anteriormente. A tensão V a equivale a diferença de tensão V A V C, a tensão V b equivale a diferença de tensão V B V C, por outro lado a tensão V A, B ou V AB equivale a diferença de tensão V A V B. Estas representações de diferenças de potencial são comuns em circuitos e sempre que se deseja expressar uma diferença de tensão entre a referência e um nó qualquer do circuito basta indicar o nome deste nó. Quando a diferença de potencial se refere a uma Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 5

8 medida que não inclua o nó de referência então se indicam os dois nós para os quais a diferença de tensão esta sendo fornecida ou solicitada Paralelo A associação paralela de resistores é aquela onde um terminal de cada resistor se conecta a um determinado nó e todos os demais terminais se conectam a um outro nó. Esta associação, ilustrada na figura abaixo pelos resistores R 1 e R 2, tem um comportamento elétrico semelhante ao de uma resistência equivalente R EQ entre os nós A e C da associação. O valor da condutância equivalente pode ser calculado da seguinte maneira. i TOTAL =i R1 i R2 i TOTAL =v G 1 v G 2 i TOTAL =v G 1 G2 i TOTAL =v G EQ G EQ =G 1 G 2 Genericamente G EQ = G n (a condutância equivalente é maior que todas as condutâncias individuais da associação, ou seja a resistência equivalente é menor que todas as resistências da associação). A figura abaixo mostra o gráfico das condutâncias formadas por R 1, R 2 e R EQ Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 6

9 2.4 Fonte de tensão independente Fonte de tensão ideal As fontes de tensão são elementos capazes de absorver ou fornecer energia a circuitos mantendo constante a diferença de potencial entre seus terminais, independentemente da corrente que circule pela fonte. Existem diversos símbolos para a fonte mas o mais comum está representado na figura abaixo. Observe na figura abaixo que a curva v x i da fonte de tensão é uma reta paralela ao eixo da corrente, como se fosse um curto circuito (a resistência de uma fonte de tensão ideal é zero) porém esta curva não passa pela origem, ou seja não tem um comportamento linear. Correntes positivas estão associadas ao sentido de referência mostrado na figura acima e nesta região a fonte absorve energia (p>0) ou seja, esta sendo carregada. Quando a corrente é negativa (sentido contrario ao de referência) a fonte fornece energia (p<0). Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 7

10 2.4.2 Fonte de tensão real Fontes de tensão reais apresentam uma diminuição da tensão em seus terminais que é proporcional a corrente fornecida para a carga. A figura abaixo apresenta um modelo para fonte de tensão real formado por uma fonte de tensão ideal vo em série com uma resistência R S,. Esta fonte está sendo utilizada para alimentar uma carga R L. O comportamento v x i da fonte de tensão real é semelhante ao mostrado na figura abaixo. Neste exemplo, vo=10v e R S =10. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 8

11 2.4.3 Associação de fontes de tensão Fontes de tensão podem ser associadas em série e em paralelo. Se forem conectadas em série a fonte de tensão equivalente será dada pela soma algébrica das tensões de cada fonte. Por outro lado, se as fontes forem conectadas em paralelo todas devem ter o mesmo valor e a mesma polaridade. Isto deve ocorrer para que o somatório das tensões em cada caminho fechado seja nulo, obedecendo a LTK. 2.5 Fonte de corrente independente Fonte de corrente ideal As fontes de corrente são elementos capazes de absorver ou fornecer energia a circuitos mantendo constante corrente que atravessa seus terminais, independentemente da diferença de tensão entre seus terminais. Existem diversos símbolos para a fonte mas o mais comum está representado na figura abaixo. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 9

12 Observe na figura abaixo que a curva v x i da fonte de corrente é uma reta paralela ao eixo da tensão, como se fosse um circuito aberto (a resistência de uma fonte de corrente ideal é infinita) porém esta curva não passa pela origem, ou seja não tem um comportamento linear. Tensões positivas estão associadas ao sentido de referência mostrado na figura acima e nesta região a fonte absorve energia (p>0) ou seja, esta sendo carregada. Quando a tensão é negativa (sentido contrario ao de referência) a fonte fornece energia (p<0) Fonte de corrente real Fontes de corrente reais apresentam uma diminuição da corrente de saída a medida que a tensão nos terminais da fonte aumenta. A figura abaixo apresenta um modelo de uma fonte de corrente real, representada por uma fonte de corrente ideal io e uma resistência R S. Esta fonte está sendo utilizada para alimentar a carga R L. Desenhe o gráfico de v com relação a i. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 10

13 O comportamento v x i da fonte de corrente real é semelhante ao mostrado na figura abaixo. Neste exemplo, io=1a e R S =10. Observe que a curva abaixo é idêntica aquela obtida para o exemplo de fonte de tensão real com vo=10v e R S =10. Se estes dois circuitos apresentam a mesma característica v x i então os dois circuitos são equivalentes do ponto de vista dos seus terminais Associações de fontes de corrente Fontes de corrente podem ser associadas em série ou em paralelo. Se forem ligadas em série todas as fontes devem ter a mesma intensidade e o mesmo sentido para que seja respeitada a LCK. Se ligadas em paralelo podem ter qualquer valor e sentido e, neste caso, a fonte equivalente corresponde a uma fonte cuja intensidade e sentido é dada pela soma algébrica das correntes das fontes individuais. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 11

14 2.6 Modelo de Thévenin e Norton Como foi mostrado os modelos de fontes de tensão e corrente reais apresentam a mesma curva v x i e portanto são equivalentes. Estes equivalentes recebem nomes especiais (Thévenin e Norton respectivamente) e podem ser vistos na figura abaixo. Para substituir um equivalente Thévenin por um Norton basta igualar a equação V AC em função de I de ambos os modelos. A intersecção da curva com o eixo das tensões determina vo, a intersecção da curva com o eixo das correntes determina io e a inclinação da reta determina Rs. 2.7 Associação de fontes e resistores Divisor de tensão Um problema muito comum em circuitos é o cálculo da tensão sobre um resistor numa ligação série de fonte de tensão e resistores conforme indicado na figura a seguir. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 12

15 A tensão v pode ser obtida da seguinte maneira: vs i TOT = R 1 R 2 R 3 v=i TOT R 2 vs v= R R 1 R 2 R 2 3 Genericamente v i = vs R i R n Divisor de corrente Outro problema muito comum é o cálculo de uma determinada corrente num circuito paralelo entre uma fonte de corrente e resistores, como ilustrado na figura abaixo. A corrente i1 pode ser obtida da seguinte maneira is v TOT = G 1 G 2 G 3 i 1 =v TOT G 1 is i 1 = G G 1 G 2 G 1 3 Genericamente i i = is G i G n Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 13

16 2.8 Fontes controladas Uma fonte controlada é um elemento de circuito com 2 braços onde o primeiro é formado por um curto circuito ou circuito aberto e o segundo por uma fonte de tensão ou corrente. A forma de onda na fonte do segundo braço é uma função na tensão de circuito aberto ou da corrente de curto circuito do primeiro braço ou seja a fonte do segundo braço é controlada pela tensão ou corrente no primeiro braço. Assim, existem quatro combinações possíveis de fontes controladas que estão representadas na figura abaixo. Fonte de corrente controlada por corrente: i 2 =α i 1 Fonte de corrente controlada por tensão: i 2 =gm v 1 Fonte de tensão controlada por tensão: v 2 = μ v 1 Fonte de tensão controlada por corrente: v 2 =rm i 1 Estas fontes são muito comuns em eletrônica e representam o funcionamento de circuitos ou elementos como transistores, amplificadores operacionais e válvulas. Os símbolos utilizados diferem um pouco na literatura e nos simuladores. Via de regra o símbolo da fonte continua o mesmo utilizado para fontes independentes ou assume um formato de losângulo. A dependência com a corrente ou a tensão do primeiro braço é explicitada pela equação que governa o funcionamento da fonte. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 14

17 Diferente das fontes independentes, fontes controladas representadas por α, gm, µ e rm constantes são fontes lineares e invariantes com o tempo mas também podem existir fontes controladas não lineares e variantes. As fontes independentes representam fornecimento de energia ou seja a ação do mundo externo e são componentes não lineares por natureza. As fontes controladas representam comportamento de elementos eletrônicos (resistores, por exemplo) acoplados ou seja podem ser elementos lineares. Nos exemplos mostrados acima, com coeficientes constantes, a impedância de uma fonte de corrente controlada não é infinita e a impedância de uma fonte de tensão controlada não é zero. De resto as fontes controladas podem ser consideradas fontes de tensão ou corrente e assim são consideradas na análise de circuitos. 2.9 Exercícios 1) Observando a curva v x i de um elemento é possível determinar se ele apresenta polaridade (tem lado certo para ser colocado no circuito)? 2) Calcule a resistência equivalente para os circuitos da figura abaixo Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 15

18 3) Apresente as curvas v x i para as figuras abaixo (considere que o diodo se comporta como uma chave ideal resistência zero para corrente positiva e resistência infinita para corrente negativa) 4) Para os circuitos da figura abaixo calcule as tensões e as correntes sobre os elementos. Considere R 1 =1, R 1 =2 e R 1 =3. Determine quem absorve e quem fornece energia. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 16

19 5) Determine a tensão, a corrente e a potência sobre cada elemento do circuito abaixo. 6) Para a figura abaixo calcule as tensões V 1 e V 2. 7) Determine o modelo equivalente para os dois circuitos abaixo. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 17

20 8) Abaixo são apresentadas duas redes resistivas: uma rede chamada T ou Y e outra rede chamada Π ou. Dependendo dos valores dos resistores estas redes podem ser equivalentes do ponto de vista dos terminais A, B e C. a) Determine os valores de RA, RB e RC para que a rede T seja equivalente a uma dada rede Π. b) Determine os valores de R1, R2 e R3 para que a rede Π seja equivalente a uma dada rede T. 9) Utilizando apenas associação de resistores e transformação de modelos Thévenin- Norton determine o valor da tensão v. Resposta: v=14,82 V 10) Para a figura abaixo calcule a tensão sobre a carga (resistor R L ) 11) Para o circuito abaixo, calcular v L (tensão sobre o resistor R L ). Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 18

21 Solução: v µ v v = R = R 2 1 L L L R2 + RL R2 + RL v 1 = v S R S R 1 R 1 v L = μ v S R 1 R L R L R 2 R S R 1 12) Para o circuito abaixo calcular a impedância vista pela fonte de corrente Solução: Z E = V = 1 a I Z 1 L = 1 a Z I S I L S Observe que dependendo do valor de a a impedância equivalente conectada em paralelo com a fonte de corrente varia. Se a=1 a impedância é nula e o circuito se comporta como um curto circuito. Se 0 a 1 a impedância será uma parcela da impedância da carga. Se a 1 a impedância é negativa. 13) Para os circuitos abaixo calcular o valor de v o considerando que o ganho A do amplificador operacional não é infinito. Determine o limite de v o quando o ganho A tende a Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 19

22 infinito. Refaça as contas considerando que a fonte controlada da saída é uma fonte de tensão independente de valor v o e que a diferença de tensão entre as duas entradas do operacional é nula. Compare os resultados e explique o que aconteceu. Solução para o primeiro circuito. Redesenhando o circuito para facilitar o equacionamento i 1 = v i v o R 1 R 2 v _ =i 1 R 2 v o = v i v o R 1 R 2 R 2 v o v _ = v i R 2 v o R 1 R 1 R 2 v o =A v + v _ Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 20

23 como v + =0 v _ = v o A = v i R 2 v o R 2 R 1 R 2 v o = R 2 R 1 R 1 R 2 A v i se lim v o = R 2 v A R i 1 Observe que se A tende a infinito e a saída v o é finita então a diferença de tensão entre as duas entradas do amplificador operacional obrigatoriamente deve ser ser nula. Considerando antecipadamente as duas entradas do operacional com o mesmo potencial podemos resolver o problema da seguinte forma: v + =v _ =0 logo i 1 = v i = v o, então R 1 R 2 v o = R 2 R 1 v i. Princípios de Instrumentação Biomédica COB781 PEB/COPPE/UFRJ 21

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto circuito...2

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica COB781 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 - Elementos básicos de circuito e suas associações...1

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares

Leia mais

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781 Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito

Leia mais

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série. Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos

Leia mais

Eletrotécnica. Circuitos Elétricos

Eletrotécnica. Circuitos Elétricos Eletrotécnica Circuitos Elétricos Introdução Caracterizamos um circuito elétrico como sendo um conjunto de componentes elétricos / eletrônicos ligados entre si formando pelo menos um caminho para a passagem

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 5 - Capacitores e Indutores...1 5.1 - Capacitores...1 5.2 - Capacitor linear e invariante com o tempo...2 5.2.1 - Modelo Thévenin

Leia mais

Teorema da superposição

Teorema da superposição Teorema da superposição Esse teorema é mais uma ferramenta para encontrar solução de problemas que envolvam mais de uma fonte que não estejam em paralelo ou em série. A maior vantagem desse método é a

Leia mais

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL

Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. INTERATIVIDADE FINAL Aula 8.2 Conteúdo: Associação de resistores em paralelo, potência elétrica de uma associação em paralelo de resistores. Habilidades: Diferenciar as formas de associação de resistores, bem como determinar

Leia mais

O símbolo usado em diagramas de circuito para fontes de tensão é:

O símbolo usado em diagramas de circuito para fontes de tensão é: Circuitos Elétricos Para fazer passar cargas elétricas por um resistor, precisamos estabelecer uma diferença de potencial entre as extremidades do dispositivo. Para produzir uma corrente estável é preciso

Leia mais

Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim

Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim 1 EXERCÍCIOS DE ELETRÔNICA BÁSICA II Prof. Marcelo Wendling

Leia mais

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Circuito Elétrico Chamamos de circuito elétrico a um caminho fechado, constituído de condutores,

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise

Leia mais

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico Conteúdo programático: Quadripolos Notas de aula e exercícios: 1. Apresentação do Tópico Um dos principais métodos de análise de circuitos consiste na substituição de blocos complexos em circuitos equivalentes

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 40 Módulo 10 Drawing of Michael Faraday's 1831 experiment showing electromagnetic induction between coils of wire, using 19th century apparatus,

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 5

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 5 Universidade Federal do Rio de Janeiro Circuitos Elétricos I - EEL420 Módulo 5 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 5 Capacitores e Indutores...1 5.1 Capacitores...1 5.2 Capacitor linear e

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 3 - Teoremas e análise sistemática de redes...1 3.1 - Revisão de definições...1 3.2 - Teoremas de rede e transformações de fontes...1

Leia mais

Unidade III. 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuitos CA

Unidade III. 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuitos CA Unidade III 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuito RL Circuitos RL são formados por resistências e indutâncias, em série ou paralelo. São usados para representar

Leia mais

CAPÍTULO 5 TRANSISTORES BIPOLARES

CAPÍTULO 5 TRANSISTORES BIPOLARES CAPÍTULO 5 TRANSSTORES BPOLARES O transistor é um dispositivo semicondutor de três terminais, formado por três camadas consistindo de duas camadas de material tipo "n", de negativo, e uma de tipo "p",

Leia mais

Indução Magnética. E=N d Φ dt

Indução Magnética. E=N d Φ dt Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei

Leia mais

UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA

UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA Um circuito série é aquele que permite somente um percurso para a passagem da corrente. Nos

Leia mais

Retificadores com tiristores

Retificadores com tiristores Retificadores com tiristores 5 O retificador controlado trifásico de meia onda Os retificadores trifásicos são alimentados pela rede de energia trifásica cujas tensões podem ser descritas pelas expressões

Leia mais

Circuitos Série e a Associação Série de Resistores

Circuitos Série e a Associação Série de Resistores 1 Painel para análise de circuitos resistivos CC (Revisão 00) Circuitos Série e a Associação Série de Resistores 1 2 Circuitos Série e a Associação Série de Resistores Utilizando as chaves disponíveis

Leia mais

ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS 2.1 - INTRODUÇÃO - EXISTEM CINCO ELEMENTOS BÁSICOS IDEAIS QUE SÃO UTILIZADOS EM CIRCUITOS ELÉTRICOS. - ELEMENTOS ATIVOS (GERAM ENERGIA ELÉTRICA)

Leia mais

Etapa 1: Questões relativas aos resultados Lei de Ohm. 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor.

Etapa 1: Questões relativas aos resultados Lei de Ohm. 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor. Respostas Questões relativas ao resultado Etapa 1: Questões relativas aos resultados Lei de Ohm 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor. Resposta: O valor encontrado

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA III EXERCÍCIO ESCOLAR (1) (A) Como se chama o fenômeno que ocorre quando

Leia mais

Ánalise de Circuitos. 1. Método Intuitivo

Ánalise de Circuitos. 1. Método Intuitivo Ánalise de Circuitos 1. Método Intuitivo Ramo de um circuito: é um componente isolado tal como um resistor ou uma fonte. Este termo também é usado para um grupo de componentes sujeito a mesma corrente.

Leia mais

5) No circuito abaixo, determine a potência gerada pela bateria de 5 V.

5) No circuito abaixo, determine a potência gerada pela bateria de 5 V. ) Determine Vab (i7 é desconhecido). V = 0V ab ) Obtenha os circuitos equivalentes de Thévenin e Norton do seguinte circuito. R.: 3) Determine a resistência equivalente R ab vista dos terminais ab do circuito

Leia mais

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE

NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º BIMESTRE 1925 *** COLÉGIO MALLET SOARES *** 2016 91 ANOS DE TRADIÇÃO, RENOVAÇÃO E QUALIDADE DEPARTAMENTO DE ENSINO DATA: / / NOTA: NOME: N CADERNO DE RECUPERAÇÃO DE FÍSICA I 3º ANO EM TURMA 232 PROFº FABIANO 1º

Leia mais

3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100.

3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100. 1) (271099) Para o circuito mostrado na figura abaixo, encontre as tensões indicadas no circuito para (a) = + (b) = 100 (c) = 10. 2) (271099) (a) Projete R C e R B para o circuito mostrado na figura abaixo

Leia mais

ELETRÔNICA II CAPÍTULO 3

ELETRÔNICA II CAPÍTULO 3 ELETRÔNICA II CAPÍTULO 3 SUPERPOSIÇÃO DE AMPLIFICADORES O fato do sinal de áudio apresentar-se em corrente alternada (c.a.), a qual difere daquela que polariza o transistor (que é c.c., neste caso), nos

Leia mais

BIPOLOS NÃO ÔHMICOS INTRODUÇÃO TEÓRICA

BIPOLOS NÃO ÔHMICOS INTRODUÇÃO TEÓRICA BIPOLOS NÃO ÔHMICOS OBJETIVOS: a) verificar o comportamento de bipolos que não obedecem a lei de ohm; b) construir experimentalmente as características de bipolos não ôhmicos; c) distinguir a diferença

Leia mais

Resistores e CA. sen =. logo

Resistores e CA. sen =. logo Resistores e CA Quando aplicamos uma voltagem CA em um resistor, como mostrado na figura, uma corrente irá fluir através do resistor. Certo, mas quanta corrente irá atravessar o resistor. Pode a Lei de

Leia mais

Painel para análise de circuitos resistivos CC. (Revisão 00) Circuitos Paralelos e a Associação Paralela de Resistores

Painel para análise de circuitos resistivos CC. (Revisão 00) Circuitos Paralelos e a Associação Paralela de Resistores 1 Painel para análise de circuitos resistivos CC (Revisão 00) Circuitos Paralelos e a Associação Paralela de Resistores 1 2 Circuitos Paralelos e a Associação Paralela de Resistores Utilizando as chaves

Leia mais

Conceitos Básicos de Teoria dos Circuitos

Conceitos Básicos de Teoria dos Circuitos Teoria dos Circuitos e Fundamentos de Electrónica Conceitos Básicos de Teoria dos Circuitos T.M.lmeida ST-DEEC- CElectrónica Teresa Mendes de lmeida TeresaMlmeida@ist.utl.pt DEEC Área Científica de Electrónica

Leia mais

Resistores e Associação de Resistores

Resistores e Associação de Resistores Resistores e Associação de Resistores Gabarito Parte I: O esquema a seguir ilustra a situação: Como mostrado, a resistência equivalente é Ω. Aplicando a lei de Ohm-Pouillet: = R eq i 60 = i i = 15 A. a)

Leia mais

2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.

2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais. Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 01

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 01 CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 01 1) Um par de faróis de automóvel é ligado a uma bateria de

Leia mais

AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala

AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala AULA 03 Exercícios Lista 01 Lista 02 Lista 03 Resolução de exercícios em sala AULA 04 Tensão e Corrente alternada Ondas senoidais Ondas quadradas Ondas triangulares Frequência e período Amplitude e valor

Leia mais

Associação de Resistores

Associação de Resistores Exper. 4 Objetivo Associação de esistores dentificar em um circuito resistivo as associações serie, paralela e mista. Determinar a resistência equivalente entre dois pontos de um circuito elétrico resistivo,

Leia mais

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.

CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET. MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta

Leia mais

Capítulo 27: Circuitos

Capítulo 27: Circuitos Capítulo 7: Circuitos Índice Força letromotriz Trabalho, nergia e Força letromotriz Calculo da Corrente de um Circuito de uma Malha Diferença de Potencial entre dois Pontos Circuitos com mais de uma Malha

Leia mais

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura:

1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica dos fios que fazem a ligação entre a bateria e as

Leia mais

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas

Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,

Leia mais

Física Ciências da Computação 2.o sem/ Aula 3 - pág.1/5

Física Ciências da Computação 2.o sem/ Aula 3 - pág.1/5 Conceitos O mundo do aprendizado é tão amplo e a alma humana, tão limitada! Quebramos a cabeça para puxar apenas uma pontinha da cortina que cobre o infinito. Maria Mitchell Resistor: Dispositivo elétrico

Leia mais

FÍSICA GERAL E EXPERIMENTAL II PROF JOÃO RODRIGO ESCALARI ESQ. - EXERCÍCIOS DE FÍSICA II GERADORES E LEI DE POULIETT

FÍSICA GERAL E EXPERIMENTAL II PROF JOÃO RODRIGO ESCALARI ESQ. - EXERCÍCIOS DE FÍSICA II GERADORES E LEI DE POULIETT FÍSIC GERL E EXPERIMENTL II PROF JOÃO RODRIGO ESCLRI - 2012 ESQ. - EXERCÍCIOS DE FÍSIC II GERDORES E LEI DE POULIETT 1. 4. figura representa um trecho de um circuito percorrido por uma corrente com intensidade

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 02

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 02 CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA GERÊNCIA EDUCACIONAL DE ELETRÔNICA Fundamentos de Eletricidade LISTA DE EXERCÍCIOS 02 1) O princípio da superposição pode ser aplicado a um circuito

Leia mais

c) Se o valor da amplitude de v I for reduzido em 10%, quais são os novos valores máximo e médio de i B?

c) Se o valor da amplitude de v I for reduzido em 10%, quais são os novos valores máximo e médio de i B? Folha 4 Díodos. 1. Para cada um dos circuitos das figuras abaixo a entrada v I é sinusoidal com 10 V de amplitude e frequência 1kHz. Considerando os díodos ideais represente graficamente o sinal de saída

Leia mais

t RESOLUÇÃO COMECE DO BÁSICO

t RESOLUÇÃO COMECE DO BÁSICO t RESOLÇÃO COMECE DO BÁSICO SOLÇÃO CB. 01 Para ser resistor ôhmico o gráfico deve ser linear. Neste caso, a linearidade se observa no trecho BC. SOLÇÃO CB. 0 ' r '. i ( Equação 10 7 r'.4 4r 48 do receptor)

Leia mais

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Estágio Amplificadores Simples (1) Estágio Amplificadores Simples (2) Conceitos Básicos (1) Conceitos de grande e pequenos sinais : Quando x

Leia mais

Aquino, Josué Alexandre.

Aquino, Josué Alexandre. Aquino, Josué Alexandre. A657e Eletrotécnica para engenharia de produção : análise de circuitos : corrente e tensão alternada / Josué Alexandre Aquino. Varginha, 2015. 53 slides; il. Sistema requerido:

Leia mais

Engenharia mecatrônica 2017/1. Filipe Andrade La-Gatta IF Sudeste MG/JF

Engenharia mecatrônica 2017/1. Filipe Andrade La-Gatta IF Sudeste MG/JF Engenharia mecatrônica 2017/1 Configuração inversora Filipe Andrade La-Gatta filipe.lagatta@ifsudestemg.edu.br IF Sudeste MG/JF Filipe Andrade La-Gatta (IF Sudeste MG/JF) Instrumentação I Abril/2017 1

Leia mais

Linearidade e o Princípio da Superposição; Equivalente Thevenin e a Máxima Transferência de Potência

Linearidade e o Princípio da Superposição; Equivalente Thevenin e a Máxima Transferência de Potência NotasdeAula LabCircuitos1 2011/8/11 13:46 page 17 #25 LINEARIDADE E O PRINCÍPIO DA SUPERPOSIÇÃO; EQUIVALENTE THEVENIN E A MÁXIMA TRANSFERÊNCIA DE POTÊNCIA 17 Linearidade e o Princípio da Superposição;

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #8 (1) FONTE DE CORRENTE a) Determine Io. b) Calcule

Leia mais

EELi04 Eletricidade Aplicada I Aula 4

EELi04 Eletricidade Aplicada I Aula 4 UNIFEI - campus ITABIRA EELi04 Eletricidade Aplicada I Aula 4 Professor: Valmor Ricardi Junior Transparências: Prof. Clodualdo Sousa Prof. Tiago Ferreira Prof. Valmor Junior Sumário Circuito CC série (revisão):

Leia mais

Método das Malhas. Abordagem Geral

Método das Malhas. Abordagem Geral Método das Malhas Abordagem Geral Método das Malhas 1. Associe uma corrente no sentido horário a cada malha fechada e independente do circuito. Não é necessário escolher o sentido horário para todas as

Leia mais

O que são quadripólos?

O que são quadripólos? O que são quadripólos? Duas portas separadas para entrada e saída; Não há ligações externas. Dois pares de terminais funcionando como ponto de acesso; Utilização: Sistemas de comunição, de controle, de

Leia mais

Disciplina: Circuitos Elétricos I. Conceitos Preliminares

Disciplina: Circuitos Elétricos I. Conceitos Preliminares Disciplina: Circuitos Elétricos I Conceitos Preliminares Introdução O termo circuito elétrico se refere tanto a um sistema elétrico real quanto a um modelo matemático; É o instrumento básico para a compreensão

Leia mais

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 - Introdução - Método de avaliação - Data das provas: P1: 04/10/16 P2: 08/11/16 P3: 22/11/16 (somente para faltosos) - Suspensão de aulas: 09/08/16, 16/08/16, 15/11/16

Leia mais

Métodos de Análise de Circuitos

Métodos de Análise de Circuitos 1 utor: Prof Paulo icardo Telles angel Elétricos 1 Introdução Os métodos de análise de circuitos elétricos são ferramentas que envolvem os conceitos de eletricidade, como a Lei de Ohm, em conjunto com

Leia mais

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam

Leia mais

Experimento Prático N o 4

Experimento Prático N o 4 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Engenharia Área de Eletricidade Experimento Prático N o Eletricidade para Engenharia Lei de Ohm e Potência Elétrica L A B O R A T Ó R I O D E E L E T R I

Leia mais

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA EXPERIÊNCIA N o PEA50 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA RETIFICADORES NÃO CONTROLADOS DE DOIS CAMINHOS W. KAISER 0/009 1. OBJETIVOS Estudo do funcionamento e processo de comutação em retificadores

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 6 Heaviside Dirac Newton Conteúdo 6 Circuitos de primeira ordem...1 6.1 Equação diferencial ordinária de primeira ordem...1 6.1.1

Leia mais

EXERCÍCIOS DE APLICAÇÃO CIRCUITOS 1

EXERCÍCIOS DE APLICAÇÃO CIRCUITOS 1 1. (Unesp 94) Por uma bateria de f.e.m. (E) e resistência interna desprezível, quando ligada a um pedaço de fio de comprimento Ø e resistência R, passa a corrente i (figura 1). Quando o pedaço de fio é

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7 Universidade Federal do Rio de Janeiro Circuitos Elétricos I - EEL420 Módulo 7 Musschenbroek Green Gauss Edison Tesla Lorentz Conteúdo 7 - Circuitos de Segunda Ordem...1 7.1 - Circuito RLC linear e invariante

Leia mais

O USO DO SIMULADOR PhET PARA O ENSINO DE ASSOCIAÇÃO DE RESISTORES. Leonardo Dantas Vieira

O USO DO SIMULADOR PhET PARA O ENSINO DE ASSOCIAÇÃO DE RESISTORES. Leonardo Dantas Vieira Universidade Federal de Goiás - Regional Catalão Instituto de Física e Química Programa de Pós-Graduação em Ensino de Física Mestrado Nacional Profissional em Ensino de Física O USO DO SIMULADOR PhET PARA

Leia mais

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15 CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15 Aula 1 04/08/15 - Introdução - Método de avaliação - Data das provas: P1: 29/09/15 P2: 03/11/15 P3: 10/11/15 (somente para faltosos) - Suspensão de aulas: Não há

Leia mais

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor.

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor. Transistor Em 1947, John Bardeen e Walter Brattain, sob a supervisão de William Shockley no AT&T Bell Labs, demonstraram que uma corrente fluindo no sentido de polaridade direta sobre uma junção semicondutora

Leia mais

Eletrônica Circuitos Complexos

Eletrônica Circuitos Complexos Eletrônica Circuitos Complexos Módulo II . Introdução Qualquer circuito elétrico ou eletrônico consiste de três grandezas relacionadas: voltagem, corrente e resistência. Voltagem é a energia potencial

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua UNVESDDE nstituto de Física de São Carlos Nesta prática estudaremos as leis de Kirchoff para análise de circuitos de corrente contínua. Nos experimentos, investigaremos alguns circuitos simples formados

Leia mais

Circuitos Elétricos I EEL420 16/04/2015

Circuitos Elétricos I EEL420 16/04/2015 Circuitos Elétricos I EE420 16/04/2015 Nome: 1) COOQUE SEU NOME E NUMERE AS FOHAS DOS CADERNOS DE RESPOSTA 2) RESPONDA AS QUESTÕES EM ORDEM UTIIZANDO ATÉ 2 PÁGINAS POR QUESTÃO (NO MÁXIMO 3) 3) REDESENHE

Leia mais

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Guia da 2 a aula prática 2014 Carga RLC Monofásica Assunto: - Medição de potência em carga RLC monofásica e correção

Leia mais

Eletrônica II. Germano Maioli Penello. Aula 02

Eletrônica II. Germano Maioli Penello.  Aula 02 Eletrônica II Germano Maioli Penello gpenello@gmail.com www.lee.eng.uerj.br/~germano Aula 02 Amplificador É comum ter situações temos um sinal de baixa intensidade (mv ou mv). O processamento desses sinais

Leia mais

MÉTODOS DE ANÁLISE DE CIRCUITOS (CORRENTE CONTÍNUA)

MÉTODOS DE ANÁLISE DE CIRCUITOS (CORRENTE CONTÍNUA) NOTA DE AULA POF. JOSÉ GOMES IBEIO FILHO MÉTODOS DE ANÁLISE DE CICUITOS (COENTE CONTÍNUA) INTODUÇÃO Os circuitos descritos nos capítulos anteriores tinham somente uma fonte ou duas ou mais fontes em série

Leia mais

Sendo assim a diferença de potencial entre os pontos inicial e final do circuito é igual à:

Sendo assim a diferença de potencial entre os pontos inicial e final do circuito é igual à: SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 3º TURMA(S):

Leia mais

INSTITUTO SÃO JOSÉ - RSE LISTA PREPARATÓRIA PARA PROVA DO TERCEIRO TRIMESTRE

INSTITUTO SÃO JOSÉ - RSE LISTA PREPARATÓRIA PARA PROVA DO TERCEIRO TRIMESTRE 1. (Unesp) Mediante estímulo, 2 10 íons de K atravessam a membrana de uma célula nervosa em 1,0 milisegundo. Calcule a intensidade dessa corrente elétrica, sabendo-se que a carga elementar é 1,6 10 ª C.

Leia mais

12/04/2012 a 11/08/2012

12/04/2012 a 11/08/2012 ELETRICIDADE PARTE 1 1º SEMESTRE 2012 12/04/2012 a 11/08/2012 Professor: Júlio César Madureira Silva < jmadureira@ifes.edu.br > 1 EMENTA: 1. Revisão sobre unidades de medida no SI. múltiplos m e submúltiplos

Leia mais

Exp11 - O divisor de tensão

Exp11 - O divisor de tensão p11 - O divisor de tensão 11.1 Fundamentos: Um problema comum que aparece na vida diária é a necessidade de alimentar um dispositivo elétrico a partir de uma fonte de tensão maior que a tensão nominal

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

EPO Eletrônica de Potência. Capítulo 2 - Retificadores não controlados 2.1-Retificador monofásico de meia onda

EPO Eletrônica de Potência. Capítulo 2 - Retificadores não controlados 2.1-Retificador monofásico de meia onda UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA EPO Eletrônica de Potência Capítulo 2 - Retificadores não controlados 2.1-Retificador monofásico

Leia mais

Tutorial: Componentes passivos.

Tutorial: Componentes passivos. Tutorial: Componentes passivos. Autor: Samuel Cerqueira Pinto T-16 Data: 24/02/2013 Componentes Passivos Componentes passivos são os componentes eletrônicos que não possuem a capacidade de amplificar um

Leia mais

Circuitos Magneticamente Acoplados. Prof. André E. Lazzaretti

Circuitos Magneticamente Acoplados. Prof. André E. Lazzaretti Circuitos Magneticamente Acoplados Prof. André E. Lazzaretti lazzaretti@utfpr.edu.br Ementa Função de excitação senoidal Conceitos de fasor Análise de circuitos em CA Potência em circuitos CA Circuitos

Leia mais

RADIOELETRICIDADE. O candidato deverá acertar, no mínimo: Classe B 50% Classe A 70% TESTE DE AVALIAÇÃO CORRIGIDO CONFORME A ERRATA

RADIOELETRICIDADE. O candidato deverá acertar, no mínimo: Classe B 50% Classe A 70% TESTE DE AVALIAÇÃO CORRIGIDO CONFORME A ERRATA Dados: ANATEL - DEZ/2008 RADIOELETRICIDADE TESTE DE AVALIAÇÃO 1 RADIOELETRICIDADE O candidato deverá acertar, no mínimo: Classe B 50% Classe A 70% TESTE DE AVALIAÇÃO CORRIGIDO CONFORME A ERRATA Fonte:

Leia mais

PSI.3212 LABORATÓRIO DE CIRCUITOS ELETRICOS

PSI.3212 LABORATÓRIO DE CIRCUITOS ELETRICOS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3212 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2016 MEDIDA DA CONSTANTE

Leia mais

Introdução 5. Amplificador em base comum 6. Princípio de funcionamento 8 Com sinal de entrada positivo 8 Com sinal de entrada negativo 10

Introdução 5. Amplificador em base comum 6. Princípio de funcionamento 8 Com sinal de entrada positivo 8 Com sinal de entrada negativo 10 Sumário Introdução 5 Amplificador em base comum 6 Princípio de funcionamento 8 Com sinal de entrada positivo 8 Com sinal de entrada negativo 10 Parâmetros do estágio amplificador em base comum 12 Ganho

Leia mais

Lista de Exercícios 3 - Circuitos Elétricos II

Lista de Exercícios 3 - Circuitos Elétricos II Lista de Exercícios 3 - Circuitos Elétricos II Tópicos: Potência instantânea, Potência Média, Valor Médio e Eficaz, Potência Aparente, Potência Ativa, Potência Reativa, Fator de Potência, Potência Complexa.

Leia mais

ELETROTÉCNICA ENGENHARIA

ELETROTÉCNICA ENGENHARIA Aquino, Josué Alexandre. A657e Eletrotécnica : engenharia / Josué Alexandre Aquino. Varginha, 2015. 50 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World Wide Web 1. Eletrotécnica.

Leia mais

Observe na figura mostrada acima que temos duas condições para um circuito em paralelo: fontes em paralelo ou cargas (resistores) em paralelo.

Observe na figura mostrada acima que temos duas condições para um circuito em paralelo: fontes em paralelo ou cargas (resistores) em paralelo. Ao contrário dos circuitos em série, em que a corrente é a mesma em qualquer um dos pontos do circuito, no circuito em paralelo a corrente se divide entre vários pontos de um circuito. Observe na figura

Leia mais

Física II - AV 1 (parte 2.2) 3º período de Eng. Civil Prof. Dr. Luciano Soares Pedroso Data: / /2014 valor: 10 pontos Aluno (a) Turma

Física II - AV 1 (parte 2.2) 3º período de Eng. Civil Prof. Dr. Luciano Soares Pedroso Data: / /2014 valor: 10 pontos Aluno (a) Turma Física II - AV (parte 2.2) 3º período de Eng. Civil Prof. Dr. Luciano Soares Pedroso Data: / /204 valor: 0 pontos Aluno (a)turma _. Considere que um determinado estudante, utilizando resistores disponíveis

Leia mais

5. Aplicações. 5.1 Introdução

5. Aplicações. 5.1 Introdução Aplicações 5. Aplicações 5.1 Introdução Neste capítulo será descrita, como ilustração de sistema não linear, a modelagem de uma típica indústria produtora de alumínio, utilizando eletrólise. Uma linha

Leia mais

LISTA DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE 3º ANO

LISTA DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE 3º ANO Maceió - Alagoas FÍSICA TIO BUBA LISTA DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE 3º ANO Professor(a): JOÃO CARLO ( BUBA) 01) O campo elétrico gerado em P, por uma carga puntiforme positiva de valor +Q a uma

Leia mais

Lista de exercícios ENG04042 Tópicos 3.1 a 5.3. a corrente se atrasa em relação a v.

Lista de exercícios ENG04042 Tópicos 3.1 a 5.3. a corrente se atrasa em relação a v. 1) Um indutor de 10 mh tem uma corrente, i = 5cos(2000 t ), obtenha a tensão vl. V = 100 sen(2000 t ) V L 2) Um circuito série com R=10 Ω e L=20 mh, tem uma corrente de i = 2s en(500 t ). Calcule a tensão

Leia mais

Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado.

Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado. Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado. Quando o circuito é puramente resistivo essas variações são instantâneas, porém

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Potência em CA Prof. Clóvis Antônio Petry. Florianópolis, agosto de 2007. Nesta aula Capítulo 19: Potência

Leia mais

CIRCUITOS COM CAPACITORES

CIRCUITOS COM CAPACITORES CIRCUITOS COM CAPACITORES 1. (Ufpr 13) Considerando que todos os capacitores da associação mostrada na figura abaixo têm uma capacitância igual a C, determine a capacitância do capacitor equivalente entre

Leia mais

LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Guia de Experimentos

LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Guia de Experimentos UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Experimento 4 Transistor Bipolar Amplificador

Leia mais

Eletrodinâmica REVISÃO ENEM CORRENTE ELÉTRICA

Eletrodinâmica REVISÃO ENEM CORRENTE ELÉTRICA REVISÃO ENEM Eletrodinâmica CORRENTE ELÉTRICA Corrente elétrica em um condutor é o movimento ordenado de suas cargas livres devido a ação de um campo elétrico estabelecido no seu interior pela aplicação

Leia mais

LISTA 4A: Teoremas Básicos de Análise de Circuitos: Superposição, Thevenin, Norton e Máxima Transferência de Potência. Observação

LISTA 4A: Teoremas Básicos de Análise de Circuitos: Superposição, Thevenin, Norton e Máxima Transferência de Potência. Observação Graduação em Engenharia Elétrica Disciplina: Circuitos Elétricos 01 Professor Wesley Peres wesley.peres@ufsj.edu.br LISTA 4A: Teoremas Básicos de Análise de Circuitos: Superposição, Thevenin, Norton e

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) Concurso Público - NÍVEL SUPERIOR CARGO: Tecnologista da Carreira de Desenvolvimento Tecnológico Classe: Tecnologista Junior Padrão I TEMA: CADERNO DE PROVAS

Leia mais