PLANO DE AULA. 1. TEMA Equac o es Alge bricas

Tamanho: px
Começar a partir da página:

Download "PLANO DE AULA. 1. TEMA Equac o es Alge bricas"

Transcrição

1 Ministe rio da Educac a o Secretaria de Educac a o Profissional e Tecnolo gica Instituto Federal Catarinense Campus Avanc ado Sombrio Curso de Licenciatura em Matema tica PLANO DE AULA Escola: Instituto Federal Catarinense Campus Avanc ado Sombrio Municı pio: Sombrio, SC Disciplina: Matema tica Ano: 3o Ensino Me dio Nı vel: Ensino Me dio Tempo previsto:3 horas Professor: Rafael dos Reis Paulo 1. TEMA Equac o es Alge bricas 2. SUB-TEMAS Definic a o e elementos; Raı zes de equac o es alge bricas; Conjunto soluc a o de equac o es alge bricas; Teorema fundamental da a lgebra; Decomposic a o em fatores de primeiro grau; Relac a o de Girard. 3. JUSTIFICATIVA O estudo das equac o es alge bricas representam uma finalizac a o importante de todo um ciclo de aprendizagem matema tica, iniciado no Ensino Fundamental com expresso es alge bricas, resoluc a o de equac o es de primeiro e segundo graus e produtos nota veis, cujo grau e complexidade foi gradativamente aumentado no Ensino Me dio, com os estudos das func o es e polino mios, entre tantos temas em que a resoluc a o de equac o es se faz necessa ria, ate chegarmos ao a pice, que perpassa o universo do conjuntos reais e possibilita a soluc a o de equac o es que anteriormente na o teriam soluc a o. 4. OBJETIVOS Conhecer os fatos histo ricos acerca do assunto; Identificar e definir uma equac a o alge brica; Determinar o conjunto verdade de equac o es alge bricas; Desenvolver estrate gias para encontrar as raı zes das equac o es alge bricas; Demostrar alguns teoremas e a relac a o de Girard; Averiguar as raı zes de qualquer equac a o alge brica utilizando o GeoGebra; Efetuar a resoluc a o de exercı cios e problemas que envolvam equac o es alge bricas. 1

2 5. CONTEÚDOS ENVOLVIDOS Operações fundamentais: soma, subtração, divisão, multiplicação, potenciação e radiciação; Números complexos; Polinômios; Funções; Equações algébricas. 6. RECURSOS TÉCNICOS Recursos: Disponíveis no laboratório de matemática, data show, quadro-branco, jogo Rampa das Equações, pincel e apagador. Técnicas: Aula expositivo dialogada, atividades utilizando o software Graph. 7. PROCEDIMENTOS (a) Problematização O Sr. Adonias gostaria de confeccionar uma caixa de papelão sem tampa, para a fabricação Adonias comprou uma lâmina de face quadrada de papelão com área igual a 324 cm 2. Por muito tempo, Adonias trabalhou fabricando caixas de sapato, ele sabe que é necessário recortar um quadrado em cada canto da lâmina de papelão, para posteriormente dobrar e transformar numa caixa (figura 1). Porém, Adonias gostaria que determinássemos qual a medida do lado (valor de x) do quadrado a ser recortado para que o volume da caixa seja igual a 400 cm 3? Figura 1: Lâmina de papelão (b) Historicização Nesta aula trataremos das equações algébricas que são aquelas que podem ser representadas sob a forma de um polinômio igualado a zero. Um dos trabalhos pioneiros sobre essas equações é a obra Al-jarb wa l muqãbalah, escrita no século IX pelo matemático árabe Mohammed ibu-musa al-khowarizmi, na qual são estudas as equações do 1 o e 2 o grau. A obra de al-khowarizmi inspirou tratados posteriores até o Renascimento, quando os matemáticos buscavam uma fórmula resolutiva para equações polinomiais de qualquer grau, o que já haviam conseguido até o 4 o grau. Os matemáticos Niels Henrik Abel e Évariste Galois encerraram essa busca, demonstrando que equações de grau superior a 4 não podem ser resolvidas por radicais e combinações de coeficientes, isto é, não existe fórmula geral que resolva equações polinomiais de grau maior que 4. (c) Procedimentos i. momento: Iniciar a aula resgatando algumas equações que já foram estudas anteriormente, identificando o conjunto solução das mesmas. (a) x + 3 = 0 S = { 3} (b) x 2 9 = 0 S = {3, 3} (c) x 2 + 3x 10 = 0 S = { 5, 2} (d) x = 0 S = { i, i} ii. momento: Definir na lousa equação polinomial ou algébrica, onde é toda equação que pode ser escrita na forma 2

3 a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 = 0 com a n 0 em que os a i (a n, a n 1,..., a 2, a 1, a 0 ) são elementos do conjunto dos números complexos, n N e n é o grau da equação. Obs: As equações do 1 o grau e do 2 o grau estudadas anteriormente são casos particulares de equações algébricas. iii. momento: Enunciar o Teorema fundamental da Álgebra pensando nas seguintes questões: Existe alguma equação polinomial do 1 o grau que não possua raiz complexa? Existe alguma equação polinomial do 2 o grau que não possua raiz complexa? Para responder basta observar que toda equação polinomial do 1 o grau pode ser representada sob a forma ax + b = 0 com a, b C e a 0. Logo, o número b é raiz dessa equação para a quaisquer valores complexos de a e b, com a 0. Concluímos, então, que toda equação 1 o grau tem raiz complexa. Já a equação do 2 o grau pode ser representada sob a forma ax 2 + bx + c = 0, com a, b, c C e a 0. Para qualquer valor do dessa equação, temos, b + w 1 e b w 2, que são raízes 2a 2a da equação do 2 o grau. Conclui-se, que toda equação do 2 o grau possui raiz complexa. E, assim, o Teorema fundamental da Álgebra diz: Toda equação polinomial admite pelo menos uma raiz complexa iv. momento: Apresentar o Teorema da decomposição, onde todo polinômio de grau n, com n 1, P (x) a n x n + a n 1 x n a 1 x + a 0 pode ser fatorado sob a forma P (x) a n (x r 1 )(x r 2 )... (x r n ) em que r 1, r 2, r 3,..., r n são todas raízes de P (x). Resolvendo alguns exemplos: A. P (x) = 4x 2 x 3 P (x) = 4(x 1)(x ) }{{} Quando a soma dos coeficientes resultar em 0 a equação terá 1 como raiz B. P (x) = x 3 8x x P (x) = x(x 2)(x 6) }{{} Quando o termo independente da equação for nulo uma de suas raízes será 0 C. P (x) = 3x 3 6x 2 + 3x 6, sabendo que P (2) = 0 P (x) = 3(x 2)(x i)(x + i) Pelo teorema da decomposição visto anteriormente, podemos definir que: Qualquer equação polinomial de grau n, com n 1, admite exatamente n raízes complexas, não necessariamente distintas entre si. Para verificar o teorema vamos utilizar o software Geogebra para encontrar as raízes das seguintes equações: 3

4 A. x 4 3x 3 + 3x 2 3x + 2 = 0 B. x 4 x 2 = 0 C. x 3 + x 2 + x 1 = 0 D. x 5 + 5x 4 + 6x 3 2x 2 7x 3 = 0 D. x 4 7x x 2 + 3x 18 = 0 Em seguida, exercitar a fatoração e a determinação de raízes pelo GeoGebra aplicando o jogo (Rampa das equações). Para isso, os estudantes devem sortear 4 equações e, em seguida efetuar a resolução no caderno e ao mesmo tempo conferindo as respostas no GeoGebra. Nesse momento, podemos evidenciar as estratégias utilizadas para a resolução das equações v. momento: Apresentar a situação problema e sua resolução conforme abaixo. Nesse momento, será entregue aos estudantes duas folhas de papel A4 para a construção das possíveis caixas, após encontrarem os valores da altura. (18 2x) (18 2x) x = 400 4

5 vamos dividir a equação polinomial por 4 (324 72x + 4x 2 ) x = 400 4x 3 72x x 400 = 0 x 3 18x x 100 = 0 Assim podemos determinar as possíveis raízes por meio do GeoGeobra, as quais são:(2, 1; 4; 11, 9) porém temos uma condição de que 18 2x > 0, ou seja, x < 9. Logo, podemos excluir o 11, 9 como uma possível altura da caixa. Sendo assim, os valores para altura da caixa serão 2, 1 e 4. vi. momento: Apresentar aos alunos o Teorema das raízes imaginárias que diz respeito as raízes imaginárias de uma equação algébrica. Vale lembrar de que número imaginário é todo número complexo não real, isto é, todo número da forma z = a + bi, com (a, b) R e b 0. Assim sendo, Se um número imaginário é raiz de uma equação polinomial com coeficientes reais, então seu conjugado também é raiz dessa equação. Consequências desse teorema: Se um número imaginário z é raiz de uma equação algébrica, seu conjugado também será raiz dessa mesma equação, independentemente de sua multiplicidade; O número de raízes imaginárias de uma equação é necessariamente par; Se uma equação algébrica for de grau ímpar terá pelo menos uma raiz real; vii. momento:para finalizar os conteúdos desta aula, vamos estudar e analisar as relações de Girard para equações de 2 e 3 grau. Essa relação foi descoberta pelo fracês Albert Girard por volta do século XV, esse matemático encontrou uma relação entre os coeficientes e suas raízes, vamos agora então estudar essa relação para as equações polinomiais de grau 2. Em sua forma geral, temos ax 2 + bx + c = 0 Porém vimos que uma equação polinomial pode ser decomposta por suas raízes, Vamos dividir ambos os lados por a, Equivalente a: ax 2 + bx + c = a(x r 1 )(x r 2 ) x 2 + bx a + c a = (x r 1)(x r 2 ) Por identidade de polinômios temos, x 2 + bx a + c a = x2 (r 1 + r 2 )x + r 1 r 2 5

6 (r 1 + r 2 ) = b a r 1 r 2 = c a (r 1 + r 2 ) = b a r 1 r 2 = c a Vamos agora construir a Relação de Girard para as equações polinomiais de 3 o grau. Dividindo ambos lados por a, temos ax 3 + bx 2 + cx + d = a(x r 1 )(x r 2 )(x r 3 ) x 3 + bx2 a + cx a + d a = (x r 1)(x r 2 )(x r 3 ) x 3 + bx2 a + cx a + d a = x3 (r 1 + r 2 + r 3 )x 2 + (r 1 r 2 + r 1 r 3 + r 2 r 3 ) r 1 r 2 r 3 Por identidade de polinômios temos (r 1 + r 2 + r 3 ) = b a r 1 r 2 + r 1 r 3 + r 2 r 3 = c a r 1 r 2 r 3 = d a r 1 + r 2 + r 3 = b a r 1 r 2 + r 1 r 3 + r 2 r 3 = c a r 1 r 2 r 3 = d a Após a explicação na lousa, vamos propor a resolução do seguinte problema: Resolva a equação 2x 3 + x 2 13x + 6 = 0, sabendo que a soma de duas de suas raízes é igual a 1 Resolução: Vamos utilizar as relações de Girard para equações de 3 grau, r 1 + r 2 + r 3 = b a r 1 r 2 + r 1 r 3 + r 2 r 3 = c a r 1 r 2 r 3 = d a Assim temos, Logo, r 1 + r 2 + r }{{} 3 = 1 2 = 1 r 1 = 1 2 Outra relação de Girard é, 6 r 1 }{{} 1 2 r 2 r 3 = 6 2

7 Assim temos, r 2 r 3 = 6 Agora vamos observar as relações entre as seguintes equações { r 2 r 3 = 6 r 2 + r 3 = 1 Substituindo na outra equação temos, Resultando numa equação de 2 o grau r 3 = 1 r 2 r 2 ( 1 r 2 ) = 6 r r 2 6 = 0 { r 2 = 2 r 2 = 3 Para verificar o Teorema das raízes complexas vamos propor que os alunos identifique onde está o erro na resolução do seguinte enunciado. Resolva em complexos a equação 2x x 12i = 0, sabendo que uma de suas raízes é o número imaginário i Figura 1: Paiva, Manoel. Matemática. São Paulo, 2013 E, por fim, desenvolver a resolução por meio do dispositivo prático de Briot Ruffini (d) Conclusão da aula Por fim, esperamos que os estudantes tenham apreendido a parte teoria envolvendo as equações algébricas (teoremas e definições), além disso, que saibam determinar o conjunto verdade das equações algébricas. Almeja-se também que, por meio das atividades propostas (construção das caixas e o jogo Rampa das Equações ) os estudantes possam assimilar os conceitos apreendidos. E, por fim, que utilizem os recursos digitais, como, o software GeoGebra para encontrar as raízes de outras equações não estudadas nessa aula. dos estudantes. 7

8 8. AVALIAÇÃO Critérios: Compreensão dos conteúdos abordados em sala de aula, interesse e participação nas atividades propostas, assiduidade, resolução da problematização. Instrumentos: Observação e registro do desempenho dos estudantes durante a realização das atividades no diário de classe e aplicação de uma prova envolvendo os conteúdos estudados até o presente momento. 9. REFERÊNCIAS BARRETO, Benigno Filho; SILVA, Claudio Xavier. Matemática aula por aula, segunda e terceira Série. São Paulo: FTD, DANTE, Luiz Roberto. Matemática volume único. 1.ed. São Paulo: Ática, GIOVANNI, José Ruy; BONJORNO, José Roberto. Matemática completa. 2.ed. São Paulo: FTD, PAIVA, Manoel. Matemática 2. São Paulo: Moderna, SILVIA, Cláudio Xavier da. Matemática aula por aula. 2.ed. São Paulo: FTD,

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Polinômios. Acadêmica: Vanessa da Silva Pires

Polinômios. Acadêmica: Vanessa da Silva Pires Polinômios Acadêmica: Vanessa da Silva Pires Situação 01: Se você somar 1 ao produto de quatro inteiros consecutivos, o resultado sempre será um quadrado perfeito. Situação 02: Na resolução de problemas,

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

PLANO DE AULA POLINÔMIOS

PLANO DE AULA POLINÔMIOS Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA POLINÔMIOS 1 Identificação

Leia mais

Equações Algébricas - Propriedades das Raízes. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Algébricas - Propriedades das Raízes. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Equações Algébricas ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Equações Algébricas 1 Exercícios Introdutórios

Leia mais

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini

Leia mais

Plano de Trabalho 1 Polinômios e Equações Algébricas ( REELABORAÇÃO)

Plano de Trabalho 1 Polinômios e Equações Algébricas ( REELABORAÇÃO) Plano de Trabalho 1 Polinômios e Equações Algébricas ( REELABORAÇÃO) Aluno: Anderson Ribeiro da Silva Tutor: Cláudio Rocha de Jesus Grupo: 7 Curso: 3º Ano / Ensino Médio Duração: 400min INTRODUÇÃO Sabe-se

Leia mais

Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio

Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA 1- IDENTIFICAÇÃO Instituto

Leia mais

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6 ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0

Leia mais

DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA AUTOMAÇÃO INDUSTRIAL ELETRÔNICA ELETROMECÂNICA MEIO AMBIENTE

DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA AUTOMAÇÃO INDUSTRIAL ELETRÔNICA ELETROMECÂNICA MEIO AMBIENTE Instituto Federal de Educação Ciência e Tecnologia Fluminense Campus Macaé DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA Nível Curso Série CH Semanal CH Anual Ensino Médio Integrado AUTOMAÇÃO INDUSTRIAL

Leia mais

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12. AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos

Leia mais

Plano de Aula 1 IDENTIFICAÇÃO

Plano de Aula 1 IDENTIFICAÇÃO Ministério da Educação Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Campus Avançado Sombrio Curso de Licenciatura em Matemática Plano de Aula 1 IDENTIFICAÇÃO Instituto

Leia mais

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações.

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações. 4 ÁLGEBRA ELEMENTAR 4.1 Monômios e polinômios: valor numérico e operações. 4.1.1 - Introdução: As expressões algébricas que equacionam os problemas conduzem logicamente à sua solução são denominados polinômios

Leia mais

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios

Leia mais

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2 Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.

Leia mais

Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

O DNA das equações algébricas

O DNA das equações algébricas Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações

Leia mais

Plano de Aula 1 IDENTIFICAÇÃO

Plano de Aula 1 IDENTIFICAÇÃO Ministério da Educação Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Câmpus Avançado Sombrio Curso de Licenciatura em Matemática Plano de Aula 1 IDENTIFICAÇÃO Instituto

Leia mais

FORMAÇÃO CONTINUADA PARA PROFESSORES 4º ANO CECIERJ/ SEEDUC

FORMAÇÃO CONTINUADA PARA PROFESSORES 4º ANO CECIERJ/ SEEDUC FORMAÇÃO CONTINUADA PARA PROFESSORES 4º ANO CECIERJ/ SEEDUC ETELVINA MARQUES DA SILVA MAT 0841412-0 TAREFA 1 TUTOR: RODOLFO GREGORIO DE MORAES GRUPO 6 PONTOS POSITIVOS: Os alunos ficam motivados, e observo

Leia mais

... Onde usar os conhecimentos os sobre...

... Onde usar os conhecimentos os sobre... IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos

Leia mais

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i

Leia mais

POLINÔMIOS AVALIAÇÃO DO PLANO DE TRABALHO 1

POLINÔMIOS AVALIAÇÃO DO PLANO DE TRABALHO 1 FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA COLÉGIO: CIEP BRIZOLÃO 998 SÃO JOSÉ DE SUMIDOURO PROFESSOR: RAFAEL SANCHES BORGES MATRÍCULA: 09154410 SÉRIE: 3º ANO GRUPO : 2 TUTOR : PAULO ROBERTO CASTOR

Leia mais

PLANO DE AULA IDENTIFICAÇÃO

PLANO DE AULA IDENTIFICAÇÃO PLANO DE AULA IDENTIFICAÇÃO Escola: IFC Campus Avançado Sombrio Município: Sombrio Disciplina: Matemática Série: 2 ano Nível: Ensino médio Professor: Giovani Marcelo Schmidt Tempo estimado: Cinco aulas

Leia mais

3ª série do Ensino Médio Turma. 2º Bimestre de 2018 Data / / Escola Aluno

3ª série do Ensino Médio Turma. 2º Bimestre de 2018 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 2º Bimestre de 2018 Data / / Escola Aluno 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Câmpus Avançado Sombrio Curso de Licenciatura em Matemática

Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Câmpus Avançado Sombrio Curso de Licenciatura em Matemática Ministério da Educação Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Câmpus Avançado Sombrio Curso de Licenciatura em Matemática Plano de Aula 1- IDENTIFICAÇÃO Secretaria

Leia mais

O DNA das equações algébricas

O DNA das equações algébricas Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas.

Leia mais

NÚMEROS COMPLEXOS FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA PROFESSOR: RAFAEL SANCHES BORGES AVALIAÇÃO DO PLANO DE TRABALHO 1

NÚMEROS COMPLEXOS FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA PROFESSOR: RAFAEL SANCHES BORGES AVALIAÇÃO DO PLANO DE TRABALHO 1 FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA PROFESSOR: RAFAEL SANCHES BORGES AVALIAÇÃO DO PLANO DE TRABALHO 1 NÚMEROS COMPLEXOS Todas as atividades do Plano de trabalho 1 foram executadas com certa

Leia mais

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MATEMÁTICA III Nome: MATEMÁTICA IIII Curso: TÉCNICO EM

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

Polinômios e equações algébricas 2. Fascículo 12. Unidade 38

Polinômios e equações algébricas 2. Fascículo 12. Unidade 38 Polinômios e equações algébricas 2 Fascículo 12 Unidade 38 Polinômios e equações algébricas 2 Para início de conversa... Conforme vimos na unidade Geometria Espacial: pirâmides e cones, que tratava das

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine

Leia mais

Aula Inaugural Curso Alcance 2017

Aula Inaugural Curso Alcance 2017 Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul cegalvao@ufpr.br 06 de

Leia mais

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação

Leia mais

Matemática A - 10 o Ano

Matemática A - 10 o Ano Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm

Leia mais

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2). 01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente

Leia mais

Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos

Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos Tarefa 3 Reelaboração do PT1 Cursista : Anderson Ribeiro da Silva

Leia mais

TAREFA 3. AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS e EQUAÇÕES ALGÉBRICAS

TAREFA 3. AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS e EQUAÇÕES ALGÉBRICAS TAREFA 3 AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS e EQUAÇÕES ALGÉBRICAS Cursista: Selma Figueiredo Pontes Matemática - 3ª série Ensino Médio Grupo: 5 Tutora: Andréa Silva de Lima Pontos

Leia mais

RELATÓRIO I Data: 25/05/2017

RELATÓRIO I Data: 25/05/2017 RELATÓRIO I Data: 25/05/2017 Objetivo(s) -Retomar e ampliar o conteúdo de adição e subtração com polinômios trabalhados em aula. -Amenizar as dificuldades dos estudantes referentes ao conteúdo abordado

Leia mais

II CÓDIGO: SÉRIE / FASE DO CURSO:2ª

II CÓDIGO: SÉRIE / FASE DO CURSO:2ª PLANO DE ENSINO CURSO: Matemática Licenciatura MODALIDADE: Presencial DISCIPLINA:Fundamentos Matemáticos II CÓDIGO: SÉRIE / FASE DO CURSO:2ª fase SEMESTRE LETIVO: 2016/2 CARGA HORARIA SEMESTRAL/ SEMANAL:

Leia mais

Revisão de Pré-Cálculo

Revisão de Pré-Cálculo Revisão de Pré-Cálculo EQUAÇÕES E POLINÔMIOS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Outubro, 2016 Direitos reservados.

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

Matemática E Extensivo V. 7

Matemática E Extensivo V. 7 Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do

Leia mais

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ CONTEÚDO: POLINÔMIOS E EQUAÇÕES ALGÉBRICAS. SÉRIE: 3ª ANO ENSINO MÉDIO/ 4º BIMESTRE / 2014 TUTOR: DANUBIA DE ARAUJO MACHADO

Leia mais

MATEMÁTICA. A partir dessas informações, quantas pessoas foram entrevistadas?

MATEMÁTICA. A partir dessas informações, quantas pessoas foram entrevistadas? MATEMÁTICA 1 Um estudante fez uma pesquisa com um grupo de universitários para obter um panorama a respeito da utilização de três redes sociais. Ao computar as informações fornecidas pelas pessoas entrevistadas,

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau Denomina-se equação do 2 grau, qualquer sentença matemática que possa ser reduzida à forma ax 2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a 0. a, b e

Leia mais

PLANO DE AULA. 1) IDENTIFICAÇÃO Secretaria de Estado da Educação de Santa Catarina - 22 Gerei

PLANO DE AULA. 1) IDENTIFICAÇÃO Secretaria de Estado da Educação de Santa Catarina - 22 Gerei Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense Câmpus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA 1) IDENTIFICAÇÃO Secretaria

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Revisão de Pré-Cálculo

Revisão de Pré-Cálculo Revisão de Pré-Cálculo EQUAÇÕES E POLINÔMIOS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Outubro, 2016 Direitos reservados.

Leia mais

POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos

POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos POLINÔMIOS 1. Função polinomial É a função P() = a 0 + a 1 + a + a +... + a n n, onde a 0, a 1, a,..., a n são os coeficientes e os termos do polinômio são : a 0 ; a 1 ; a ; a ;... ; a n n. Valor numérico

Leia mais

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Assunto: Equação do 2º grau

Assunto: Equação do 2º grau FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 9º Ano 2º Bimestre/2013 Plano de Trabalho I Assunto: Equação do 2º grau Cursista: Derli Aleixo Carvalho Onofre Tutor: Emílio Rubem Batista Junior S u m á r

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306)

Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306) Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306) Colocado na internet Estude e se baseie nesse trabalho para os seus, mas não copie. Plágio

Leia mais

Relações de Girard - Parte II

Relações de Girard - Parte II Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 19 Relações de Girard - Parte II Vamos continuar vendo mais exemplos das Relações de Girard. Veremos também um resultado

Leia mais

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação? EQUAÇÕES DO º GRAU CONTEÚDOS Equações do º grau Processo resolutivo de uma equação Discriminante de uma equação AMPLIANDO SEUS CONHECIMENTOS Iniciaremos agora o estudo das equações do º grau com uma incógnita.

Leia mais

POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA

POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO ESTADUAL PADRE MANUEL DA NÓBREGA

Leia mais

AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1

AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1 AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1 Pontos positivos: Trabalhar com tarefas para ser usado o raciocínio lógico até chegar a um conhecimento da formula é sempre interessante, por isso apliquei

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria O que é preciso saber (passo a passo) Seja: Potenciação O expoente nos diz quantas vezes à base

Leia mais

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD 1 INTRODUÇÃO Aprendemos, até agora, a resolver equações do primeiro e do segundo grau. Nossa meta, agora, é encontrar maneiras de resolver equações

Leia mais

Funções Polinomiais: uma visão analítica

Funções Polinomiais: uma visão analítica Funções Polinomiais: uma visão analítica Uma das principais razões pelas quais estamos interessados em estudar o gráfico de uma função é determinar o número e a localização (pelo menos aproximada) de seus

Leia mais

Formação Continuada em Matemática

Formação Continuada em Matemática Formação Continuada em Matemática Fundação Cecierj Consórcio Cederj Matemática na Escola - 4º bimestre 3º ano Plano de Trabalho 1 Números Complexos Tarefa 1 Cursista : Adriana Machado Perucci Tutor: Danubia

Leia mais

Exercícios sobre Polinômios

Exercícios sobre Polinômios uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

Nível II (6º ao 9º ano) Sistema de Recuperação 3º período e Anual Matemática

Nível II (6º ao 9º ano) Sistema de Recuperação 3º período e Anual Matemática Nível II (6º ao 9º ano) Sistema de Recuperação 3º período e Anual Matemática Orientações aos alunos e pais A prova de dezembro abordará o conteúdo desenvolvido nos três períodos do ano letivo. Ela será

Leia mais

Polinômios e Equações Algébricas

Polinômios e Equações Algébricas Polinômios e Equações Algébricas FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC - RJ Tutora: MARIA CLÁUDIA PADILHA TOSTES Cursista: Marta Cristina de Oliveira Matrículas:

Leia mais

MATEMÁTICA 1ºANO Ementa Objetivos Geral Específicos

MATEMÁTICA 1ºANO Ementa Objetivos Geral Específicos DADOS DA COMPONENTE CURRICULAR Nome da Disciplina: MATEMÁTICA Curso: Ensino Técnico Integrado Controle Ambiental Série: 1ºANO Carga Horária: 100h Docente Responsável: GILBERTO BESERRA Ementa Conjuntos

Leia mais

AmigoPai. Matemática. Exercícios de Equação de 2 Grau

AmigoPai. Matemática. Exercícios de Equação de 2 Grau AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar

Leia mais

Fundação CECIERJ/Consórcio CEDERJ

Fundação CECIERJ/Consórcio CEDERJ Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 1: Plano de Trabalho Matemática 1 Ano - 3 Bimestre/2014 Função Polinomial do 2 Grau Cursista: Soraya de Oliveira Coelho Tutor:

Leia mais

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol. FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória

Leia mais

Expressões numéricas. Exemplos: = Expressões numéricas = = 24 0, =17,5

Expressões numéricas. Exemplos: = Expressões numéricas = = 24 0, =17,5 MATEMÁTICA Revisão Geral Aula 3 - Parte 1 Professor Me. Álvaro Emílio Leite Expressões numéricas Exemplos: 3+2 5 = 3+2 25= 3+50= 3+50=53 Expressões numéricas 2 4 3 1 4+10 64 2= 8 32 4 3 4 8 +10 8 2= 24

Leia mais

TAREFA 3. AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS E EQUAÇÕES ALGÉBRICAS Maria de Fátima Cabral de Souza

TAREFA 3. AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS E EQUAÇÕES ALGÉBRICAS Maria de Fátima Cabral de Souza TAREFA 3 AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS E EQUAÇÕES ALGÉBRICAS Maria de Fátima Cabral de Souza mfatima1958@bol.com.br PONTOS POSITIVOS Os textos fornecidos pelo curso e a troca

Leia mais

Polinômios e Equações Polinomiais

Polinômios e Equações Polinomiais Formação Continuada em MATEMÁTICA Fundação Cecierj/Consórcio CEDERJ Matemática 3 ano - 4 Bimestre/ 2012 Avaliação da Implementação do Plano de Trabalho I Polinômios e Equações Polinomiais Tarefa 3: Avaliação

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,

Leia mais

Matemática 9ºAno E.F.

Matemática 9ºAno E.F. Fundação CECIERJ/Consórcio CEDERJ Formação Continuada de Professores Matemática 9ºAno E.F. 1º Plano de Trabalho do 2º Bimestre Tema: Equação do 2º Grau Tutor(a): Emílio Rubem Baptista Junior Cursista:

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os

Leia mais

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios

Leia mais

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO)

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 07-8 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA QUESTÃO:

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

Função Polinomial do 2º Grau

Função Polinomial do 2º Grau Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 3º bimestre / 2012 Plano de Trabalho Função Polinomial do 2º Grau y = x² + x Tarefa 1 Cursista : Nelson Gonçalves Dias

Leia mais

Apostila adaptada e editada da intenert pelo Professor Luiz

Apostila adaptada e editada da intenert pelo Professor Luiz Definição POLINÔMIOS Uma função polinomial ou simplesmente polinômio, é toda função definida pela relação P(=a n x n + a n-1.x n-1 + a n-.x n- +... + a x + a 1 x + a 0. Onde: a n, a n-1, a n-,..., a, a

Leia mais

PLANO DE TRABALHO SOBRE EQUAÇÃO DO 2º GRAU

PLANO DE TRABALHO SOBRE EQUAÇÃO DO 2º GRAU FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ Colégio ESTADUAL ANÍBAL BENÉVOLO Professora: ANA CLÁUDIA DOS SANTOS MONÇÃO Matrículas: 0937644-3 Série: 9º ANO ENSINO FUNDAMENTAL

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Álgebra. Polinômios.

Álgebra. Polinômios. Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

POLONÔMIOS E EQUAÇÕES ALGÉBRICAS. FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ - Consórcio CEDERJ. Matemática 3º Ano 4º Bimestre/2013

POLONÔMIOS E EQUAÇÕES ALGÉBRICAS. FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ - Consórcio CEDERJ. Matemática 3º Ano 4º Bimestre/2013 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ - Consórcio CEDERJ Matemática 3º Ano 4º Bimestre/2013 POLONÔMIOS E EQUAÇÕES ALGÉBRICAS Tarefa 1 - Plano de Trabalho 1 Cursista: Mara Cláudia Arêas da

Leia mais

Equação do 2º Grau. Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ. Matemática 9º Ano 2º Bimestre / 2013 Plano de Trabalho 1

Equação do 2º Grau. Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ. Matemática 9º Ano 2º Bimestre / 2013 Plano de Trabalho 1 Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 9º Ano 2º Bimestre / 2013 Plano de Trabalho 1 Equação do 2º Grau Cursista: Ana Paula da Silva Santos Naiff Tutora: Emilio

Leia mais

Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições Básicas de Funções Polinomiais Complexas 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições

Leia mais