2 Modelos de Volatilidade Condicional

Tamanho: px
Começar a partir da página:

Download "2 Modelos de Volatilidade Condicional"

Transcrição

1 Modelo de Volailidade Condicional Inodção A eoia de análie de éie eoai e aicla o odelo ARIMA Box-Jenkin eie a odelage de vaiávei de ineee a ai da folação exlícia da deendência linea aeenada ela ea Dene o odelo eegado odeo deaca o aoegeivo U oceo aoegeivo de ode (AR()) aa a deeinada vaiável e a egine foa: φ () c φ φ Onde ae a foa de ído banco E E ( w ) 0 ( w w ) τ λ 0 τ τ Dea foa ode-e afia qe: - O oceo eá eacionáio de egnda ode cao a aíze do olinôio e z eea localizada foa do cíclo niáio; φ z φ z φ z 0 ()

2 9 - A evião ao à fene condicional a oda infoação dionível no inane de eo - coeonde à oeção linea da vaiável de ineee obe a conane e e óio defaaeno (édia condicional); - Enqano o valo da édia condicional do oceo é exeo coo fnção daqele obevado aa o eecivo defaaeno a édia incondicional conideando o oceo coo endo eacionáio de egnda ode e oa conane Paa deeinada éie eoai e aicla aqela obevada no ecado financeio ode e ineeane a ealização de eviõe não oene elacionada ao nível da vaiável coo abé à vaiância da ea A vaiância de éie financeia eeena do ano de aio ioância na aalidade a vez qe inveidoe acionai exigião êio aio à edida qe a volailidade (inceeza) do eono de e inveieno aena Ao ono eneado acia oa-e o fao de qe dança no egie da volailidade afea a óia eficiência da infeência eaíica co elação ao aâeo do odelo (c φ φ φ ) Aoegeive Condiional Heeokedaici (ARCH) Inodzido o Engle (98) o odelo ARCH oõe a folação aoegeiva aa caa a ea de deendência linea exiene na vaiância do ído de a deeinada éie de ineee Dea foa endo o oceo eocáico definido ela eqação diz-e qe ege oceo ARCH () dede qe ee aa a egine foa fncional: ς w ()

3 0 Onde w coeonde a ído banco Eeança condicional: E [ I ] ς () Coo 0 enão e-e: Eqação deve e não-negaiva; Eqação deve e oiiva Pode-e gaani qe a condiçõe acia ea aendida e: < w ς ; 0 < ς ; 0 Eacionaidade de egnda ode (covaiância): Raíze do olinôio e Z deve coeonde a valoe foa do cíclo niáio z z z 0 (3) Coo 0 enão: < Ua vez aifeia a condiçõe de eacionaidade de egnda ode e aqela efeene à óia caaceíica do dado de ineee e-e: Vaiância incondicional de : σ E [ ] ς ( ) (4) Pevião ao-à-fene: E( ) ( σ ) ( σ ) ( σ ) ( σ ) (5) (6)

4 Dea foa σ (conideando o eoo aido) Reeenação alenaiva Coeonde a eoo ai foe obe a deendência de Sea: ( 0 ) ~ iid (7) 0 E E Se ς (8) Enão: ς (9) ARCH(): E( ) Sbiindo (7) e (8) e () ege: ( ) w w (0) E λ Ai a vaiância (condicional) de w eá: Cabe eala qe a vaiância incondicional de w (qao oeno coe) não exie aa odo o odelo ARCH eacionáio w

5 Eiação do aâeo (áxia veoiilança) é Gaiano: Sea a eqação de egeão X () Onde X vaiávei exlicaiva (inclindo defaaeno de ) ~ N( 0 ) () ξ Condicionando a eiação na ieia obevaçõe ( - - 0) Sea Y ( X X - X X 0 X - ) Enão endo ~ iid N(0 ) e indeendene de X e Y e-e qe a diibição condicional de é gaiana co édia X e vaiância f ( X ; Y ) π ex ( X ) (3) Onde X X ( X ) ξ [ Z( )] (4) ( ξ ) (5)

6 3 [ ] [ ] X X X Z (6) Sendo θ o veo de ieaâeo ' ' θ ax og-veoiilança: [ ] Y X f ; ; θ θ X π θ (7) aa-e oano de oblea de oiização não-linea co eiçõe (eacionaidade) 0 < odo aa a X Max π θ 3 Oa folaçõe ooa 3 GARCH Sea: 0 ~ iid

7 4 ς ARCH() Pode-e iagina oceo no qal a vaiância condicional deenda de núeo infinio de defaaeno da vaiável de ineee π ς (3) π π (3) Dea foa ode-e-ia defini π() coo endo a azão de doi olinôio de ode finia onde a aíze daqele conido no denoinado foe aioe qe () e ódlo π Alicando π() e-e-ia: ς [ ] [ ] ς Ai GARCH( ): (33) Adicionando e-e: Fazendo ( ) w e-e:

8 5 [( ) ( ) ] w w w (34) Onde w eo de evião da vaiância (ído banco) eqüência de difeença Maingale Ai ode-e oo a anaia ene o odelo GARCH ( ) e o odelo ARMA ( q) onde Max ( ) Pono ioane: - O eqeieno de não-negaividade é aifeio e: > 0; 0; 0 aa - De odo anáo ao oceo ARMA o odelo GARCH e oaá eacionáio de egnda ode (covaiância) e a aíze do olinôio e Z (confoe definido a egi) aeenae valoe aioe do qe () e ódlo ( ) Z ( ) Z ( ) Z 0 Conideando a eiçõe de não-negaividade o oceo eá eacionáio e: ( ) ( ) ( ) < oando o bae o qe foa aeenado aé o eene oeno ee qe: a édia incondicional de eá: E σ [ ( ) ( ) ( )] (35)

9 6 a evião û conideando - 0 eá: > w w / / σ σ σ σ σ (36) OBS O cálclo da eqüência de vaiância condicionai { } eqe a aoa é-exiene ( - 0 e - 0 ) Paa conona al oblea Bollelev oô o egine ocedieno: ) Faze 0 / σ ; ) Defini X σ ; 3) Eia a eqüência { } elo éodo da áxia veoiilança (oiização não-linea co eiçõe) 3 IGARCH Dizeo qe ege oceo IGARCH cao ee aeene aiz niáia (inegável) De foa anáa e-e: l l Da ea foa qe no oceo ARIMA e oi aiz niáia enão a vaiância incondicional ende aa infinio (cooaeno exloivo)

10 7 33 ARCH-M (ARCH na édia ) O odelo ARCH-M oa o bae a eoia de finança a qal gee qe inveidoe acionai exige eono aio (êio de ico) aa negociae aivo financeio co aio ga de ico (ico aociado à dieão volailidade) Dea foa endo: µ (37) Onde eono de deeinado aivo financeio; µ acela do eono aneciada elo inveidoe e -; acela do eono não aneciada Enão a eoia oõe qe µ eaia aociado co a óia vaiância do eono - (aâeo de ico) oando o bae o qe foi dioo aneioene e 987 Engle oô a egine folação: X (38) ~ N( 0 ) (39) ξ (30) onde o efeio da volailidade obe o êio de ico (conolidado no eono) é edido elo ieaâeo

11 8 34 E-GARCH (Exonenial GARCH) Sea: (3) ( ) π { E χ } ξ (3) enão e π > 0 devio ocaiona aeno da vaiância condicional de Já o eo χ é eonável o odela adeqadaene o efeio elane da aieia eene na diibição de eono de aivo financeio Ai e-e: χ 0 coqe oiivo e negaivo gea o eo efeio na vaiância; - < χ < 0 coqe oiivo aena eno a vaiância do qe o negaivo; χ < - coqe oiivo edze a volailidade e coqe negaivo odze o efeio conáio Ua da vanagen da folação do E-GARCH é o fao de o oceo de eiação do aâeo não aeena qaiqe io de eiçõe co elação ao valoe qe o eo odeão ai a vez qe ea-e-á abalando co ( ) e qe π > 0 Ua aaeização naal é odela π() coo a azão de doi olinôio de ode finia ocedieno anáo ao GARCH( ) Dee odo e-e-ia:

12 9 { } { } E E k χ χ (33) 34 Eiação do aâeo: áxia veoiilança Paa o oceo de eiação do aâeo ona-e neceáio eecifica a fnção de diibição de obabilidade de Ua alenaiva eia a ilização da diibição adonizada genealizada do eo (Nelon) Γ λ λ ex f (34) Onde () Γ fnção gaa; 3 Γ Γ λ aâeo oiivo qe govena a laga da cada < cada laga; > cada eeia OBS Paa enão λ e o conegine Noal f ~

CONTROLE INTEGRAL POR REALIMENTAÇÃO DOS ESTADOS

CONTROLE INTEGRAL POR REALIMENTAÇÃO DOS ESTADOS ONTROLE INTEGRL POR RELIMENTÇÃO OS ESTOS. Moiaçõe Em geal a aída de m iema eo aeenam eo de egime difeene de zeo. Em geal a eecificaçõe aa m iema eo eigem qe o eo de egime ejam igai a zeo aa a aída do iema.

Leia mais

Antes da chave S ser fechada temos duas resistências R em paralelo com uma resistência R conectada a uma = 1 1

Antes da chave S ser fechada temos duas resistências R em paralelo com uma resistência R conectada a uma = 1 1 UFJF MÓDULO III DO PISM TRIÊNIO - GABARITO DA PROA D FÍSICA Queão U eudane de íica, co o inuio de ea algua eoia obe cicuio e indução eleoagnéica, onou o cicuio eléico indicado na igua ao lado. O cicuio

Leia mais

3. Análise estatística do sinal

3. Análise estatística do sinal 3. Análise estatística do sinal A análise da intensidade do sinal ecebido é u pocesso que abange dois estágios, sendo eles: i) a estiativa do sinal ediano ecebido e ua áea elativaente pequena, e ii) a

Leia mais

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E. PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado

Leia mais

Soluções Integrais de Problemas de Camada Limite

Soluções Integrais de Problemas de Camada Limite Slçõe Inegai e Plema e Camaa Limie É m mé imle. A lçã nã é eaa, ma é eia. O jei é eemina a enã ialhane e l e al q e a eíie, e ma aimaa, em e qe ele a eqaçõe ieeniai genane. Pimeiamene am ini n nei ailiae:

Leia mais

Física D Extensivo V. 1

Física D Extensivo V. 1 GABARIO Fíica D Eenivo V Eercício 0) 08) () B A 5 0 0) 5 03) y 6 y= 6 coef linear coef angular poiivo X A = 0 + 0 Condição de enconro X A = X B 0 + 0 = 5 + 0 = () X B = 5 + 0 0) 09) 05) pv = n R V = n

Leia mais

Disciplina: FGE5748 Simulação Computacional de Líquidos Moleculares 1

Disciplina: FGE5748 Simulação Computacional de Líquidos Moleculares 1 Dcpna: FGE5748 Suação Copuacona de Líqudo Moecuae e 0 0 xx 0 yy 0 0 0 zz e B fxo no copo ou oécua S fxo no epaço xx yx zx xy yy zy xz yz zz e τ ω Ae Aτ A Aω oenação oque ve.angua o. angua Onde A é ua az

Leia mais

é é ç í é é é ç ó çõ é ê á çã é çã é á á ã é í á ã ó É ã ê í á á é á ã â é ó é é ã é é é á é ã ó ã á é í á é ê ã

é é ç í é é é ç ó çõ é ê á çã é çã é á á ã é í á ã ó É ã ê í á á é á ã â é ó é é ã é é é á é ã ó ã á é í á é ê ã Ó é é ç ç ã éó éçéá éé çí é éé çóçõé ê á çã é çã é á á ã é í á ã óéãê íáá éáãâé ó é é ã éé éáé ãóã áéí á é ê ã çã é ã é çã ãíçãê éé ô í é çóã á ó ó é çãéã ú ê é á íô á ãé úóé çãçç óçãéééõé ççã çãôáíô éçé

Leia mais

Escoamentos Turbulento Interno

Escoamentos Turbulento Interno Eaen blen Inen A iibiçã e enã a lng a eçã anveal e eaen inen, hiinâiaene eenvlvia n egie blen é igal a egie laina, pi exie eqilíbi e fça, e P x Paa eeina pefil e veliae hiinâiaene eenvlvi e a blaçã, eve

Leia mais

F, V, V, F, V, F, V, V

F, V, V, F, V, F, V, V GOMTRI Reoluçõe apíulo 1 Geomeia de poição TIIS PR SL PÁG. 14 01 a) Poulado, poi o poulado ão conaaçõe que não neceiam e compovada paa que ejam conideada vedadeia. b) Pono, ea e plano. c) Teoema. 0 omo

Leia mais

Processamento de Imagens

Processamento de Imagens Poceamento de Imagen By Vania V. Etela UFF-TELECOM, Joaquim T. de AiIPRJ-UERJ Técnica de Modificação de Hitogama O hitogama de uma imagem, que é uma oiedade do conteúdo da infomação contida na mema, é

Leia mais

Melhores momentos AULA PASSADA. Otimização Combinatória p. 312

Melhores momentos AULA PASSADA. Otimização Combinatória p. 312 Melhore momeno AULA PASSADA Oimização Combinaória p. 12 Problema Problema do caminho de co mínimo: Dada ma rede (N,A,c) com fnção-co c : A Z e m nó, enconrar, para cada nó, m caminho de co mínimo de a.

Leia mais

MATEMÁTICA. Módulo 28. Frente IV -Caderno 07. Paralelismoe Perpendicularismono Espaço Página 229

MATEMÁTICA. Módulo 28. Frente IV -Caderno 07. Paralelismoe Perpendicularismono Espaço Página 229 MATEMÁTICA Fene IV -Cadeno 07 Módulo 28 Paalelismoe Pependiculaismono Espaço Página 229 GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B Numa ea, ou foa dela, exisem

Leia mais

CONTROLABILIDADE E OBSERVABILIDADE

CONTROLABILIDADE E OBSERVABILIDADE Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo

Leia mais

MATEMÁTICA. Módulo 28. Frente IV - Caderno 07. Paralelismo e Perpendicularismo no Espaço Página 229

MATEMÁTICA. Módulo 28. Frente IV - Caderno 07. Paralelismo e Perpendicularismo no Espaço Página 229 MATEMÁTICA Fene IV - Cadeno 07 Módulo 28 Paalelismo e Pependiculaismo no Espaço Página 229 GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B Numa ea, ou foa dela,

Leia mais

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri 1. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri 1. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA 5 5 FÍSICA FUNDAMENTAL o Seere de Prof. Maurício Fabbri a Série de Exercício - Cineáica Pare I Moieno unidienional. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA (I) O oieno de u corpo é regirado

Leia mais

1 ANO COMENTÁRIO DOS PROBLEMAS COMENTÁRIO: RESPOSTA: A

1 ANO COMENTÁRIO DOS PROBLEMAS COMENTÁRIO: RESPOSTA: A AO COMEÁRIO DOS PROBEMAS P en ' ' P en P co Inicialene, a iuação da fiura exprea iinência de oieno ao iea de aa iuai a. Idenificando oda a força auane nee iea, incluindo a hae, eja: a P co Uilizando a

Leia mais

Separação Cromatografica. Docente: João Salvador Fernandes Lab. de Tecnologia Electroquímica Pavilhão de Minas, 2º Andar Ext. 1964

Separação Cromatografica. Docente: João Salvador Fernandes Lab. de Tecnologia Electroquímica Pavilhão de Minas, 2º Andar Ext. 1964 Sepaação Comaogafica Docene: João Salvado Fenandes Lab. de Tecnologia Elecoquímica Pavilhão de Minas, º Anda Ex. 964 Sepaação Comaogáfica envolve ineacções ene um soluo numa fase móvel (eluene) e um leio

Leia mais

PARNAMIRIM - RN. Data: / / 2016

PARNAMIRIM - RN. Data: / / 2016 PARNAMIRIM - RN Aluno (a) Nº: 8º ano Tuma: Daa: / / 2016 NOTA: Eecício de evião de maemáica II Timee Pofeo (a): Joeane Fenande Agoa vamo coloca em páica o eu conhecimeno maemáico e udo o que eudamo em

Leia mais

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema:

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema: Colisões.F.B, 004 Física 004/ tua IFA AULA 3 Objetio: discuti a obseação de colisões no efeencial do cento de assa Assuntos:a passage da descição no efeencial do laboatóio paa o efeencial do cento de assa;

Leia mais

Capítulo 1 ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14 GEOMETRIA. Geometria de posição. 2 a série Ensino Médio Livro 1 9.

Capítulo 1 ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14 GEOMETRIA. Geometria de posição. 2 a série Ensino Médio Livro 1 9. Reoluçõe 01 a) Poulado, poi o poulado ão conaaçõe que não neceiam e compovada paa que ejam conideada vedadeia. ) Pono, ea e plano. c) Teoema. 0 apíulo 1 Geomeia de poição TIIS PR SL PÁG. 14 omo o polongameno

Leia mais

Essas distâncias correspondem aos raios de esferas centradas na posição instantânea dos satélites e que se intersectam no ponto ocupado pelo receptor.

Essas distâncias correspondem aos raios de esferas centradas na posição instantânea dos satélites e que se intersectam no ponto ocupado pelo receptor. ? 1? 4 Posicionaento GPS Tios de Posicionaento: Absoluto (1 eceto) SV SV3 Relativo ( ou ais ecetoes) SV1?? 3 SV4 q Vecto Estação K (X, Y, Z, dt ) Estação Estação ( X, Y, Z ) = ( X, Y, Z ) + ( X, Y, Z)

Leia mais

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x? EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno

Leia mais

CAPÍTULO 5. Dedução Natural

CAPÍTULO 5. Dedução Natural CAPÍTULO 5. Dedução Natual Iniciamo ete caítulo com a eguinte egunta: O ue é a dedução natual? É o oceo aa etabelece de maneia igooa a validade do agumento, deivando a concluão do agumento a ati da emia

Leia mais

1. Tensão Uma das repostas do MC ao carregamento. F r. forças internas. 1. Vector das tensões. sistema 3. sistema 2. sistema 1. sistema 2.

1. Tensão Uma das repostas do MC ao carregamento. F r. forças internas. 1. Vector das tensões. sistema 3. sistema 2. sistema 1. sistema 2. 1. Tesão Ua das eosas do MC ao caegaeo 1. Veco das esões foças eas ssea 1 ssea coe ssea 1 A F F - ssea 3 ssea 3 ssea B Cojuo( ssea 1 ssea ) esá e equlíbo Cojuo( ssea 1 ssea 3) esá e equlíbo Cojuo( ssea

Leia mais

MATEMÁTICA. Retas e Planos no Espaço. Geometria de Posição Capítulo 1 LIVRO 4

MATEMÁTICA. Retas e Planos no Espaço. Geometria de Posição Capítulo 1 LIVRO 4 MATEMÁTICA LIVRO 4 Geomeia de Posição Capíulo 1 Reas e Planos no Espaço GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B β Numa ea, ou foa dela, exisem infinios

Leia mais

MATEMÁTICA LIVRO 4 Geometria de Posição Capítulo 1 Retas e Planos no Espaço

MATEMÁTICA LIVRO 4 Geometria de Posição Capítulo 1 Retas e Planos no Espaço MATEMÁTICA LIVRO 4 Geomeia de Posição Capíulo 1 Reas e Planos no Espaço GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B β Numa ea, ou foa dela, exisem infinios

Leia mais

é êíé é çã é ê óééçú ê é çãá çíçã çã ã çã ê ã á íçõíá íí í çã ô ú ç ç çê ú á éé í çõ í ã ã ã ã é ü óéó É ç ã çõ â ã ç áãúé çã ê çõ ô ç ú ú çõ çààá àúç

é êíé é çã é ê óééçú ê é çãá çíçã çã ã çã ê ã á íçõíá íí í çã ô ú ç ç çê ú á éé í çõ í ã ã ã ã é ü óéó É ç ã çõ â ã ç áãúé çã ê çõ ô ç ú ú çõ çààá àúç Ó é ç í ó ó ó çõ ã ê ã á ã ú é á ê ç á çã ê íç éçãé çãé ê éé çúê í çã é êíé é çã é ê óééçú ê é çãá çíçã çã ã çã ê ã á íçõíá íí í çã ô ú ç ç çê ú á éé í çõ í ã ã ã ã é ü óéó É ç ã çõ â ã ç áãúé çã ê çõ

Leia mais

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio.

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio. UJ MÓDULO III DO PISM IÊNIO - POA DE ÍSICA PAA O DESENOLIMENO E A ESPOSA DAS QUESÕES, SÓ SEÁ ADMIIDO USA CANEA ESEOGÁICA AZUL OU PEA. Na olução da proa, ue, uando neeário, g = /, = 8 /, e = 9 - kg, π =.

Leia mais

Análise de uma Fila Única

Análise de uma Fila Única Aálise de ua Fila Úica The A of oue Syses Pefoace Aalysis Ra Jai a. 3 Fila Úica O odelo de filas ais siles coé aeas ua fila Pode se usado aa aalisa ecusos idividuais e siseas de couação Muias filas ode

Leia mais

Código de Bloco Linear CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL CÓDIGOS DE BLOCO. Matriz Geradora, G. Código Dual de C(n, k)

Código de Bloco Linear CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL CÓDIGOS DE BLOCO. Matriz Geradora, G. Código Dual de C(n, k) Cóigo e Bloco iea CODIFICAÇÃO DE CANA PARA SISEAS DE COUNICAÇÃO DIGIA CÓDIGOS DE BOCO Evelio. G. Feáez - 7 Seja: V: epaço veoial a -upla { a, a, K, a } V, ai F {,, K, }, p, p pio, ieio. S Subepaço e V,

Leia mais

Avaliação de Glebas. O empreendimento analisado transcorrerá em duas fases distintas, durante o período total de tempo t em meses:

Avaliação de Glebas. O empreendimento analisado transcorrerá em duas fases distintas, durante o período total de tempo t em meses: aliação de Gleba o: lfedo ima Moeia Gacia alização do ecelee abalho do E. Hélio de Caie iclido a aaem da coia feia (cf) e coeçõe deido à leilação aal. leilação aal omee emie o iício da oba de baização

Leia mais

GEOMETRIA DE POSIÇÃO.

GEOMETRIA DE POSIÇÃO. GEMETRI DE SIÇÃ. Geomeia de oição é a pae da Geomeia que euda a deeminação do elemeno geoméico, bem como a poiçõe elaiva e a ineeçõe dee elemeno no epaço. III - o dua ea paalela diina. IV - o dua ea concoene.

Leia mais

TEOREMA DE TALES PROF. JOÃO BATISTA

TEOREMA DE TALES PROF. JOÃO BATISTA PROF. JOÃO BATISTA TEOREMA DE TALES Se um feie de paalela deemina egmeno conguene obe uma anveal, enão ee feie deemina egmeno conguene obe qualque oua anveal. Aim, um feie de paalela deemina, em dua anveai

Leia mais

Exercícios propostos

Exercícios propostos Eecícios poposos 01 Esceva uma equação da ea nos casos a segui a) passa pelo pono P(, 1,) e em a dieção do veo u (,1,1 ) b) passa pelos ponos A(1,, 1) e B(0,,) 0 Veifique, em cada um dos iens abaio, se

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Mecânica

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Mecânica Univeridade Federal do Rio Grande do Sl Eola de Engenaria Deparaeno de Engenaria Meânia ENG 02 Máqina de Flxo I Tra A Prof. Alexandre Vaginki de Pala (depala@frg.br) Reolção da qeõe (2) e () da lia de

Leia mais

Relação Risco Retorno em uma série histórica

Relação Risco Retorno em uma série histórica Relação Risco Retono em uma séie históica E ( j ) R j Retono espeado é a expectativa que se constói paa o esultado de um ativo a pati da média históica de esultado. E( j ) R j j,1 + j, + L+ n j, n n i

Leia mais

Índice alfabético. página: 565 a b c d e f g h i j k l m n o p q r s t u v w x y z. procura índice imprimir última página vista anterior seguinte

Índice alfabético. página: 565 a b c d e f g h i j k l m n o p q r s t u v w x y z. procura índice imprimir última página vista anterior seguinte Í é á: 565 á é í ú á í é á: 566 A A é, 376 A, 378 379 A á, 146 147 A, 309 310 A á, 305 A ( ), 311 A, 305 308 A á B, 470 A á, 384 385 A,, ç Bç, 338 340 A é, 337 Aé, 333 A, 410 419 A K, 466 A, 123 A, 32

Leia mais

ESCOAMENTO INCOMPRESSÍVEL DE FLUIDO NÃO VISCOSO

ESCOAMENTO INCOMPRESSÍVEL DE FLUIDO NÃO VISCOSO ESCOMENTO INCOMRESSÍEL DE FLUIDO NÃO ISCOSO Em divesas siações, como nos escoamenos de flidos de baixa viscosidade lone de aedes, as foças de cisalhameno odem se deseadas e a foça de sefície o nidade de

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAUO Escola de Egehaia de oea EE O153 - FÍSICA III Pof. D. Duval Rogues Juio Depataeto de Egehaia de Mateiais (DEMAR) Escola de Egehaia de oea (EE) Uivesidade de São Paulo (USP) Polo

Leia mais

Aula-8 Fótons e ondas de matéria III

Aula-8 Fótons e ondas de matéria III Aula-8 Fóons e ondas de aéia III A equação de Schödinge boa enha obido alguns sucessos noáveis a velha eoia quânica inha séios defeios. a ua isua abiáia de física clássica co novos posulados alheios e

Leia mais

Introdução à Análise Diferencial dos Movimentos dos Fluidos

Introdução à Análise Diferencial dos Movimentos dos Fluidos Inodção à Análise Difeencial dos Moimenos dos Flidos Eqação de conseação de massa (coninidade) Definições ailiaes: Fnção coene Deiada maeial Aceleação Roação de flidos Eqação de Conseação de Qanidade de

Leia mais

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos PPNL Min (Max) f(x). a. g i (x) (,, =) b i, i =,,m onde x = (x,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.

Leia mais

Apreçamento de Renda Variável usando abordagem não-determinística

Apreçamento de Renda Variável usando abordagem não-determinística GV INVEST 8 Apreçameno de Renda Variável sando abordagem não-deerminísica Aplicando-se ma abordagem não deerminísica para se separar as parcelas de cro e longo prazos na definição do preço da ação, concli-se

Leia mais

5 Modelo financeiro para os ativos

5 Modelo financeiro para os ativos Modelo financeio paa os aivos 51 5 Modelo financeio paa os aivos 5.1. Pemissas A eada de dados de uma pogamação esocásica é caaceizada como o valo que epesea cada fao de isco duae o peíodo de duação de

Leia mais

Melhores momentos AULA PASSADA. Otimização Combinatória p. 288

Melhores momentos AULA PASSADA. Otimização Combinatória p. 288 Melhore momeno AULA PASSADA Oimização Combinaória p. 288 Eqeci de comenar Verão com co não-negaio de m relação min-max qe já imo. Coneqüência da correção do algorimo CAMINHO-CURTO-GENÉRICO. Se e ão nó

Leia mais

9 JUNHO. Rua Cândido dos Reis, Vila Nova de Gaia Tel.: Fax:

9 JUNHO. Rua Cândido dos Reis, Vila Nova de Gaia Tel.: Fax: ÇÃÀ 9JUNHO í çõ úãá ÕÚ õ ú ã é çã é õéá é à Rua Cândido dos Reis, 545 4400-075 Vila Nova de Gaia Tel.: 22 374 67 20 - Fax: 22 374 67 29 www.jf-santamarinha.pt 1 õ á õ à çã çõ õ á çã áí é àí àçãçã ã Á à

Leia mais

AULA 2 CONDUÇÃO DE CALOR

AULA 2 CONDUÇÃO DE CALOR Noas de aula de PME 36 Pocessos de ansfeência de Calo 0 AULA CONDUÇÃO DE CALOR CONDUÇÃO DE CALOR Conduibilidade ou Conduividade éica Da Lei de Fouie da condução de calo e-se ue o fluo de calo é dieaene

Leia mais

3 Revisão Teórica dos principais modelos de previsão

3 Revisão Teórica dos principais modelos de previsão Revião Teórica do principai modelo de previão 18 3 Revião Teórica do principai modelo de previão Denre o divero méodo e modelo de previão eine, enconramo aqui o modelo univariado e o modelo com variávei

Leia mais

Modulações digitais. Espaços de sinal e regiões de decisão. Funções ortogonais. Ortogonalização de Gram-Schmidt

Modulações digitais. Espaços de sinal e regiões de decisão. Funções ortogonais. Ortogonalização de Gram-Schmidt Modulaçõe dga Epaço de nal e regõe de decão Funçõe orogona Orogonalzação de Gram-Schmd Uma perpecva geomérca do na e ruído (Koelnkov) Um epaço orogonal de dmenõe é caracerzado por um conjuno de ψ () funçõe

Leia mais

p m v m v m v m M v v v m 2h 2h d g g t 2h m M g m km p p p m v m v m v v e v p m v m v t t t 2 2g

p m v m v m v m M v v v m 2h 2h d g g t 2h m M g m km p p p m v m v m v v e v p m v m v t t t 2 2g Po. D Cláuo S. Sao íca Daa:07//00 Reão - Cuo: Eleônca Auooa - Seee:. Conee o echo ABC a gua e ao. U copo e aa = 5.0 kg é aanonao a poção A e choca-e elacaene (coecene e eução e = ) co u copo e aa = 0 kg,

Leia mais

Curso: Engenharia de Produção PPNL. Min (Max) f(x)

Curso: Engenharia de Produção PPNL. Min (Max) f(x) PPNL Min (Max) f(x). a. g i (x) (,, ) b i, i 1,,m onde x (x 1,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.

Leia mais

a 2 c = 3 a 36 a4 72 a II inv = a 8

a 2 c = 3 a 36 a4 72 a II inv = a 8 istaii_gabarito.c Mecânica os Sólios II ista II - 9. Gabarito ª Questão- ara a viga ostraa na figura, eterine as tensões aiais no engaste, nos pontos A, B e C a seção transversal e a posição a linha neutra.

Leia mais

TÓPICOS. Diferenciação complexa. Derivadas complexas. Funções analíticas. Equações de Cauchy-Riemann. Funções harmónicas. Regra de L Hospital.

TÓPICOS. Diferenciação complexa. Derivadas complexas. Funções analíticas. Equações de Cauchy-Riemann. Funções harmónicas. Regra de L Hospital. Note be a leitra destes apontaentos não dispensa de odo alg a leitra atenta da bibliograia principal da cadeira Chaa-se à atenção para a iportância do trabalho pessoal a realiar pelo alno resolendo os

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Univridad Fdral do ABC ESZO 001-15 Fnôno d Tranpor Profa. Dra. Ana Maria Prira No ana.no@ufabc.du.br Bloco A, orr 1, ala 637 1ª Li da Trodinâica para olu d Conrol ESZO 001-15_Ana Maria Prira No 1ª Li da

Leia mais

5. ANÁLISE DE RESÍDUOS

5. ANÁLISE DE RESÍDUOS 5. ANÁLISE DE RESÍDUOS No Capíulo 4 fora propoa eodologia para eiar o volue de óleo recuperável. Poré, apó inveigar o odelo que elhor e ajua ao dado hiórico, deve-e analiar ainda o reíduo, que é a diferença

Leia mais

ν ν α α π θ θ δ α α α + + α + α α + α + φ Γ φ θ θ θφ Γ δ = α ν α α ν + ν ν + ν + ν + δ + ν ν + δ + + + + + δ + + ν ν + + ν + + + ν ν ν + + ν + ν + = θ β β + Γ δ Γ δ β µ µ µµ µ µ µ µ α ν α µ

Leia mais

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1.1 A QUAÇÕ D MAXWLL Todos os poblemas de eleicidade e magneismo podem se esolvidos a pai das equações de Mawell: v 1. Lei de Gauss: φ. nda ˆ. Lei de Gauss paa o magneismo:

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da ea 1. Condiçõe de medição eodéica O intumento com que ão efectuada a mediçõe eodéica, obe a upefície da ea, etão ujeito à foça da avidade. Paa pode intepeta coectamente o eultado da mediçõe,

Leia mais

NCE/12/00256 Decisão de apresentação de pronúncia - Novo ciclo de estudos

NCE/12/00256 Decisão de apresentação de pronúncia - Novo ciclo de estudos NCE/12/00256 Decisão de apresentação de pronúncia - Novo ciclo de estudos NCE/12/00256 Decisão de apresentação de pronúncia - Novo ciclo de estudos Decisão de Apresentação de Pronúncia ao Relatório da

Leia mais

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7.

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7. CAPTULO 7 Execícios 7 Sejam F () (, sen, ) e G () (,, ) a) F () G () (, sen, ) (,, ) sen d) i j F () G () sen ( sen ) i ( 6) j ( sen ) F () G () ( sen, 6, sen ) Sejam () ij e x () i j i j () x () ( ) i

Leia mais

( ). ( ) ( 2.2 Valor Esperado e Momentos. Função Geratriz de Momentos Seja X uma variável aleatória, então, se o valor esperado de existe

( ). ( ) ( 2.2 Valor Esperado e Momentos. Função Geratriz de Momentos Seja X uma variável aleatória, então, se o valor esperado de existe . Valo Espao omnos Função Gaiz omnos Sja uma vaiávl alaóia, não, s o valo spao xis paa oo valo m algum invalo ( h,h, h > 0, l é inio como a Função Gaiz omnos, noaa Fomalmn, x E. ( x x R (. caso isco x

Leia mais

TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA

TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA Edrdo Loo Lo Crl TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO OS ESTAOS E FUNÇÃO E TRANSFERÊNCIA. Moição e eeidde Eie iee d for de repreer diâi de ie: Epço do Edo SS; Fção de Trferêi TF. O o d d for de repreer

Leia mais

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P3 DE ELETROMAGNETISMO 7..0 quarta-feira Noe : Assinatura: Matrícula: Tura: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é peritido destacar folhas da prova

Leia mais

Intervalos de confiança

Intervalos de confiança 0 Itervalo de cofiaça 6.. A etiação por itervalo Noralete o proceo de ivetigação de u parâetro eceitao ir alé da ua etiativa potual ˆ. O fato de ão e cohecer o valor de pode cauar ua ieguraça e levar a

Leia mais

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS VIBRAÇÕES MEÂNIAS - APÍTULO VIBRAÇÃO ORÇADA 3. VIBRAÇÃO ORÇADA - ORÇAS NÃO SENOIDAIS No capíulo ao suou-s a vbação oçaa ssas co u gau lba, subos a oças cação oa soal. Es suo po s so paa aplcaçõs quao as

Leia mais

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que:

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que: . qação para o MHS Qano o oino corpo cr a rajória, a parir cro inan coça a rpir a rajória, izo q oino é prióico. O po q o corpo gaa para olar a prcorrr o o pono a rajória é chaao príoo. No noo coiiano

Leia mais

Superfícies Sustentadoras

Superfícies Sustentadoras Supefícies Sustentadoas Uma supefície sustentadoa gea uma foça pependicula ao escoamento não petuado, foça de sustentação, astante supeio à foça na diecção do escoamento não petuado, foça de esistência.

Leia mais

Å ÆÍ Ä ÅÁ ÊÇ Ç ÇÆÇÅÁ Å ÇÆËÌÊÍ Ç ÍÊËÇ ÅÁ ÊÇ ÇÆÇÅÁ Á ÁÍÊÆǹ½ Ë Å ËÌÊ ¹¾¼½ ÂÓ Êº ƺ ÔÔ Ò¹ÈÖÓ º Ô ÖØ Ñ ÒØÓ ÓÒÓÑ ¹ ¹ÍËÈ ¼¾»¼»¾¼½

Å ÆÍ Ä ÅÁ ÊÇ Ç ÇÆÇÅÁ Å ÇÆËÌÊÍ Ç ÍÊËÇ ÅÁ ÊÇ ÇÆÇÅÁ Á ÁÍÊÆǹ½ Ë Å ËÌÊ ¹¾¼½ ÂÓ Êº ƺ ÔÔ Ò¹ÈÖÓ º Ô ÖØ Ñ ÒØÓ ÓÒÓÑ ¹ ¹ÍËÈ ¼¾»¼»¾¼½ Å ÆÍ Ä ÅÁ ÊÇ Ç ÇÆÇÅÁ Å ÇÆËÌÊÍ Ç ÍÊËÇ ÅÁ ÊÇ ÇÆÇÅÁ Á ÁÍÊÆǹ½ Ë Å ËÌÊ ¹¾¼½ ÂÓ Êº ƺ ÔÔ Ò¹ÈÖÓ º Ô ÖØ Ñ ÒØÓ ÓÒÓÑ ¹ ¹ÍËÈ ¼¾»¼»¾¼½ ÓÒØ ÒØ ½ ¾ ÅÁ ÊÇ ÇÆÇÅÁ ÅÇ ÄÇ Ë ÇÄÀ Ê ÁÇÆ Ä ÆÌ Ë Ê ÁÇÆ ÁË ÁÆ ÁÎ ÍÇ ÅÈÊ Ë ¹ Å

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA

UNIVERSIDADE FEDERAL DE SANTA MARIA UNVRSDAD FDRAL D SANTA MARA CNTRO D TCNOLOGA Depaameno e uua e Conução Civil XMPLO: VRFCAÇÃO DOS STADOS LMTS D SRVÇO M VGA D CONCRTO ARMADO e exemplo eee-e ao pojeo euual a via V (iua abaixo), e eção 5cm

Leia mais

ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14. Capítulo 1 GEOMETRIA. Geometria de posição. 2? a série Ensino Médio Livro?

ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14. Capítulo 1 GEOMETRIA. Geometria de posição. 2? a série Ensino Médio Livro? GOMTRI Reoluçõe píulo 1 Geomei de poição TIIS PR SL PÁG. 14 01 ) Pouldo, poi o pouldo ão conçõe que não neceim e compovd p que ejm conided veddei. b) Pono, e e plno. c) Teoem. 0 omo o polongmeno é infinio

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdáia D. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dação: 90 itos Maço/ 06 Noe N.º T: Classificação Pof. (Lís Abe).ª PARTE Paa cada a das segites qestões de escolha últipla, selecioe

Leia mais

1329 Medida da velocidade da luz

1329 Medida da velocidade da luz 329 Medida da veloidade da luz Roteiro elaborado o bae na douentação que aopanha o onjunto por: Otavio AT Dia e Elia da Silva PUC-SP Tópio Relaionado Índie de refração, opriento de onda, frequênia, fae,

Leia mais

PME 2556 Dinâmica dos Fluidos Computacional. Aula 1 Princípios Fundamentais e Equação de Navier-Stokes

PME 2556 Dinâmica dos Fluidos Computacional. Aula 1 Princípios Fundamentais e Equação de Navier-Stokes PME 556 Dnâmca dos Fldos Compaconal Ala 1 Pncípos Fndamenas e Eqação de Nave-Sokes 1.1 Inodção O escoameno de m fldo é esdado aavés de eqações de consevação paa:. Massa. Qandade de Movmeno. Enega 1. Noação

Leia mais

Capítulo 7 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS

Capítulo 7 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS Caítulo 7 ESCOMEO PERMEE E FUIO ICOMPRESSÍVE EM COUOS FORÇOS o Caítulo areentou-e a equação a energia co ea iótee, reultano: : M, Ea equação erite eterinar ao longo o ecoaento algua a ariáei que conté,

Leia mais

Exercícios resolvidos

Exercícios resolvidos Excícios solvidos 1 Um paallpípdo ABCDEFGH d bas ABCD m volum igual a 9 unidads Sabndo-s qu A (1,1,1), B(2,1,2), C(1,2,2), o véic E pnc à a d quação : x = y = 2 z (AE, i) é agudo Dmin as coodnadas do véic

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas Vesibula ª Fase Resolução das Quesões Discusivas São apesenadas abaixo possíveis soluções paa as quesões poposas Nessas esoluções buscou-se jusifica as passagens visando uma melho compeensão do leio Quesão

Leia mais

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial lno de ul Memáic Módulo 18 Inodução à geomei epcil Reolução do eecício popoo Reomd do conceio ÍTULO 1 1 ) Não. b) Sim. O ê pono deeminm o plno que o conêm. c) Não peence. d) Infinio pono. O pono, e I e

Leia mais

1. Introdução: classificação das colisões segundo a variação na energia

1. Introdução: classificação das colisões segundo a variação na energia Colisões M.F.B, 004 Física 004/ tua IFA AULA Objetivo: discuti ocessos de colisão ente atículas. Assuntos: colisões elásticas e inelásticas O que você deve se caaz ao final desta aula:! obte as velocidades

Leia mais

FINANCIAL ECONOMETRICS

FINANCIAL ECONOMETRICS FINANCIAL ECONOMEICS o. Mácio Anônio Salvao Inodução sa ue S. Analsis o Financial ime Seies: Financial Economeics. John Wille & Sons Inc. 005 Second Ediion chape. hp://acul.chicagogsb.edu/ue.sa/eaching/s/

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Modelos condicionalmente

Leia mais

MODELOS PARA AVALIAÇÃO DE CRUZAMENTOS. O acasalamento entre animais pertencentes a grupos genéticos distintos é

MODELOS PARA AVALIAÇÃO DE CRUZAMENTOS. O acasalamento entre animais pertencentes a grupos genéticos distintos é MODELOS PARA AVALIAÇÃO DE CRUZAMENTOS Elias Nunes Matins e Eduado Siueo Sakauti O aasalaento ente aniais etenentes a uos enétios distintos é denoinado de uzaento e as oênies daí nasidas são ditas uzadas,

Leia mais

Curso: Engenharia de Produção PPNL. Min (Max) f(x)

Curso: Engenharia de Produção PPNL. Min (Max) f(x) PPNL Min (Max) f(x) Cuo: Engenhaia de Podução. a. g i (x) (,, ) b i, i 1,,m onde x (x 1,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o

Leia mais

Fundamentos de Telecomunicações 2004/05 LERCI

Fundamentos de Telecomunicações 2004/05 LERCI Fudaeos de elecouicações 4/5 LERCI ese º 4 aio, 5 Núero: Noe: Assiale aeas a resosa que cosiderar correca. Se ão esiver cero da resosa que deve assialar, é referível ão resoder. As resosas erradas são

Leia mais

Transmissão de calor

Transmissão de calor UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia ansmissão de calo 3º ano Pof D. Engº Joge Nhambiu Aula. Equação difeencial de condução de calo Equação difeencial de condução de calo Dedução da equação

Leia mais

FÍSICA GERAL E EXPERIMENTAL I RESOLUÇÃO DA LISTA II

FÍSICA GERAL E EXPERIMENTAL I RESOLUÇÃO DA LISTA II ÍSIC GEL E EXPEIMENTL I ESOLUÇÃO D LIST II UNIVESIDDE CTÓLIC DE GOIÁS Depatamento de Matemática e íica Diciplina: íica Geal e Epeimental I (M 01) ESOLUÇÃO D LIST II 1. + = (3 1) iˆ + ( 4 ) ˆj = ( N) iˆ

Leia mais

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC Capítulo 3 Aperíetros e Voltíetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa Capítulo 3 Aperíetros e Voltíetros DC 3.. Aperíetros DC U galvanôetro, cuja lei de Deflexão Estática (relação entre a

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 11

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 11 SE 39 CONVERSÃO EEROMECÂNCA DE ENERGA Aula 11 Aula de Hoje Máquna oava Podução de oque Máquna Roava A ao pae do conveoe eleoecânco de enega de ala poênca ão baeado e oveno oaconal; São copoo po dua pae

Leia mais

Sol Exercícios Parte IV

Sol Exercícios Parte IV Atonomia do Sitema Sola AGA9 Eno Piazzio - 006 Sol Exeíio Pate IV Yohkoh - NASA and ISAS. Eno Piazzio IAGUSP Calulando a maa do Sol Admitindo a óbita da Tea iula. Enegia inétia: E C mv Enegia potenial:

Leia mais

Com base na figura, e sendo a pressão atmosférica 700 mmhg, determine p gás_abs.

Com base na figura, e sendo a pressão atmosférica 700 mmhg, determine p gás_abs. 4 a Lita de Exercício. U dado fluido apreenta a aa epecífica igual a 750 kg/³ e vicoidade dinâica igual a,5 centipoie, pede-e deterinar a ua vicoidade cineática no itea internacional.. O peo de d³ de ua

Leia mais

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos:

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos: Seu pé dieio na melhoe faculdade. FUVEST/00 a Fae TEÁTI 0. alo, Luí e Sílvio inham, juno, 00 mil eai paa invei po um ano. alo ecolheu uma aplicação que endia ao ano. Luí, uma que endia 0% ao ano. Sílvio

Leia mais

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não ao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R u a u a é um Epaço eoal obe R ou Epaço eoal Real ou um R-epaço

Leia mais

Curvas Requisitos: Independência de eixos

Curvas Requisitos: Independência de eixos Compação Gáfca Ieava - Gaass 8/7/5 Cvas Reqsos: Iepeêca e eos ' ' Cvas Compação Gáfca Ieava - Gaass 8/7/5 Reqsos: aloes Múlplos Reqsos: Coole Local Cvas Compação Gáfca Ieava - Gaass 8/7/5 Reqsos: Reção

Leia mais

Computação Gráfica Interativa - Gattass 01/10/15

Computação Gráfica Interativa - Gattass 01/10/15 Coção Gáf I - G 0/0/5 Aoo d Ro d Ro P o o P o o Ição oção O q á f? A q dâ do oo? R T Coção Gáf I - G 0/0/5 So Oão Efo Po Gd d I ê do do o Idd do oo oo Foof D Pooo o éo XX! R T Coção Gáf I - G 0/0/5 C o

Leia mais

RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO VLIÇÃO UNIDDE I - OLÉGIO NHIET- PROF MRI NTÔNI GOUVEI ELORÇÃO e PESQUIS: PROF DRINO RIÉ e WLTER PORTO Questão ) figua abaio epesenta u galpão foado po u paalelepípedo etângulo e u seicilindo

Leia mais