CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS

Tamanho: px
Começar a partir da página:

Download "CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS"

Transcrição

1 CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS Baricentro geométrico: Maneira prática de se determinar o baricentro geométrico: fio de prumo fio de prumo O Centro de Gravidade está na intersecção das linhas delimitadas pelo fio de prumo. Regras de Arquimedes: a) Se um corpo admite um eixo de simetria, o centro de gravidade estará obrigatoriamente sobre este eixo. b) Se um corpo admite um centro de simetria, o centro de gravidade obrigatoriamente coincide com este centro. Sistemas Estruturais 06/ Página

2 Centro de gravidade de superfícies: Def.: Centro de Gravidade de uma superfície plana é o ponto em torno do qual a área daquela superfície está igualmente distribuída. y y Yg y3 y y4 O x x x4 x3 Xg x Sendo: A, A,..., An área de cada partícula, A = A + A An área total da superfície Temos: Xg. A = x. A + x. A xn. An Xg = ( x. A + x. A xn. An ) / A e Yg. A = y. A + y. A yn. An Yg = ( y. A + y. A yn. An ) / A Onde: Xg é a abcissa do centro de gravidade da superfície Yg é a ordenada do centro de gravidade da superfície Eixos Baricentrais: São os eixos paralelos aos eixos de referência ( X e Y ) para os quais Xg = zero e Yg = zero. Sistemas Estruturais 06/ Página

3 Momento de inércia de superfícies planas o Momento de Inércia (Jx e Jy ) ou ( Ix e Iy ) é a propriedade das superfícies planas de se deixarem girar em torno de um eixo. Quanto maior for a oposição a este giro, maior será o Momento de Inércia relativamente ao eixo de referência. O Momento de Inércia relaciona a área da superfície com o quadrado da distância em relação a um eixo de referência. y y y3 y y4 O x x x4 x3 x então: Jx = Jo + ( dy. A) Jy = Jo + ( dx. A) Onde: Jo = Momento de Inércia baricentral de cada figura simples; dx e dy = distância do centro de gravidade de cada figura ao eixo de referência; e A = área de cada figura. Raio de giração: y ix G iy x i J A Sistemas Estruturais 06/ Página 3

4 Sendo: i = raio de giração em relação ao eixo x ou y; J = Momento de Inércia em relação ao mesmo eixo do raio de giração A = área da superfície Módulo de resistência: J w y Sendo: y = distância do eixo em questão a uma tangente à superfície paralela a este eixo. y y x x y x Por tanto: wx' Jx y' wx" Jx y" wy' Jy x' wy" Jy x" Produto de inércia: xy = x y + ( dx. dy. A ) Rotação de eixos: J = Jx. cos + Jy. sen - xy. sen () J = Jx. sen + Jy. cos + xy. sen () = 0,5. (Jx Jy). sen + xy. cos Máximos e Mínimos momentos de inércia: tg () =. xy / (Jy Jx) Para este ângulo = 0,0 (zero) Jx + Jy = J + J = Jmáx + Jmín Sistemas Estruturais 06/ Página 4

5 Calcular o centro de gravidade da seção transversal abaixo figurada. (Unidades em cm) Calcular o centro de gravidade da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 5

6 3 Calcular o centro de gravidade da seção transversal abaixo figurada. (Unidades em cm) Calcular o centro de gravidade da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 6

7 5 Calcular o centro de gravidade da seção transversal abaixo figurada. (Unidades em cm) Calcular o centro de gravidade da seção transversal abaixo figurada. (Unidades em cm) diâmetro do vazio = 0 cm Sistemas Estruturais 06/ Página 7

8 7 Calcular os momentos de inércia em relação aos eixos baricentrais x e y da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 8

9 8 Calcular os momentos de inércia em relação aos eixos baricentrais x e y da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 9

10 9 Calcular os momentos de inércia em relação aos eixos baricentrais x e y da seção transversal abaixo figurada. (Unidades em cm). Diâmetro do vazio = 5 cm Sistemas Estruturais 06/ Página 0

11 0 Calcular os Raios de Giração em relação aos eixos baricentrais x e y da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página

12 Calcular os raios de giração em relação aos eixos baricentrais x e y da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página

13 Calcular os raios de giração em relação aos eixos baricentrais x e y e o núcleo central de inércia da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 3

14 3 Calcular os máximos e mínimos momentos de inércia em relação ao baricentro da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 4

15 4 Calcular os máximos e mínimos momentos de inércia em relação ao baricentro da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 5

16 5 Calcular os máximos e mínimos raios de giração em relação aos eixos baricentrais da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 6

17 6 Calcular os máximos e mínimos Raios de Giração em relação aos eixos baricentrais da seção transversal abaixo figurada. (Unidades em cm). Diâmetro do vazio = 0 cm Sistemas Estruturais 06/ Página 7

18 7 Calcular os máximos e mínimos Raios de Giração em relação aos eixos baricentrais da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 8

19 8 Calcular os máximos e mínimos Raios de Giração em relação aos eixos baricentrais da seção transversal abaixo figurada. (Unidades em cm) Sistemas Estruturais 06/ Página 9

CAPÍTULO IV GEOMETRIA DAS MASSAS

CAPÍTULO IV GEOMETRIA DAS MASSAS CPÍTULO IV GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluída dentro dos objetivos principais de Resistência dos Materiais, vamos estudar algumas grandezas características da geometria das massas

Leia mais

TM Estática II

TM Estática II TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 emilio.kavamura@ufpr.br (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas

Leia mais

Propriedades Geométricas de Seções Transversais

Propriedades Geométricas de Seções Transversais D-1 pêndice D Propriedades Geométricas de Seções Transversais D.1 Momento Estático Considere uma superfície plana de área e dois eixos ortogonais x e y de seu plano mostrados na Figura D.1. Seja d um elemento

Leia mais

UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique

UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique 1 Aula 06 Continuação/Revisão Prof: João Henrique Sumário Pilares de Seção Transversal em forma de L e U... 1 Principais propriedades de figuras planas... 2 Área (A)... 2 Momento Estático (Me)... 2 Centro

Leia mais

Assunto: Características Geométricas das Figuras Planas Prof. Ederaldo Azevedo Aula 6 e-mail: ederaldoazevedo@yahoo.com.br O dimensionamento e a verificação da capacidade resistente de barras, como de

Leia mais

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA A Figura abaixo ilustra uma barra reta de seção transversal constante, chamada barra prismática. O lado da barra que contém o comprimento

Leia mais

Características Geométricas

Características Geométricas Prof. Daniel Dias A: área da seção transversal do perfil (cm²) x g, y g : coordenadas do centro de gravidade I x : momento de inércia em relação ao eixo x (cm²) I y ; momento de inércia em relação ao eixo

Leia mais

Momentos de Inércia de Superfícies

Momentos de Inércia de Superfícies PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Exercícios de Mecânica - Área 2

Exercícios de Mecânica - Área 2 1) A placa da Figura tem espessura de 0,30 pé e peso específico de γ= 190 lb/pé 3. Determine a localização de seu centro de gravidade. Encontre também o peso total da placa. Xg = 3,2 pés ; yg = 3,2 pés

Leia mais

Capítulo 3 GEOMETRIA DE MASSAS 3.1 INTRODUÇÃO 3.2 CENTRO DE MASSA E CENTRO DE GRAVIDADE

Capítulo 3 GEOMETRIA DE MASSAS 3.1 INTRODUÇÃO 3.2 CENTRO DE MASSA E CENTRO DE GRAVIDADE Capítulo 3 EOMETR DE MSSS 3. NTRODUÇÃO Neste capítulo será feito o estudo de várias propriedades e características geométrico-mecânicas de linhas, superfícies e volumes, as quais constituirão uma ferramenta

Leia mais

Varão de Serralharia. Diâmetro d (mm) Tolerâncias no diâmetro (mm) Massa por metro (Kg / m) Secção (cm 2 ) 6 0,283 0,222 8

Varão de Serralharia. Diâmetro d (mm) Tolerâncias no diâmetro (mm) Massa por metro (Kg / m) Secção (cm 2 ) 6 0,283 0,222 8 Varão de Serralharia Diâmetro d () Tolerâncias no diâmetro () Secção (cm 2 ) Massa por metro (Kg / m) 6 0,283 0,222 8 0,503 0,395 ± 0,4 10 0,785 0,617 12 1,13 0,888 16 2,01 1,58 20 ± 0,5 3,14 2,47 25 4,91

Leia mais

10- Momentos de Inércia

10- Momentos de Inércia 1 10- Momentos de Inércia Momento de inércia de área: medida da resistência à flexão de uma viga. Momento de inércia de massa: medida da inércia (resistência) ao movimento de rotação de um corpo sólido.

Leia mais

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL

Leia mais

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

Departamento de Engenharia Civil e Arquitectura MECÂNICA I

Departamento de Engenharia Civil e Arquitectura MECÂNICA I Departamento de Engenharia Civil e rquitectura Secção de Mecânica Estrutural e Estruturas Mestrado em Engenharia Civil MECÂNIC I pontamentos sobre centros de gravidade Luís uerreiro 21/211 CENTROS DE RIDDE

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 Matemática Semi-Extensivo V. Exercícios 01 (x, x; (, 1; (7, d, = d, x x x x = x + 4x + 4 + x + x + 1 = x 14x + 49 + x 4x + 4 4x = 48 x = (, 0 (1, 1; G(, ; M(, 1 (x, y = x = 1 x x = 5 = y x y 1 = 1 y x

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2018-2 Objetivos Apresentar os conceitos: Momento de inércia: retangular e polar Produto de Inércia Eixos Principais de Inércia

Leia mais

Estabilidade. Conhecimentos Básicos

Estabilidade. Conhecimentos Básicos Estabilidade Conhecimentos Básicos Unidades NOME SÍMBOLO FATOR MULTIPLICADOR (UND) Exa E 10 18 1 000 000 000 000 000 000 Peta P 10 15 1 000 000 000 000 000 Terá T 10 12 1 000 000 000 000 Giga G 10 9 1

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 6//26 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:. Prova

Leia mais

Capítulo 22: Campos Elétricos

Capítulo 22: Campos Elétricos Capítulo 22: Campos Elétricos O Campo Elétrico Linhas de Campo Elétrico Campo Elétrico Produzido por uma Carga Pontual Campo Elétrico Produzido por um Dipolo Elétrico Campo Elétrico Produzido por uma Linha

Leia mais

Lei de Gauss Objetivos:

Lei de Gauss Objetivos: Lei de Gauss Objetivos: Calcular o Fluxo de Campo Elétrico através de superfícies fechadas; Resolver problemas de Campo Elétrico, usando a simetria do sistema, com emprego da Lei de Gauss. Sobre a Apresentação

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

7 FLEXÃO COMPOSTA 7.1 FLEXÃO COMPOSTA NORMAL

7 FLEXÃO COMPOSTA 7.1 FLEXÃO COMPOSTA NORMAL 7 FLEXÃO COMPOSTA Ocorre o esforço de flexão composta quando a resultante das tensões normais pode ser decomposta em uma força normal e momentos fletores. Quando o plano do momento fletor intercepta a

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2014-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eixos Principais de Inércia

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

Polígrafo Mecânica para Engenharia Civil

Polígrafo Mecânica para Engenharia Civil Universidade Federal do Pampa (UFP/UFSM) Centro de Tecnologia de Alegrete - CTA Curso de Engenharia Civil Polígrafo Mecânica para Engenharia Civil Prof Almir Barros da S. Santos Neto Polígrafo elaborado

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec x) y = cosx), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x a reta tangente

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3. AS CÔNICAS CÁLCULO VETORIAL - 2017.2 3.1 A circunferência 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa pelos pontos A (5; 1) ;

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

Valter B. Dantas. Momento de Inércia

Valter B. Dantas. Momento de Inércia Valter B. Dantas Momento de Inércia Momento de Inércia de um Sistema Contínuo de Partículas Como calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

Disciplina: Mecânica Geral - Estática

Disciplina: Mecânica Geral - Estática Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira

Leia mais

Trabalho de Equações Diferenciais Ordinárias

Trabalho de Equações Diferenciais Ordinárias Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:

Leia mais

FORÇA SOBRE ÁREAS PLANAS

FORÇA SOBRE ÁREAS PLANAS FLUIDOSTÁTICA II FORÇA SOBRE ÁREAS PLANAS Centro de Gravidade (CG) CG constatações Se a figura possui eixo de simetria, o CG está contido neste eixo. Eixo de simetria Eixo de simetria Eixo de simetria

Leia mais

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2 MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de

Leia mais

Lista 12. Aula 39. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Lista 12. Aula 39. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Revisão - Resolução de Exerícios Aula 39 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Figura 1 Viga poligonal de aço estrutural

Figura 1 Viga poligonal de aço estrutural PÓRTICO, QUADROS E ESTRUTURAS MISTAS MODELO 01 Para a viga poligonal contínua, indicada na Figura 1, determinar por Análise Matricial de Estruturas as rotações e as reações verticais nos apoios e. Dados:

Leia mais

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado.

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado. FLEÃO SIMPLES. Introdução: (Boanerges, 1980-S.D.) Como a força cortante não altera as tensões normais estamos aqui examinando as flexões pura normal e simples normal. Observando a seção transversal em

Leia mais

CAPÍTULO I GEOMETRIA DAS MASSAS

CAPÍTULO I GEOMETRIA DAS MASSAS CPÍTULO I GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluida dentro dos nossos objetivos principais, vamos estudar algumas grandezas características da geometria das massas com a finalidade

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

LICENCIATURA EM ENGENHARIA CIVIL. R = 20 mm. 15 mm. Z Figura 4 GEOMETRIA DE MASSAS RESOLUÇÃO DO EXERCÍCIO REFERENTE À FIGURA 4

LICENCIATURA EM ENGENHARIA CIVIL. R = 20 mm. 15 mm. Z Figura 4 GEOMETRIA DE MASSAS RESOLUÇÃO DO EXERCÍCIO REFERENTE À FIGURA 4 DEPARTAMENTO DE ENENHARA CVL LCENCATURA EM ENENHARA CVL ESTÁTCA 5 0 0 R 0 0 7 9 5 5 5 0 Figura EOMETRA DE MASSAS RESOLUÇÃO DO EXERCÍCO REFERENTE À FURA Ficha Ficha Ficha SABEL ALVM TELES ESTÁTCA DEPARTAMENTO

Leia mais

CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS

CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS Para o dimensionamento de peças estruturais, é imprescindível a determinação das características

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

Fluxo do campo elétrico

Fluxo do campo elétrico Fluxo do campo elétrico Definição: - É uma grandeza escalar que caracteriza uma medida do número de linhas de campo que atravessam uma determinada superfície. a) Linhas de um campo uniforme em magnitude

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho 1 Te McGraw-Hill Companies, nc. All rigts reserved. Prof.: Anastácio Pinto Gonçalves Filo Momentos de nércia de uma Superfície por ntegração Os Momentos de Segunda Ordem ou Momentos de nércia de Superfícies

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 11 1. Considere as funções f e g, representadas

Leia mais

MAT Cálculo II - POLI

MAT Cálculo II - POLI MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na

Leia mais

2 de novembro de 2009

2 de novembro de 2009 MECÂNICA - de novembro de 009 6 massa e Centróide de um Aplicações; Conceitos e definições; Determinação da localização. Aplicações Para projetar a estrutura de apoio de um tanque de água, é necessário

Leia mais

3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1).

3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1). 3.1 Obtenha a equação e esboce o gráfico da circunferência caracterizada por: (a) Centro C (, 1) eraior =5; (b) Passa pelos pontos A (1, ),B(1, 1) e C (, 3) ; (c) Inscrita no triângulo determinado pelas

Leia mais

Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.

Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9. Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte IV

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte IV Cálculo Diferencial e Integral II Página 1 Universidade de Mogi das Cruzes UMC Campos Villa Lobos Cálculo Diferencial e Integral II Parte IV Engenharia Civil Engenharia Mecânica marilia@umc.br º semestre

Leia mais

MECÂNICA DOS FLUIDOS Capítulo 02 REVISÃO - INÉRCIA

MECÂNICA DOS FLUIDOS Capítulo 02 REVISÃO - INÉRCIA 30/03/011 UNIVERSIDADE FEDERAL DE GOIÁS ENGENHARIA CIVIL E DE MINAS MECÂNICA DOS FLUIDOS Capítulo 0 REVISÃO - INÉRCIA Profa. Eliane Justino INÉRCIA É uma propriedade física da matéria, e segundo a relatividade

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta)

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta) Plano de Aulas Matemática Módulo 0 Ciclo trigonométrico ( volta) Resolução dos exercícios propostos Retomada dos conceitos CAPÍTULO 0,07 rad _ 80 rad x? x. 0, 07 rad _ x rad 80 a), rad C x C x C 0 x C

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 5 - Complementos De onde veio o nome seção cônica? Seções cônicas são as seções formadas pela interseção

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)

Leia mais

Física para Zootecnia

Física para Zootecnia Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Aula 19 Elipse - continuação

Aula 19 Elipse - continuação MÓDULO 1 - AULA 19 Aula 19 Elipse - continuação Objetivos Desenhar a elipse com compasso e régua com escala. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 17.0.011 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de Janeiro Identifica claramente,

Leia mais

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois pequenos discos (que podem ser considerados como partículas), de massas m e 2m, se deslocam sobre uma

Leia mais

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Calcular deformações (rotações) por torção Capacitar para o traçado de diagramas de momento torçor em barras Material

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

Física. Campo elétrico. Parte II. Lei de Gauss

Física. Campo elétrico. Parte II. Lei de Gauss Física Campo elétrico Parte II Lei de Gauss Lei de Gauss analogia água Lei de Gauss A magnitude do campo, como já visto, estará contida na densidade de linhas de campo: será maior próxima à carga e menor

Leia mais

270 Estruturas metálicas

270 Estruturas metálicas 270 Estruturas metálicas x y bf CG x x Tabela E.1 Cantoneiras de abas iguais Propriedades para dimensionamento bf tf z b f P A t f I x = I y W x = W y r x = r y r z min x pol cm kg/m cm 2 pol cm cm 4 cm

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 8 GRUPO I 1. Se numa caixa de forma cúbica cabem exactamente oito bombons, quantos bombons

Leia mais

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Lembrete 11.1 Em equações rotacionais, deve usar ângulos expressos em radianos. Lembrete 11.2 Na resolução de problemas de rotação, deve especificar um

Leia mais

d{p, s) = R. Mas, d(p, s) = d(p, Q), onde Q(0, 0, z). Logo, P{x, y, z) pertence ao cilindro se, e somente se,

d{p, s) = R. Mas, d(p, s) = d(p, Q), onde Q(0, 0, z). Logo, P{x, y, z) pertence ao cilindro se, e somente se, 134 Geometria Analítica \ Vamos deduzir uma equação do cilindro, em relação a um sistema de coordenadas que contém s como eixo z. Seja R a distância entre r es. Então, um ponto P(x, y, z) pertence ao cilindro

Leia mais

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do limite 3 x 8 lim é x 2 x 2 2ª QUESTÃO O domínio da função real definida por é 3ª QUESTÃO A imagem da função real definida por, para todo, é GRUPO 1 PROVA DE MATEMÁTICA

Leia mais

Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares

Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 9 - Rotação do Corpo Rígido Prof. Elvis Soares Para nós, um corpo rígido é um objeto indeformável, ou seja, nesse corpo

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

LOM Introdução à Mecânica dos Sólidos

LOM Introdução à Mecânica dos Sólidos LOM 3081 - CAP. ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 1 ANÁLISE DE TENSÃO VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE Seja por exemplo uma barra sujeita a um carregamento axial. Ao aplicar o MÉTODO DAS SEÇÕES,

Leia mais

MÓDULO 1 - AULA 21. Objetivos

MÓDULO 1 - AULA 21. Objetivos Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Simbologia. Simbologia

Simbologia. Simbologia Simbologia Peso do perfil em h ltura B Largura t w Espessura da alma t f Espessura do banzo r Raio de concordância Área da secção transversal h i Distância livre entre banzos d ltura da alma, com espessura

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Física aplicada à engenharia I

Física aplicada à engenharia I Física aplicada à engenharia I Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste.

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste. . [.5] (a) Calcule a soma da série Resolução: A série INSTITUTO POLITÉCNICO DE SETÚBAL Resolução do o Teste n (n + ) ; n (n + ) + + 4 +... rapidamente se verifica que não é uma série aritmética ou geométrica.

Leia mais