INTRODUÇÃO AO CONTROLO 2008/2009. A Figura 1.1 representa, de modo esquemático, o sistema de orientação de um satélite em torno do eixo z.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "INTRODUÇÃO AO CONTROLO 2008/2009. A Figura 1.1 representa, de modo esquemático, o sistema de orientação de um satélite em torno do eixo z."

Transcrição

1 INTRODUÇÃO AO CONTROLO 008/009 Problema. A Figura. representa, de modo esquemático, o sistema de orientação de um satélite em torno do eixo z. ω ω Satélitee Pormenor - roda de inércia Figura. Satélite com roda de inércia O satélite tem momento de inércia I e velocidade angular ω, e transporta no seu interior uma roda de inércia com momento (de inércia) I. Quando se imprime à roda de inércia uma velocidade de rotação ω, o satélite roda (por conservação do momento angular total) com velocidade I ω ω. I + I Sejam I 0 e I 00, nas unidades adequadas. Pretende-se controlar a posição angular do satélite θ..a (Começamos por tentar compreender o comportamento dinâmico do sistema). Considere o sistema com entrada ω e saída θ. Calcule a resposta a uma entrada escalão unitário. Determine o lim θ (t) quando t tende para infinito. Mostre que não é possível conduzir θ para um valor desejado arbitrário. Resolva utilizando as formulações no domínio do tempo e da frequência..b Considere agora a entrada M rad/s, t em [0, T] ω (t) 0 rad/s, t > T Verifique que pode, por escolha adequada de T e M, conduzir θ para um valor desejado arbitrário num intervalo de tempo arbitrário..c Suponha que se pretende efectuar uma manobra de varrimento que consiste em fazer a coordenada θ começar em 0, tomar um contínuo de valores até um valor máximo Intro CONTROLO

2 desejado arbitrário θ max, e regressar a 0. Verifique que pode, por escolha adequada da função de de entrada ω, efectuar essa manobra num intervalo de tempo arbitrário..d (Mais realismo físico, através da inclusão de um actuador). Suponha agora que se dispõe de um actuador que, sob a acção de uma tensão de entrada u, imprime uma velocidade angular ω à roda de inércia. A função de transferência do actuador é dada por Ω () s 0 U() s s + 0 O sistema total a controlar (com entrada u e saída θ) admite a representação equivalente da Figura, com a0/0. u ω θ 0/(s+0) -a * /s Considere a entrada Figura.. Sistema a controlar u (t) U Volt, t em [0, T] 0 Volt, t>0 U, T >0. Mostre que por escolha adequada de U e T pode ainda conduzir a saída θ assimptoticamente para um valor desejado arbitrário. Intro CONTROLO

3 Problema Considere um veículo subaquático de massa total m Kg que se move com velocidade v(t)>0 em relação ao fluído, sob a acção de uma força externa f(t) gerada por um propulsor a hélice. O veículo está sujeito à força de arrasto fa () t v (). t f v Fig.. Veículo Subaquático A força externa f(t) é proporcional a ω, onde ω é a velocidade de rotação do hélice em rad/s. Por sua vez, o hélice roda sob a acção de um motor eléctrico em que a entrada é uma tensão eléctrica u. Adopte o seguinte modelo simplificado para a combinação motor+hélice: dω() t ω + ω dt 0 ( t) 0 u( t); f( t) ( t) Seja P : u v o sistema com entrada u e saída v..a Pretende-se operar o veículo em torno do ponto de equilíbrio correspondente à velocidade v( t) vo ms. Calcule o valor de equilíbrio f o correspondente para a força f(t). Prove justificamente que o modelo linearizado do veículo em torno do ponto de equilíbrio definido por v o e fo tem a função de transferência ΔV ( s) ΔF( s), s + onde ΔV(s) e ΔF(s) denotam respectivamente as transformadas de Laplace de δv(t)v(t)-v 0 e δf(t)f(t)-f 0..b Calcule agora, a partir do valor de f o, os valores de equilíbrio u 0 e ω 0 respectivamente para a variável de entrada u e a velocidade de rotação do hélice ω. Prove justificadamente que o modelo linearizado do sistema que representa a combinação motor+hélice tem a função de transferência ΔF() s 0, Δ U() s s+ 0 onde ΔF(s) e ΔU(s) denotam respectivamente a transformada de Laplace de δf(t)f(t)-f 0 e δu(t) u (t)- u 0. Intro CONTROLO

4 .c Considere o sistema total linearizado P, com função de transferência ΔV() s 0 Ps (), Δ U() s s+ 0 s+ que se obtém a partir da ligação em série dos sistemas considerados em.a e.b. Calcule a resposta impulsiva h(t) de P(s) e traçe (de modo aproximado) a sua evolução gráfica..d - Calcule a resposta do sistema P a uma entrada δu(t) definida por δ u(t) 0, t < 0, 0 t < 0s 0, t 0s Em particular, discuta o comportamento da velocidade quando t tende para infinito. Comente sob o ponto de vista físico. Nota: resolva esta alínea utilizando o integral de convolução..e Considere agora a entrada δu(t) definida por δ u(t) 0, t < 0 t, 0 t < 0s 0, t 0s Mostre, com um método puramente geométrico (baseado na interpretação do integral de convolução) que δv(t) tende para um valor finito quando t tende para infinito. Comente sob o ponto de vista físico. Intro CONTROLO

5 Problema 3 (Traçado de Diagramas de Bode) 3.a Trace os diagramas de Bode correspondentes às funções de transferência P () s s + P() s s+ P3 () s s P() s s 4 P5 () s s P() s 6 s 3.b Considere o sistema de controlo representado na figura, com P(s)/(s+); K(s)k/s; k, F(s)0/(s+0) r F(s) e K(s) u P(s) y Trace o diagrama de Bode correspondente à função de transferência Y(s)/R(s). Comente acerca da largura de banda total do sistema. Intro CONTROLO

Física I 2009/2010. Aula02 Movimento Unidimensional

Física I 2009/2010. Aula02 Movimento Unidimensional Física I 2009/2010 Aula02 Movimento Unidimensional Sumário 2-1 Movimento 2-2 Posição e Deslocamento. 2-3 Velocidade Média 2-4 Velocidade Instantânea 2-5 Aceleração 2-6 Caso especial: aceleração constante

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,

Leia mais

Disciplina: Vias de Comunicação. Parte I - Traçado em Planta (2/2)

Disciplina: Vias de Comunicação. Parte I - Traçado em Planta (2/2) Licenciatura em Engenharia Civil e em Engenharia do Território Disciplina: Vias de Comunicação Prof. Responsável: Prof. Paulino Pereira Parte I - Traçado em Planta (/) Instituto Superior Técnico / Licenciaturas

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

Prof. Daniel Hasse. Princípios de Comunicações

Prof. Daniel Hasse. Princípios de Comunicações Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

REVISÃO 1º ANO PP 2 ETP. Prof. Eng. João Lucas Torres

REVISÃO 1º ANO PP 2 ETP. Prof. Eng. João Lucas Torres REVISÃO 1º ANO PP 2 ETP Prof. Eng. João Lucas Torres Sobral, 2016 TRANSMISSÃO DO MOVIMENTO REVISÃO DE CONTEÚDO Lembre que no movimento circular existem DUAS velocidades. 1º) Velocidade linear: rapidez

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Máquina Assíncrona COMANDO

Máquina Assíncrona COMANDO SECÇÃO DE MÁQUNAS ELÉCTRCAS E ELECTRÓNCA DE POTÊNCA MÁQUNAS ELÉCTRCAS LEM/LEA Máquina Assíncrona COMANDO 2005/2006 - OBJECTVO DO TRABALHO Determinação do comportamento de uma máquina assíncrona quando

Leia mais

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA 1 CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA Simulação de chaves utilizando a função degrau a) Fonte de tensão que entra em operação em t = 0 Substituindo a chave

Leia mais

Mestrado Integrado em Engenharia Electrotécnica e de Computadores - MEEC CONTROLO. 1º semestre Introdução ao Matlab e Simulink

Mestrado Integrado em Engenharia Electrotécnica e de Computadores - MEEC CONTROLO. 1º semestre Introdução ao Matlab e Simulink Mestrado Integrado em Engenharia Electrotécnica e de Computadores - MEEC CONTROLO º semestre 0-0 Introdução ao Matlab e Simulink - Ensaios a realizar durante a sessão de Laboratório Objectivo: Familiarização

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço.

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. 1 LIVRO Curvas Espaciais META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. PRÉ-REQUISITOS Funções vetoriais (Aula 08). Curvas Espaciais.1 Introdução Na aula

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

ERRO EM REGIME PERMANENTE

ERRO EM REGIME PERMANENTE MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA ERRO EM REGIME PERMANENTE Inicialmente veja o sistema realimentado mostrado na figura

Leia mais

Movimento Circular e Uniforme

Movimento Circular e Uniforme A principal característica desse tipo de movimento é que a partícula ou o corpo no qual estamos considerando tem o módulo da velocidade constante na sua trajetória circular. Exemplos: - Satélites na órbita

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

Métodos Matemáticos para Engenharia

Métodos Matemáticos para Engenharia Métodos Matemáticos para Engenharia Transformada de Laplace Docentes: > Prof. Fabiano Araujo Soares, Dr. Introdução Muitos parâmetros em nosso universo interagem através de equações diferenciais; Por exemplo,

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2003/2004. Controlo de velocidade de um motor D.C.

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2003/2004. Controlo de velocidade de um motor D.C. Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2003/2004 Controlo de velocidade de um motor D.C. Realizado por : E. Morgado 1 e F. M. Garcia 2 -Março de

Leia mais

Representação de Fourier para Sinais 1

Representação de Fourier para Sinais 1 Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do

Leia mais

Sinais e Sistemas p.1/33

Sinais e Sistemas p.1/33 Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos lco@ist.utl.pt Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

Capítulo 3 Circuitos com Capacitância e Indutância

Capítulo 3 Circuitos com Capacitância e Indutância Capítulo 3 Circuitos com Capacitância e Indutância Sumário Respostas: Livre e ao Degrau Funções Singulares Resposta às Funções Singulares Representação de Sinais como Soma de Funções Singulares O Teorema

Leia mais

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Electromagnetismo A 009/010 ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE 1. O campo magnético no interior dum solenóide

Leia mais

Diagramas de Bode. Introdução

Diagramas de Bode. Introdução Diagramas de Bode Introdução Sistemas e Sinais Diagramas de Bode Escala Logarítmica de Amplitude Escala Logarítmica de Frequência Análise dos Termos das Funções de Resposta em Frequência Composição do

Leia mais

Problemas de Mecânica e Ondas 7

Problemas de Mecânica e Ondas 7 Problemas de ecânica e Ondas 7 P 7. Considere que as vagonetas de massa m e m (ver figur podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos, para efeito da descrição

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano

Leia mais

Capítulo 1 Introdução à Mecânica dos Fluidos

Capítulo 1 Introdução à Mecânica dos Fluidos Capítulo 1 Introdução à Mecânica dos Fluidos Escoamento de um rio em volta de uma viga cilíndrica. Universidade Federal Fluminense EEIMVR - VEM Mecânica dos Fluidos I I. L. Ferreira, A. J. Silva, J. F.

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância.

A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância. 4.1.2 Curvas Horizontais com Transição A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância. Assim, é necessário

Leia mais

Halliday Fundamentos de Física Volume 1

Halliday Fundamentos de Física Volume 1 Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

Professor Msc. Leonardo Henrique Gonsioroski

Professor Msc. Leonardo Henrique Gonsioroski Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

Transformada de Laplace. Parte 3

Transformada de Laplace. Parte 3 Transformada de Laplace Parte 3 Elementos de circuito no domínio da frequência O resistor no domínio da frequência Pela lei de OHM : v= Ri A transformada da equação acima é V(s) = R I(s) O indutor no domínio

Leia mais

Halliday Fundamentos de Física Volume 1

Halliday Fundamentos de Física Volume 1 Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

INSTITUTO SUPERIOR DE AGRONOMIA UC Física I ( ) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO

INSTITUTO SUPERIOR DE AGRONOMIA UC Física I ( ) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO INSTITUTO SUPERIOR DE AGRONOMIA UC Física I (2015-2006) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO Analisar a 2ª lei de Newton, aplicada a um sistema de 2 massas ligadas por um fio que

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ1- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge Informação Papel Bode 1 3 Papel

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

GRUPO I. Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta.

GRUPO I. Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. GRUPO I Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção seleccionada. Não apresente cálculos,

Leia mais

ELETROTÉCNICA ENGENHARIA

ELETROTÉCNICA ENGENHARIA Aquino, Josué Alexandre. A657e Eletrotécnica : engenharia / Josué Alexandre Aquino. Varginha, 2015. 50 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World Wide Web 1. Eletrotécnica.

Leia mais

Exercícios Primeira Prova FTR

Exercícios Primeira Prova FTR Exercícios Primeira Prova FTR ados gerais: g=9,81 m/s 2 =32,2 ft/s 2 ρ 2O =999 kg/m 3 =1,94 slug/ft 3 R g =13,6 1) pressão num duto de água é medida pelo manômetro de dois fluídos mostrados. valie a pressão

Leia mais

Simulação da Deformação de Objectos em Imagens Segundo Princípios Físicos. Patrícia C. T. Gonçalves Raquel R. Pinho João Manuel R. S.

Simulação da Deformação de Objectos em Imagens Segundo Princípios Físicos. Patrícia C. T. Gonçalves Raquel R. Pinho João Manuel R. S. Simulação da Deformação de Objectos em Imagens Segundo Princípios Físicos Patrícia C. T. Gonçalves Raquel R. Pinho João Manuel R. S. Tavares Objectivo Dadas duas imagens de um objecto em instantes distintos

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

Aplicações: Desbalanceamento Rotativo Excitação da Base Isolamento de Vibrações

Aplicações: Desbalanceamento Rotativo Excitação da Base Isolamento de Vibrações 1 17 Aplicações: Desbalanceamento Rotativo Excitação da Base Isolamento de Vibrações 1 INTRODUÇÃO A vibração pode ser um fenômeno desejável ou indesejável. Em certos situações, como no caso de britadoras,

Leia mais

Suplemento Roteiro 2. GEX 132 Laboratório de Física I

Suplemento Roteiro 2. GEX 132 Laboratório de Física I Suplemento Roteiro 2 GEX 132 Laboratório de Física I Título: Gráficos em Papel Milimetrado Objetivos: Gráficos são utilizados com o intuito de representar a dependência entre duas ou mais grandezas (físicas,

Leia mais

TRANSMISSÃO DE DADOS

TRANSMISSÃO DE DADOS TRANSMISSÃO DE DADOS Aula 2: Dados e sinais Notas de aula do livro: FOROUZAN, B. A., Comunicação de Dados e Redes de Computadores, MCGraw Hill, 4ª edição Prof. Ulisses Cotta Cavalca

Leia mais

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro

Leia mais

Métodos Matemáticos. Números complexos I. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro. 1 Departmento de Física Teórica

Métodos Matemáticos. Números complexos I. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro. 1 Departmento de Física Teórica Métodos Matemáticos Números complexos I A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 13 de agosto de 2012 Conjuntos de números Conjuntos de números

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

ECONOMIA DE ENERGIA ELÉTRICA ATRAVÉS DO USO DE CONVERSORES DE FREQUÊNCIA EM APLICAÇÕES COM BOMBAS CENTRÍFUGAS E VENTILADORES

ECONOMIA DE ENERGIA ELÉTRICA ATRAVÉS DO USO DE CONVERSORES DE FREQUÊNCIA EM APLICAÇÕES COM BOMBAS CENTRÍFUGAS E VENTILADORES ECONOMIA DE ENERGIA ELÉTRICA ATRAVÉS DO USO DE CONVERSORES DE FREQUÊNCIA EM APLICAÇÕES COM BOMBAS CENTRÍFUGAS E VENTILADORES Henrique Matheus Engenheiro Eletricista formado pela Universidade Federal de

Leia mais

Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por:

Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por: 1 a Série de exercícios Aeroelasticidade Estática Prof. Gil 2º semestre 2009 1ª Questão: Estude o problema de um modelo de uma bomba cuja geometria é axissimétrica, a ser testado em túnel de vento. Os

Leia mais

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

1ª sessão de preparação para a EUSO2010. Características eléctricas de saída de um painel fotovoltaico

1ª sessão de preparação para a EUSO2010. Características eléctricas de saída de um painel fotovoltaico FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA 1ª sessão de preparação para a EUSO2010 Características eléctricas de saída de um painel fotovoltaico 1 OBJECTIVO Determinação e interpretação

Leia mais

Retificadores com tiristores

Retificadores com tiristores Retificadores com tiristores 5 O retificador controlado trifásico de meia onda Os retificadores trifásicos são alimentados pela rede de energia trifásica cujas tensões podem ser descritas pelas expressões

Leia mais

CHAVES DE PARTIDA PARA MOTORES TRIFÁSICOS DE INDUÇÃO

CHAVES DE PARTIDA PARA MOTORES TRIFÁSICOS DE INDUÇÃO DIRETORIA ACADÊMICA COORDENAÇÃO DO CURSO DE ELETROTÉCNICA CHAVES DE PARTIDA PARA MOTORES TRIFÁSICOS DE INDUÇÃO Disciplina: Máquinas e Acionamentos Elétricos Prof.: Hélio Henrique PARTIDA DIRETA O motor

Leia mais

Exemplo E.3.1. Exemplo E.3.2.

Exemplo E.3.1. Exemplo E.3.2. Exeplo E.1.1. O bloco de 600 kn desliza sobre rodas nu plano horizontal e está ligado ao bloco de 100 kn por u cabo que passa no sistea de roldanas indicado na figura. O sistea parte do repouso e, depois

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação Mecânica e Ondas LERC Tagus ºSem 009/0 Prof. J. C. Fernandes http://mo-lerc-tagus.ist.utl.pt/ Mecânica e Ondas Semana 6 - Aula 6 Rotação Rolamento (Forças com Rotação); Energia Cinética de Rotação FÍSICA

Leia mais

I-2 Sinais: classificação, propriedades e operações

I-2 Sinais: classificação, propriedades e operações I-2 Sinais: classificação, propriedades e operações Comunicações ISEL - ADEETC - Comunicações 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso retangular e sinc A onda

Leia mais

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Velocidade Relativa Um Gedankenexperiment Imagine-se agora em um avião, a 350 km/h. O destino (a direção) é por conta de

Leia mais

NOTAS DE AULA INTRODUÇÃO À ENGENHARIA BIOMÉDICA 70

NOTAS DE AULA INTRODUÇÃO À ENGENHARIA BIOMÉDICA 70 NOTAS DE AULA INTRODUÇÃO À ENGENHARIA BIOMÉDICA 70 4.2 CINETICA DO CORPO HUMANO a. Sistemas de massa A seção anterior considerou cinemática de corpo humano e definiu as equações pertinentes. Recorde que

Leia mais

ADL Sistemas de Segunda Ordem Subamortecidos

ADL Sistemas de Segunda Ordem Subamortecidos ADL19 4.6 Sistemas de Segunda Ordem Subamortecidos Resposta ao degrau do sistema de segunda ordem genérico da Eq. (4.22). Transformada da resposta, C(s): (4.26) Expandindo-se em frações parciais, (4.27)

Leia mais

Física I Prova 3 29/11/2014

Física I Prova 3 29/11/2014 Nota Física I Prova 3 9/11/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Modelos Biomatemáticos - aulas Teórico-Práticas

Modelos Biomatemáticos - aulas Teórico-Práticas Modelos Biomatemáticos - aulas Teórico-Práticas 5/6 Capítulo Nulclinas, equilíbrios e campos vectoriais. Determine as nulclinas e os equilíbrios dos seguintes sistemas de equações diferenciais = a) = =

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição

Leia mais

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Lista 9 : Dinâmica Rotacional

Lista 9 : Dinâmica Rotacional Lista 9 : Dinâmica Rotacional NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Aula 1 FÍSICA GERAL I

Aula 1 FÍSICA GERAL I Física Geral I 1/25 Aula 1 FÍSICA GERAL I Prof.: MSc. W. L. A. Miranda Ins@tuto Federal da Bahia Estrutura do curso 2/25 Estrutura do curso Ementa Introdução à Física, Vetores; Movimento em 1D, 2D e 3D

Leia mais

I-2 Sinais: classificação propriedades, operações

I-2 Sinais: classificação propriedades, operações I-2 Sinais: classificação propriedades, operações (30 de Setembro de 2013) 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso rectangular e sinc A onda quadrada e a sinusóide

Leia mais

CAP. 3 REALIMENTAÇÃO TE 054 CIRCUITOS ELETRÔNICOS LINEARES

CAP. 3 REALIMENTAÇÃO TE 054 CIRCUITOS ELETRÔNICOS LINEARES CAP. 3 REALIMENTAÇÃO INTRODUÇÃO Realimentação: uma amostra do sinal de saída é incorporada à entrada Realimentação: Positiva (regenerativa) Negativa (degenerativa) Vantagens da realimentação negativa Estabilização

Leia mais

Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt Auto- Excitado e Série

Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt Auto- Excitado e Série Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt uto- Excitado e Série 1. Objetivos Os objetivos desse ensaio são: a) Construir a curva característica de tensão-carga

Leia mais

Capítulo 3. Função de transferência e dinâmicas dos sistemas

Capítulo 3. Função de transferência e dinâmicas dos sistemas DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas 3.1. Aplicação da transformada de Laplace às equações diferenciais A transformada de Laplace é

Leia mais

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS 1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

ACCIONAMENTOS ELECTRO-HIDRÁULICOS

ACCIONAMENTOS ELECTRO-HIDRÁULICOS ACCIONAMENTOS ELECTRO-HIDRÁULICOS Monograma complementar à disciplina de Sistemas de Controlo de Superfícies de Comando de Voo DEEC/ENERGIA IST PAULO BRANCO 2 1 - Introdução Os conversores electromecânicos,

Leia mais

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia

Leia mais

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO APÊNDICE 106 107 APÊNDICE A (ATIVIDADES REFORMULADAS) - CADERNO DE ATIVIDADES INVESTIGATIVAS ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO Mestrando:

Leia mais

FNT AULA 6 FUNÇÃO SENO E COSSENO

FNT AULA 6 FUNÇÃO SENO E COSSENO FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º

Leia mais

aceleração da gravidade g = 10 m/s 2 índice de refração do ar n = 1 π = 3,14

aceleração da gravidade g = 10 m/s 2 índice de refração do ar n = 1 π = 3,14 FÍSICA (Cada questão desta prova vale até cinco pontos) Use, quando necessário, os seguintes valores numéricos: aceleração da gravidade g = 10 m/s 2 índice de refração do ar n = 1 π = 3,14 Questão 01 Um

Leia mais

5 Validação do Software

5 Validação do Software 8 5 Validação do Software Para garantir que os resultados deste trabalho sejam confiáveis, é preciso validar o simulador quanto às leis da física. Para tal, este capítulo apresenta dois casos onde há soluções

Leia mais

ADL A Representação Geral no Espaço de Estados

ADL A Representação Geral no Espaço de Estados ADL14 3.3 A Representação Geral no Espaço de Estados definições Combinação linear: Uma combinação linear de n variáveis, x i, para r = 1 a n, é dada pela seguinte soma: (3.17) onde cada K i é uma constante.

Leia mais

2ª Lista de exercícios de Fenômenos Ondulatórios

2ª Lista de exercícios de Fenômenos Ondulatórios 2ª Lista de exercícios de Fenômenos Ondulatórios Prof. Renato 1. Dada uma onda em uma corda como função de x e t. No tempo igual a zero essa onda é representada na figura seguir (y em função de x): 0,6

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 6.1 Máquinas Síncronas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Guia da 2 a aula prática 2014 Carga RLC Monofásica Assunto: - Medição de potência em carga RLC monofásica e correção

Leia mais

Seleção de um modelo. Cálculo da carga axial. Fa3= μ mg + f mα 19. Fa4= mg f mα 26 Fa5= mg f 27 Fa6= mg f + mα 28. Fa3= mg + f mα 25.

Seleção de um modelo. Cálculo da carga axial. Fa3= μ mg + f mα 19. Fa4= mg f mα 26 Fa5= mg f 27 Fa6= mg f + mα 28. Fa3= mg + f mα 25. Cálculo da carga axial Em montagens horizontais Com sistemas de transporte comuns, a carga axial (Fa n ) aplicada ao alternar o trabalho para a direção horizontal é obtida na equação abaixo. Fa1= μ mg

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG437 Sistemas de Controle Digitais Projeto de Controladores Digitais no Planoz Utilizando Lugar das

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Utilização de um Veículo submersível em Tarefas de manutenção

Utilização de um Veículo submersível em Tarefas de manutenção Utilização de um Veículo submersível em Tarefas de manutenção Prof. M. Sc. Juan C. C. Luque Departamento de Eletrotécnica, TECSUP, Arequipa-Perú Prof. Dr. Decio Crisol Donha Departamento de Engenharia

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Radiação - Conceitos Fundamentais Consideremos um objeto que se encontra inicialmente a uma temperatura T S mais elevada que a temperatura T VIZ de sua vizinhança. A presença do vácuo impede a perda de

Leia mais