Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto"

Transcrição

1 Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva 1

2 Definição de Sistemas Um sistema pode ser definido como um processo que realiza a transformação de sinais (Entrada/Saída) por uma Função de Transformação T{.} Sistema no Tempo Contínuo x(t) y(t) Sistema no Tempo Discreto x[n] y[n] 2

3 Sistemas Lineares e Invariantes de Tempo Contínuo 3

4 Sistemas Lineares de Tempo Contínuo Um sistema Linear satisfaz o Princípio da Superposição, ou seja, satisfaz as propriedades de: Aditividade Homogeneidade. O princípio de superposição é a base para o estudo aproximado de sistemas em diversas áreas da engenharia: Sistemas de Controle, Sistemas Preditores, Modelagem, etc. 4

5 Propriedade da Aditividade y1 (t ) T x1 (t ) y (t ) y1 (t ) y2 (t ) T x1 (t ) x2 (t ) y (t ) T x (t ) 2 2 5

6 Propriedade da Homogeneidade y(t ) T x(t ) ay(t ) T ax(t ) 6

7 Determinar se sistema é Linear? 2 y y a 2 b c u (t ) t t Aditividade Homogeneidade 2 y1 y1 a 2 b c x1 (t ) t t 2 y2 y a 2 b 2 c x2 (t ) t t ( y1 y2 ) ( y1 y2 ) b 2c x1 (t ) x2 (t ) t 2 t 2 a 2 y y a 2 b c x(t ) t t 2 ( y ) ( y ) a b c x(t ) 2 t t 2 ( y) ( y) a b c x(t ) t 2 t É um sistema Não Linear 7

8 Sistemas Invariantes de Tempo Contínuo Um sistema é invariante no tempo se para um deslocamento no tempo do sinal de entrada, este causa um deslocamento no tempo na sinal de saída y(t ) T{x(t )} 0 0 y(t t0 ) T{x(t t0 )} Deslocamento na entrada Deslocamento na saída 8

9 Representação de Sistemas Lineares e Invariantes Os sistemas lineares e invariantes (LIT) no tempo contínuo são descritos utilizando equações diferenciais com coeficientes constantes. d k y(t ) M d k x(t ) bk ak k dt dt k k 0 k 0 N Para comprovar que um sistema LIT é linear e invariante pode se aplicar as provas de linearidade ou de invariância no tempo em cada operação. 9

10 Exemplo Sistema Mecânico Equação Diferencial x(t) 2 y y m 2 b ky u (t ) t t y(t) tempo (s) x(t-t0) tempo (s) y(t-t0) tempo (s) tempo (s) É um sistema Invariante no tempo 10

11 Modelagem do Motor de Corrente Continua 11

12 Aspectos Construtivos de um Motor CC 12

13 Aplicações Típicas de Motor CC Máquinas de Papel Bobinadeiras e desbobinadeiras Laminadores Máquinas de Impressão Extrusoras Prensas Elevadores Movimentação e Elevação de Cargas Moinhos de rolos Indústria de Borracha Mesa de testes de motores 13

14 Modelagem do Motor CC A modelagem do motor de corrente contínua envolve duas etapas: Modelagem elétrica; Modelagem mecânica. 14

15 Modelagem Elétrica Inicialmente é construída o modelo do equivalente elétrico da armadura: Quando a armadura está girando é induzida nesta uma tensão proporcional ao produto do fluxo e da velocidade angular. 15

16 Modelagem Elétrica Em seguida tem-se o circuito equivalente completo do motor com campo separado. 16

17 Modelagem Elétrica Corrente em função da diferença da tensão terminal aplicada e a contraforça eletromotriz de armadura. 17

18 Modelagem Elétrica 18

19 Modelagem Mecânica 19

20 Modelagem Mecânica 20

21 Modelagem Completa Controle da velocidade do motor em função da tensão terminal do motor de corrente contínua. 21

22 Parâmetros para simulação Ra= La= e-3 J= e-3 B= e-3 kw= kt= TL = 0 22

23 Resposta ao Degrau e Impulso Step Response Impulse Response System: sys Time (seconds): 0.33 Amplitude: Amplitude Time (seconds) Time (seconds) Resposta ao impulso finito Sistema de primeira ordem (aproximadamente) 63%*1,8 = 1,13 Sistema que depende somente das entradas atuais e passada (causal) 23

24 Resposta em Frequência Bode Diagram 10 Magnitude (db) =-3 db 0 System: sys Frequency (rad/s): Magnitude (db): 4.97 System: sys Frequency (rad/s): 3.07 Magnitude (db): Phase (deg) w Frequency (rad/s)

25 Exemplo - Circuito Elétrico Linear Invariante no Tempo 2 di(t ) 3i(t ) v(t ) dt Não Linear 2 di(t ) 3i 2 (t ) v(t ) dt Não Linear 2 di(t ) 3i(t ) 4 v(t ) dt Variante no Tempo 2 di(t ) 3t i(t ) v(t ) dt 25

26 Características de Sistemas Lineares e Invariantes A aplicação da superposição em sistemas lineares constitui a base para a análise de sistemas, tais como: A representação de um sinal arbitrário x(t) como uma soma ponderada de impulsos, é a base para o método de convolução. A representação de um sinal x(t) como uma combinação linear de sinais harmônicos é a base para as séries de Fourier. A representação de um sinal x(t) como uma série ponderada de exponenciais complexas é a base para as transformadas de Fourier e de Laplace. 26

27 Características de Sistemas Lineares e Invariantes Os sistemas lineares e invariantes no tempo contínuo podem ser analisados através de equações diferenciais. Para sistemas LIT é possível realizar o cálculo das respostas usando superposição mesmo tendo condições iniciais diferentes de zero. A desvantagem é que a medida que se incrementa a ordem do sistema, a formulação das equações diferenciais e a avaliação das condições iniciais torna-se muito complexa. 27

28 Sistemas Lineares e Invariantes de Tempo Discreto 28

29 Sistemas Lineares de Tempo Discreto Um sistema linear satisfaz o teorema da superposição e implica que o sistema tem condições iniciais iguais a zero e que a equação do sistema envolva apenas operadores lineares. Pode se utilizar a superposição para um sistema com condições iniciais distintas de zero, se o sistema for linear. Neste caso, deve-se considerar o sistema como tendo entradas múltiplas e as condições iniciais como entradas adicionais. 29

30 Sistemas Lineares de Tempo Discreto Como resultado, a resposta de um sistema pode ser obtida a partir da soma de uma resposta de entrada zero (devido apenas às condições iniciais) e uma resposta de estado zero (devido apenas à entrada). Este princípio de decomposição, permite analisar sistemas lineares na presença de condições iniciais distintas de zero. Tanto a entrada quanto a resposta de estado zero obedecem à superposição. 30

31 Sistemas Invariante de Tempo Discreto Em um sistema invariante de tempo discreto a forma da resposta y[n] depende unicamente da forma da entrada x[n] e não do instante de tempo que é aplicada y[n] sin(a.x[n]) n n n Deslocamento na entrada duas unidades de tempo n Deslocamento na saída duas unidades de tempo 31

32 Exemplo 1 Determinar se o sistema é invariante no tempo y[n] sin( x[n]) SOLUÇÃO: Para uma entrada x1[n] a saída do sistema é : y1[n] sin( x1[n]) (1) Considerando-se uma entrada x2 [n] x1 [n n0 ], a saída é : y2 [n] sin( x2 [n]) sin( x1[n n0 ]) (2) Para um deslocamento da saída y1[n] y1[n no ] sin( x1[n no ]) Comparando (2) e (3): y2 [n] y1[n no ] Portanto, o sistema é invariante no tiempo (3) SLIT

33 Exemplo 2 Determinar se o sistema é invariante no tempo y[n] nx[n] SOLUÇÃO: Para uma entrada x1[n] a saída do sistema é : y1[n] nx1[n] (1) Considerando-se uma entrada x2 [n] x1[n n0 ], a saída é : y2 [n] nx2 [n] nx1[n n0 ] (2) Para um deslocamento da saída y1[n] y1[n no ] (n no ) x1[n no ] Comparando-se (2) e (3) : y2 [n] y1[n no ] Portanto, o sistema é variante no tempo (3) SLIT

34 Representação de Sistemas Lineares e Invariantes Sistemas em tempo discreto podem ser descritos com equações em diferença que relacionam a entrada e a saída. y[n] 1 1 y[n 1] y[n 2] 4 x[n]

35 Representação de Sistemas Lineares e Invariantes Para saber se um sistema é linear ou invariante no tempo discreto, deve-se considerar que: Os termos que contêm produtos da entrada e/ou saída trazem como consequência a não linearidade do sistema. Um termo constante também torna não linear o sistema. Os coeficientes da entrada ou da saída que são funções explícitas de n tornam o sistema variante no tempo. As entradas ou saídas multiplicadas no tempo por um escalar, por exemplo y[2n], também tornam o sistema variante no tempo. 35

36 Representação de Sistemas Lineares e Invariantes Uma sequência discreta x[n] pode ser expressa em termos de uma somatória de impulsos unitários escalados e deslocados no tempo. 36

37 Representação de Sistemas Lineares e Invariantes x[n]= + 7 [n+2] + 5 [n+1] + 3 [n] + 5 [n 1] +... x[n]= +x[ 2] [n+2] + x[ 1] [n+1] + x[0] [n] + x[1] [n 1] +... x[n] x[k ] [n k ] k 37

38 Representação de Sistemas Lineares e Invariantes A resposta ao impulso é a resposta de um Sistema Linear a um impulso localizado no instante k [n-k] T{ } T n k hhkk[n]n Sendo o sistema invariante no tempo: hk n T n k h n k 38

39 Representação de Sistemas Lineares e Invariantes Se a entrada x[n] é uma sequência representada por uma somatória de impulsos x[n] x n x k n k k T{ } y[n] y n T x k n k k y n x k T n k k y n x k h n k k 39

40 Representação de Sistemas Lineares e Invariantes Somatoria da Convolução y n k k x k h n k h k x n k y n x n h n h[n]* x[n] Conhecida a resposta ao impulso h[n], é possível calcular a resposta a qualquer sinal de entrada, através da somatória da Convolução. 40

41 Exemplo da Convolução de um SLIT y ( n) h(i) x(n i) i 41

42 42

43 43

44 44

45 45

46 46

47 Resultado da Convolução y ( n) h(i) x(n i) i O método da convolução permite encontrar a resposta do sistema a uma entrada arbitraria, conhecendo-se previamente a resposta ao impulso h[n]. 47

48 Características de Sistemas Lineares e Invariantes A representação de um sinal x[n] como uma soma ponderada de impulsos deslocados, é a base para o método de convolução discreta. A representação de um sinal x[n] como uma combinação linear de harmônicas ou exponenciais complexas, é a base da transformada de Fourier em tempo discreto (DTFT) e a transformada z. 48

49 Causalidade de um Sistema LIT A saída de um sistema causal somente depende dos valores atuais e passados da entrada. Para que um sistema LIT seja causal, y[n] não deve depender de x[k], para k>n: y[n] x[k ]h[n k ] k então, os coeficientes h[n-k] que multiplicam a x[k] para k>n devem ser zero, portanto h[n]=0 para n<0 49

50 Causalidade de um Sistema LIT Para um sistema LIT discreto causal, como h[n]=0, para n<0: y[n] n x[k ]h[n k ] k Ou de forma equivalente: y[n] h[k ]x[n k ] k 0 50

51 Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva 51

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller. Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes

Leia mais

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II) Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre

Leia mais

Sinais e Sistemas Discretos

Sinais e Sistemas Discretos Sinais e Sistemas Discretos Luís Caldas de Oliveira Resumo 1. Sinais em Tempo Discreto 2. Sistemas em Tempo Discreto 3. Sistemas Lineares e Invariantes no Tempo 4. Representações em requência 5. A Transformada

Leia mais

Capítulo 2 Dinâmica de Sistemas Lineares

Capítulo 2 Dinâmica de Sistemas Lineares Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57

Leia mais

Representação de Fourier para Sinais 1

Representação de Fourier para Sinais 1 Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do

Leia mais

Resumo. Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo. Resposta ao Impulso. Representação de Sequências

Resumo. Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo. Resposta ao Impulso. Representação de Sequências Resumo Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo lco@ist.utl.pt Instituto Superior Técnico SLITs discretos. O somatório de convolução. SLITs contínuos. A convolução contínua. Propriedades

Leia mais

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide 1 Slide 1 Sobre Modelos para SLIT s Introdução

Leia mais

Análise de Sinais e Sistemas

Análise de Sinais e Sistemas Universidade Federal da Paraíba Departamento de Engenharia Elétrica Análise de Sinais e Sistemas Luciana Ribeiro Veloso luciana.veloso@dee.ufcg.edu.br ANÁLISE DE SINAIS E SISTEMAS Ementa: Sinais contínuos

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012)

I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012) I-6 Sistemas e Resposta em Frequência (6 de Dezembro de 2012) Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de

Leia mais

UNIVASF de Sinais e Sistemas

UNIVASF de Sinais e Sistemas UNIVASF Análise de Sinais e Sistemas Sistemas Prof. Rodrigo Ramos godoga@gmail.com Sistemas Definição: Entidade que manipula um ou mais sinais para realizar uma função, produzindo, assim, novos sinais.

Leia mais

Conteúdo. Definições básicas;

Conteúdo. Definições básicas; Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições

Leia mais

Sinais e Sistemas. Conceitos Básicos. Prof.: Fábio de Araújo Leite

Sinais e Sistemas. Conceitos Básicos. Prof.: Fábio de Araújo Leite Sinais e Sistemas Conceitos Básicos Prof.: Fábio de Araújo Leite Discussão do Plano do Curso As 12 normas de convivência 1. - Recomenda-se chegar à aula no horário estabelecido. 2. Evitar o uso do celular

Leia mais

Convolução de Sinais

Convolução de Sinais Análise de Sinais (5001) Ficha Prática Laboratorial VII Curso: Eng. Electrotécnica Duração prevista: 2 horas Convolução de Sinais I. Sinais analógicos Operações matemáticas realizadas em sinais analógicos

Leia mais

I-6 Sistemas e Resposta em Frequência

I-6 Sistemas e Resposta em Frequência I-6 Sistemas e Resposta em Frequência Comunicações 1 Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de sistemas

Leia mais

Sistemas lineares. Realce no domínio de freqüências. Propriedades. Sistema: definição. Sistemas harmônicos e análise de sinais complexos

Sistemas lineares. Realce no domínio de freqüências. Propriedades. Sistema: definição. Sistemas harmônicos e análise de sinais complexos Realce no domínio de freqüências Hitoshi Capítulo 4 do Gonzalez Sistemas lineares muito utilizado para a descrição de sistemas elétricos e ópticos possuem fundamentos matemáticos bem estabelecidos para

Leia mais

Aula 06 Representação de sistemas LIT: A soma de convolução

Aula 06 Representação de sistemas LIT: A soma de convolução Aula 06 Representação de sistemas LIT: A soma de convolução Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 47-56. HAYKIN, S. S.; VAN

Leia mais

Amostragem de Sinais

Amostragem de Sinais UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Amostragem de Sinais Prof. Juan Moises Mauricio Villanueva jmauricio@cear.ufpb.br 1 Amostragem (Sampling) Para um sinal

Leia mais

Convolução Correlação. Profs. Theo Pavan e Adilton Carneiro TAPS

Convolução Correlação. Profs. Theo Pavan e Adilton Carneiro TAPS Convolução Correlação Profs. Theo Pavan e Adilton Carneiro TAPS Sistema Sistema processo em que os sinais de entrada são transformados resultando em um outro sinal de saída. x(t) Sistema de tempo contínuo

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello cabm@cin.ufpe.br 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal

Leia mais

Determinação dos Parâmetros do Motor de Corrente Contínua

Determinação dos Parâmetros do Motor de Corrente Contínua Laboratório de Máquinas Elétricas: Alunos: Professor: Leonardo Salas Maldonado Determinação dos Parâmetros do Motor de Corrente Contínua Objetivo: Ensaiar o motor de corrente contínua em vazio; Determinar

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Professor Msc. Leonardo Henrique Gonsioroski

Professor Msc. Leonardo Henrique Gonsioroski Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça

Leia mais

Capítulo 6 Filtragem, Amostragem e Reconstrução

Capítulo 6 Filtragem, Amostragem e Reconstrução Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos

Leia mais

Aula 1 Sinais e Sistemas Discretos

Aula 1 Sinais e Sistemas Discretos Aula 1 Sinais e Sistemas Discretos Conteúdo: 1) Introdução; 2) Sinais Discretos e Propriedades e operações com sinais; 3) Sequências (Sinais) básicos; 4) Sistemas Discretos; 5) Propriedades de Sinais Discretos;

Leia mais

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva

Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva jmauricio@cear.ufpb.br www.cear.ufpb.br/juan 1 Filtros FIR (Finite Impulse Response) Para um sistema FIR de ordem M Com função

Leia mais

Sinais e Sistemas. Capítulo INTRODUÇÃO 1.2 SINAIS DE TEMPO DISCRETO

Sinais e Sistemas. Capítulo INTRODUÇÃO 1.2 SINAIS DE TEMPO DISCRETO Capítulo 1 Sinais e Sistemas 1.1 INTRODUÇÃO Neste capítulo, começamos nosso estudo do processamento digital de sinais desenvolvendo as noções de sinal e sistema de tempo discreto. Vamos nos concentrar

Leia mais

Introdução aos Sinais e Sistemas

Introdução aos Sinais e Sistemas Introdução aos Sinais e Sistemas Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia

Leia mais

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito

Leia mais

Introdução. Faculdade Pitágoras Unidade Divinópolis. Márcio Júnior Nunes. O que é um Sinal? Sinal Unidimensional Sinal Multidimensional 24/08/2016

Introdução. Faculdade Pitágoras Unidade Divinópolis. Márcio Júnior Nunes. O que é um Sinal? Sinal Unidimensional Sinal Multidimensional 24/08/2016 Faculdade Pitágoras Unidade Divinópolis Introdução Márcio Júnior Nunes O que é um Sinal? Sinal Unidimensional Sinal Multidimensional 2 1 Nível de líquido 3 Eletrocardiograma 4 2 Pressão Arterial 5 Índice

Leia mais

Transformada de Laplace. Transformada de Laplace

Transformada de Laplace. Transformada de Laplace A generalização da representação por senóides complexas de um sinal de tempo contínuo fornecida pela Transformada de Fourier é realizada em termos de sinais exponenciais complexos pela. A Transformada

Leia mais

5 Descrição entrada-saída

5 Descrição entrada-saída Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)

Leia mais

Sinais e Sistemas - Lista 1. Gabarito

Sinais e Sistemas - Lista 1. Gabarito UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 1 Gabarito 4 de outubro de 015 1. Considere o sinal x(t) mostrado na figura abaixo. O sinal é zero fora do intervalo < t

Leia mais

Processamento Digital de Sinais. Sistemas Lineares. Prof. Dr. Carlos Alberto Ynoguti

Processamento Digital de Sinais. Sistemas Lineares. Prof. Dr. Carlos Alberto Ynoguti Processamento Digital de Sinais s Lineares Prof. Dr. Carlos Alberto Ynoguti Sinais e s Sinal: descrição de como um parâmetro varia com outro. Exemplo: tensão variando com o tempo em um circuito elétrico,

Leia mais

Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema

Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema Resumo Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier lco@ist.utl.pt Instituto Superior Técnico Resposta de SLITs a exponenciais complexas Série de Fourier de sinais contínuos

Leia mais

S I N A I S & S I S T E M A S PLANEJAMENTO

S I N A I S & S I S T E M A S PLANEJAMENTO S I N A I S & S I S T E M A S PLANEJAMENTO 2017.1 contatos importantes: Professor: Gustavo Castro do Amaral e-mail gustavo@opto.cetuc.puc-rio.br website www.labopto.com Monitor: David Stolnicki e-mail

Leia mais

1ā lista de exercícios de Sistemas de Controle II

1ā lista de exercícios de Sistemas de Controle II ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas

Leia mais

TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como.

TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como. TRANSFORMADA Z A transformada Z (TZ) tem o mesmo papel, para a análise de sinais e sistemas discretos LTI, que a transformada de Laplace na análise de sinais e sistemas nos sistemas contínuos do mesmo

Leia mais

Universidade Paulista Unip

Universidade Paulista Unip As máquinas de corrente contínua podem ser utilizadas tanto como motor quanto como gerador. 1 Uma vez que as fontes retificadoras de potência podem gerar tensão contínua de maneira controlada a partir

Leia mais

Diagramas de Bode. Introdução

Diagramas de Bode. Introdução Diagramas de Bode Introdução Sistemas e Sinais Diagramas de Bode Escala Logarítmica de Amplitude Escala Logarítmica de Frequência Análise dos Termos das Funções de Resposta em Frequência Composição do

Leia mais

INTRODUÇÃO À TRANSFORMADA Z. Wilson Arnaldo Artuzi Junior Ricardo Rodrigo Wolf Cruz

INTRODUÇÃO À TRANSFORMADA Z. Wilson Arnaldo Artuzi Junior Ricardo Rodrigo Wolf Cruz INTRODUÇÃO À TRANSFORMADA Z Wilson Arnaldo Artui Junior Ricardo Rodrigo Wolf Cru CURITIBA 2010 Sumário 1 - Introdução...1 1.1 - Definição:...1 a) Domínio do tempo discreto n...1 b) Domínio...2 c) Par transformado...2

Leia mais

Análise de Sistemas em Tempo Discreto usando a Transformada Z

Análise de Sistemas em Tempo Discreto usando a Transformada Z Análise de Sistemas em Tempo Discreto usando a Transformada Z Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período.

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. sin(t) = sin (t + T), ou exp(t) = exp(t+t) em que T é o período. [sin(a) e/ou cos(a) ]+[ sin(b) e/ou cos(b)] = o periodo

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Descrição de Sistemas LTI por Variáveis de Estados 1

Descrição de Sistemas LTI por Variáveis de Estados 1 Descrição de Sistemas LTI por Variáveis de Estado Os estados de um sistema podem ser definidos como o conjunto mínimo de sinais que descrevem o comportamento dinâmico do sistema. Sendo assim, dado o valor

Leia mais

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ Transformada Z Transformada Z 2 Transformada Z - TZ Processamento Digital de Sinais Notas de Aula Transformada Z É uma generalização da Transformada de Fourier de Tempo Discreto (DTFT) Útil para representação

Leia mais

Controle de Processos: Solução analítica de sistemas lineares dinâmicos

Controle de Processos: Solução analítica de sistemas lineares dinâmicos Controle de Processos: Solução analítica de sistemas lineares dinâmicos Prof. Eduardo Stockler Tognetti & David Fiorillo Laboratório de Automação e Robótica (LARA) Dept. Engenharia Elétrica - UnB Conteúdo

Leia mais

Aula 6. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 6. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 6 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Março de 2012. Resumo 1 Introdução Espaço

Leia mais

Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM

Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM Licenciatura em Engenharia Biomédica Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representações de Fourier de Sinais Compostos Introdução Transformada de Fourier de Sinais Periódicos Convolução

Leia mais

Aula 07: Simulação de sistemas não-lineares e linearizados utilizando o Simulink.

Aula 07: Simulação de sistemas não-lineares e linearizados utilizando o Simulink. UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: INTRODUÇÃO AOS SISTEMAS DE CONTROLE PROFESSOR: ANTONIO SILVEIRA (MATERIAL CEDIDO PELA PROFA. MARIANA SANTOS MATOS

Leia mais

Aula 4 Respostas de um SLIT

Aula 4 Respostas de um SLIT Aula 4 Respostas de um SLIT Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total A convolução entre dois sinais de tempo contínuo x(t) e h(t) é dada

Leia mais

Sinais Não-Periódicos de Tempo Discreto - DTFT

Sinais Não-Periódicos de Tempo Discreto - DTFT A Transformada de Fourier de Tempo Discreto será desenvolvida com base na Série de Fourier de Tempo Discreto, descrevendo um sinal não-periódico como o limite de um sinal periódico com período N aproximando-se

Leia mais

Apresentação do programa da disciplina. Definições básicas. Aplicações de sinais e sistemas na engenharia. Revisão sobre números complexos.

Apresentação do programa da disciplina. Definições básicas. Aplicações de sinais e sistemas na engenharia. Revisão sobre números complexos. FUNDAÇÃO UNVERSDADE FEDERAL DO VALE DO SÃO FRANCSCO PLANO DE UNDADE DDÁTCA- PUD Professor: Edmar José do Nascimento Disciplina: ANÁLSE DE SNAS E SSTEMAS Carga Horária: 60 hs Semestre: 2010.1 Pág. 1 de

Leia mais

Introdução aos Sinais e Sistemas

Introdução aos Sinais e Sistemas Introdução aos Sinais e Sistemas Deise Monquelate Arndt deise.arndt@ifsc.edu.br Curso Superior de Tecnologia em Sistemas de Telecomunicações IFSC - Campus São José Índice 1 Sinais Operações com Sinais

Leia mais

Sistemas lineares. Aula 1 - Sinais

Sistemas lineares. Aula 1 - Sinais Sistemas lineares Aula 1 - Sinais Conceitos Sinais e sistemas Definições Descrições Representações matemáticas Classificações Sinais Elementares (básicos) Operações Sinais Definição: Um sinal é a representação

Leia mais

Aula 15 Propriedades da TFD

Aula 15 Propriedades da TFD Processamento Digital de Sinais Aula 5 Professor Marcio Eisencraft abril 0 Aula 5 Propriedades da TFD Bibliografia OPPENHEIM, A. V.; SCHAFER. Discrete-time signal processing, 3rd. ed., Prentice-Hall, 00.

Leia mais

REPRESENTAÇÃO DE SISTEMAS NO DOMÍNIO Z. n +

REPRESENTAÇÃO DE SISTEMAS NO DOMÍNIO Z. n + REPRESETAÇÃO DE SISTEMAS O DOMÍIO Z [ ] x h y h h n RC RC RC X H Y Y H X R R n h n h Z H < < + : ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ) ( ) ( Função de Sistema : FUÇÃO DE SISTEMA A PARTIR DA REPRESETAÇÃO POR

Leia mais

Método dos Mínimos Quadrados

Método dos Mínimos Quadrados Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Método dos Mínimos Quadrados Prof. Juan Moises Mauricio Villanueva jmauricio@cear.ufpb.br www.cear.ufpb.br/juan 1 CASO 1:

Leia mais

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em

Leia mais

3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas

3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas 3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/2009 12 de Junho de 2009 Respostas i Problema 1. (0,75v) Considere o sinal ( n n, x(n)=cos 8 4) +π Assinale a afirmação correcta x(n) é um sinal periódico

Leia mais

Capítulo 3 Circuitos com Capacitância e Indutância

Capítulo 3 Circuitos com Capacitância e Indutância Capítulo 3 Circuitos com Capacitância e Indutância Sumário Respostas: Livre e ao Degrau Funções Singulares Resposta às Funções Singulares Representação de Sinais como Soma de Funções Singulares O Teorema

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Corrente Contínua

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Corrente Contínua SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Introdução a Máquinas de Corrente Contínua Aula de Hoje Introdução à máquina de corrente contínua Produção de conjugado na máquina CC Ação do comutador Tensão

Leia mais

Processamento Digital de Sinais - ENG420

Processamento Digital de Sinais - ENG420 Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 24 de setembro de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 24 de setembro de 2016 1 / 19 1 Transformada Z - Conceito

Leia mais

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2017 E.Galeazzo / L.Yoshioka

Leia mais

1 o Teste Tipo. Sinais e Sistemas (LERC/LEE) 2008/2009. Maio de Respostas

1 o Teste Tipo. Sinais e Sistemas (LERC/LEE) 2008/2009. Maio de Respostas o Teste Tipo Sinais e Sistemas (LERC/LEE) 2008/2009 Maio de 2009 Respostas i Problema. (0,9v) Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t eδ(t) é a função delta de Dirac. O integral vale:

Leia mais

Transformada Rápida de Fourier (FFT)

Transformada Rápida de Fourier (FFT) Transformada Rápida de Fourier (FFT) A FFT é um algoritmo eficiente para calcular a DFT A DFT de uma sequência x n de comprimento finito N é definida como: N 1 N 1 X k = x n e j2π N kn = x n W N kn, 0

Leia mais

Sinais Elementares e Operações Básicas

Sinais Elementares e Operações Básicas Exper. 2 Sinais Elementares e Operações Básicas Objetivo Esta prática descreve como utilizar o Matlab para representar e manipular alguns sinais elementares: Estudar os sinais elementares de tempo contínuo

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 1

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 1 Introdução ao Soluções dos Exercícios Propostos Capítulo. Dados os sinais x c (t a seguir, encontre as amostras, a representação em somatórios de impulsos deslocados, e trace os gráficos de = x c (nt a

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

Análise de Laplace. Prof. André E. Lazzaretti

Análise de Laplace. Prof. André E. Lazzaretti Análise de Laplace Prof. André E. Lazzaretti lazzaretti@utfpr.edu.br Introdução Objetivo principal: resolução de equações diferenciais; Similar à análise fasorial: transformação para o domínio da frequência;

Leia mais

Transformada de Laplace. Definição. O processo inverso de obter a função temporal f(t) a partir da

Transformada de Laplace. Definição. O processo inverso de obter a função temporal f(t) a partir da Prof. Raimundo Nonato das Mercês Machado O processo inverso de obter a função temporal f(t) a partir da transformada de Laplace F(s) é chamado transformada de Laplace inversa. A notação para a transformada

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 6 Heaviside Dirac Newton Conteúdo 6 Circuitos de primeira ordem...1 6.1 Equação diferencial ordinária de primeira ordem...1 6.1.1

Leia mais

Métodos Matemáticos para Engenharia

Métodos Matemáticos para Engenharia Métodos Matemáticos para Engenharia Transformada de Laplace Docentes: > Prof. Fabiano Araujo Soares, Dr. Introdução Muitos parâmetros em nosso universo interagem através de equações diferenciais; Por exemplo,

Leia mais

Disciplina: Circuitos Elétricos I. Conceitos Preliminares

Disciplina: Circuitos Elétricos I. Conceitos Preliminares Disciplina: Circuitos Elétricos I Conceitos Preliminares Introdução O termo circuito elétrico se refere tanto a um sistema elétrico real quanto a um modelo matemático; É o instrumento básico para a compreensão

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA ELETRÔNICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA ELETRÔNICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO EXÉRCITO BRASILEIRO ENGENHARIA ELETRÔNICA CADERNO DE QUESTÕES 2012 l a QUESTÃO Valor: 1,00 Um filtro digital é especificado pela seguinte equação: y[n] = 4n-1]

Leia mais

Processamento Digital de Sinais. Convolução. Prof. Dr. Carlos Alberto Ynoguti

Processamento Digital de Sinais. Convolução. Prof. Dr. Carlos Alberto Ynoguti Processamento Digital de Sinais Convolução Prof. Dr. Carlos Alberto Ynoguti Convolução É uma operação matemática formal, assim como a soma. Soma: toma dois números e gera um terceiro. Convolução: toma

Leia mais

Sistemas Lineares. Aula 9 Transformada de Fourier

Sistemas Lineares. Aula 9 Transformada de Fourier Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Sinais e Sistemas SINAIS E SISTEMAS

Sinais e Sistemas SINAIS E SISTEMAS SINAIS E SISTEMAS Sinais O que são sinais? Transformações lineares da variável independente Reflexão em relação à origem; Mudança de escala; Translação no tempo Propriedades dos sinais Paridades; Periodicidade

Leia mais

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (2) Definição de Sistemas. Esta Aula

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (2) Definição de Sistemas. Esta Aula Resumo Sistemas e Sinais Definição de Sinais e de Sistemas (2) lco@ist.utl.pt Instituto Superior Técnico Definição de sistemas. Espaço de funções. Equações diferenciais e às diferenças. Sistemas com e

Leia mais

13 Funções de Teste. Simulação no VisSim 1 INTRODUÇÃO 2 IMPULSO UNITÁRIO (DELTA DE DIRAC)

13 Funções de Teste. Simulação no VisSim 1 INTRODUÇÃO 2 IMPULSO UNITÁRIO (DELTA DE DIRAC) Funções de Teste. Simulção no VisSim 1 13 Funções de Teste Simulação no VisSim 1 INTRODUÇÃO As funções de teste formam a base para a análise e a simulação de sistemas lineares no domínio do tempo e são

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Resposta no espaço de estados Representações

Leia mais

Sinais e Sistemas p.1/33

Sinais e Sistemas p.1/33 Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos lco@ist.utl.pt Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier

Leia mais

RECORDAÇÃO E MOTIVAÇÃO. Larissa Driemeier

RECORDAÇÃO E MOTIVAÇÃO. Larissa Driemeier RECORDAÇÃO E MOTIVAÇÃO Larissa Driemeier NOSSO CALENDÁRIO Aula Data Tema Professor Introdução da disciplina 1 1/8 Lista de Exercícios de modelagem Larissa Sinais 2 2/8 Transformada de Fourier Larissa 3

Leia mais

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Classificação de Sinais Sinal de Tempo Contínuo: É definido para todo tempo

Leia mais

Definições de Sinais e Sistemas. O que é um Sinal? Exemplos de Sinais. Exemplos de Sinais. Exemplos de Sinais. Exemplos de Sinais. O que é um Sinal?

Definições de Sinais e Sistemas. O que é um Sinal? Exemplos de Sinais. Exemplos de Sinais. Exemplos de Sinais. Exemplos de Sinais. O que é um Sinal? Definições de Sinais e Sistemas O que é um Sinal? O que é um Sistema? Visão Geral de Sistemas Específicos Processamento de Sinais Analógicos Versus Digitais O que é um Sinal? Função de uma ou mais variáveis,

Leia mais

Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT

Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT Estabilidade 1. Estabilidade Entrada-Saída Sistemas LIT 2. Estabilidade BIBO Sistemas LIT 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT 4. Sistemas Discretos LIT 5. Estabilidade BIBO Sistemas

Leia mais

Sinais e Sistemas Introdução a Sinais

Sinais e Sistemas Introdução a Sinais Sinais e Sistemas Introdução a Sinais Profª Sandra Mara Torres Müller Aula 1 O que é um sinal? Função de uma ou mais variáveis, a qual veicula informações sobre a natureza de um fenômeno físico. O que

Leia mais

Disciplina: Processamento Digital de Sinais Aula 01 - Introdução aos Sinais e Sistemas Digitais

Disciplina: Processamento Digital de Sinais Aula 01 - Introdução aos Sinais e Sistemas Digitais no de Disciplina: de Aula 01 - aos e Sistemas Digitais Prof. (eduardo.simas@ufba.br) Departamento de Engenharia Elétrica Universidade Federal da Bahia Conteúdo no de 1 2 no 3 4 de 5 no de Definição: O

Leia mais

CONTEÚDOS PROGRAMADOS (Acústica Ambiental - EEK603) TOTAL 45

CONTEÚDOS PROGRAMADOS (Acústica Ambiental - EEK603) TOTAL 45 (Acústica Ambiental - EEK603) TOTAL 4 (Acústica Básica - EEK4) - introdução O fenômeno acústico: propagação. Nível de pressão sonora. As hipóteses acústicas. - Equacionamento Balanços de massa e quantidade

Leia mais

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta

Leia mais

Introdução a aquisição e processamento de sinais

Introdução a aquisição e processamento de sinais TAPS Introdução a aquisição e processamento de sinais Prof. Theo Z. Pavan Departamento de Física - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-USP Roteiro Aquisição de sinais e frequência

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 2

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 2 Introdução ao Soluções dos Exercícios Propostos Capítulo 2. Verifique se os sinais abaixo têm ou não transformada de Fourier. Em caso positivo, calcule a transformada correspondente: a) x[n] 2δ[n+2]+3δ[n]

Leia mais