CEEJA MAX DADÁ GALLIZZI

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CEEJA MAX DADÁ GALLIZZI"

Transcrição

1 CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 20 Página 1

2 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos esse material. Foi pensando em seu sucesso e em auxiliá-lo nas redescobertas da arte matemática que elaboramos o conteúdo e os exercícios contidos nesta coleção de apostilas. Ela foi escrita em linguagem simples e com a preocupação de transmitir os assuntos importantes de matemática da forma mais clara possível. Todos nós usamos matemática diariamente, mesmo sem perceber. Em uma compra, ao pagar e ao receber o troco, estamos fazendo matemática. Até para utilizarmos corretamente uma máquina de calcular, precisamos saber matemática. Para isto, em cada aula, você encontrará ferramentas matemáticas que passarão a fazer parte da sua vida para enriquecê-la e facilitála. A matemática não é um conjunto de regras que devam ser decoradas. O importante é compreender o que está por trás de cada regra; é compreender os conceitos. Assim você poderá utilizar os seus conhecimentos em situações novas, resolvendo os problemas que surgirem na sua casa, no seu trabalho, na sua vida. Uma parte fundamental dessa apostila são os Exercícios. Não se aprende matemática apenas lendo um texto. É preciso praticar. É preciso gastar lápis e papel resolvendo exercícios. Só assim ganhamos segurança no que aprendemos e ficamos preparados para a aula seguinte. Portanto, tente fazer os exercícios de cada aula. Talvez você não consiga resolver todos, mas o importante é tentar fazer. Também aprendemos muito com nossos próprios erros. Resolva todos os exercícios em seu caderno (não responder na apostila, pois a mesma será utilizada por outros alunos no decorrer do curso). Procure-nos assim que surgirem as primeiras dificuldades, nós estaremos sempre prontos para ajudálo. No fim do curso você terá adquirido uma série de conhecimentos de matemática que serão suas ferramentas para compreender melhor o mundo que nos cerca, tornando-o um cidadão mais seguro e respeitado. Mas, acima de tudo, você vai descobrir que pensar é divertido. Raciocinar é estimulante. Resolver desafios, questionar, encontrar soluções nos dá prazer, desenvolve a nossa mente e torna mais ágil o nosso raciocínio. Adquirindo o hábito de pensar de forma organizada, você terá aprendido a mais importante das lições e nós teremos cumprido o nosso objetivo. Página 2

3 Geometria Espacial Introdução A preocupação com o cálculo de volumes é bastante antiga. Há milhares de anos a civilização egípcia já conhecia alguns processos para esse cálculo. Os habitantes da Grécia Antiga aprimoraram esses processos e desenvolveram outros. Destaca-se o trabalho do matemático e físico Arquimedes, que viveu no século III a.c. Desenvolvendo raciocínios bastante criativos, Arquimedes mostrou como calcular o volume de diversas figuras geométricas. Conta-se que, enquanto tomava banho, constatou que a água subia quando ele mergulhava. Essa quantidade de água que subia era seu volume. Página 3

4 Com esta aula iniciamos o estudo da Geometria Espacial. Nesta unidade você estudará as propriedades de figuras espaciais, tais como: o cubo, o paralelepípedo, a esfera, o cilindro etc. Aprenderá também a calcular o volume dessas e de outras figuras. Para o cálculo de um volume podemos usar diferentes unidades de medida. Certamente você já conhece o litro e o metro cúbico. Portanto, vamos aprofundar esses conceitos. Página 4

5 Volume ou Capacidade Podemos ter muitas definições para a palavra volume, mas para a Matemática é o espaço ocupado por um corpo. Todo sólido geométrico possui volume e ocupa espaço. Volume ou capacidade de um corpo (ou recipiente) é a quantidade de espaço que esse corpo ocupa ou que ele dispõe para armazenar alguma coisa. Por exemplo: Esses recipientes têm a capacidade de armazenar 1 litro de líquido, conforme a indicação em cada embalagem. Podemos dizer que o volume ou a capacidade de cada um desses recipientes é de 1 litro. Vejamos um outro exemplo: diariamente nos portos brasileiros, navios são carregados ou descarregados com mercadorias que serão transportadas para outros lugares. Em geral, essas mercadorias são armazenadas em grandes caixas chamadas de container. Existem dois tipos de container: o de 20 pés (cuja capacidade é de 32,88 metros cúbicos) e o de 40 pés (cuja capacidade é de 66, 92 metros cúbicos). Página 5

6 Unidade de Volume ou de Capacidade O litro(l) Litro (simbolo: l) é uma unidade de medida de volume que obedece ao sistema métrico decimal e é aceito pelo Sistema Internacional de Unidades. O litro é a quantidade de líquido capaz de encher completamente um cubo oco, com 10 cm de aresta. Quantos litros cabem num metro cúbico? Para responder a essa pergunta vamos imaginar uma caixa cúbica com 1 metro de aresta e muitos cubinhos com 10 cm de aresta. Cada um desses cubinhos corresponde a 1 litro de água. Podemos arrumar os cubinhos dentro da caixa grande em fileiras de 10, de forma que o fundo da caixa fique com = 100 cubinhos. Como podemos formar 10 camadas, temos: = cubinhos Página 6

7 O mililitro(ml) Em algumas situações práticas, o volume a ser medido é tão pequeno que o litro se torna uma unidade inadequada. Isso acontece, por exemplo, quando queremos indicar a quantidade de líquido de um vidro de remédio. Nesse caso usamos o mililitro (ml). O mililitro é a quantidade de líquido que cabe num cubo oco com 1 cm de aresta. 1 cm 1 cm 1 cm As latas de refrigerante e cerveja costumam ter em seu rótulo a indicação em mililitros de seu volume. Repare: Muitas vezes é importante que saibamos relacionar duas unidades. Da mesma forma que relacionamos a hora com o minuto, o metro com o quilômetro ou com o centímetro, da mesma forma precisamos relacionar as unidades de volume. Página 7

8 Outras unidades de volume muito usuais. Nos exemplos anteriores utilizamos o litro (cuja abreviatura é l) e o metro cúbico (cuja abreviatura é m 3 ) como unidades de medida. Além dessas unidades, temos também o centímetro cúbico (cm³), o decímetro cúbico (dm³), o mililitro (ml) etc. A escolha da unidade de medida adequada depende do tamanho do que se vai medir. O metro cúbico, por exemplo, é adequado para medir grandes volumes, como no caso de um container. Nesse caso iremos representá-lo usando a seguinte unidade: 1m³ (metro cúbico) = 1000 litros Para medir pequenos volumes costumamos usar o litro(l) e o mililitro(ml) como no caso da caixa de leite. Em situações em que o volume é muito pequeno podemos usar: 1cm³ = 1 ml (mililitro) Em situações cotidianas usamos: 1 litro = 1000cm³ (centímetro cúbico) = 1dm³ (decímetro cúbico) Podemos concluir que as principais unidades usuais de m³ (metros cúbicos) são: 1m³ = 1000 litros 1cm³ = 1 ml (mililitro) 1 dm³ = 1 litro Página 8

9 Exercícios Questão 01: Que unidade de medida você usaria para indicar a quantidade de líquido em: a) um copo de chopp; b) uma lata de óleo; c) uma piscina; d) uma ampola. Questão 02: Responda: a) Quantos cm 3 contém um litro (l)? b) Quantos cm 3 contém um mililitro (ml)? c) Quantos litros contém um m 3? d) 2000 cm 3 equivalem a quantos litros? e) 5 m 3 equivalem a quantos litros? Questão 03: Uma outra unidade para medir volumes, muito usada na vida prática, é a garrafa. Sabendo que a garrafa vale de litro indique sua capacidade em mililitros. Questão 04: Uma lata de óleo tem, em geral 900 ml. Quantas latas correspondem a um galão de 45l de óleo? Questão 05: Com um barril de vinho de 360 litros, quantas garrafas de vinho de 750ml podemos completar? Questão 06: Como você explicaria para uma criança o que é um litro de água? Página 9

10 Veja alguns exemplos de prismas. Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais e paralelas e que ligam as duas bases. Nomenclatura: Os prismas são desiguais pelo número de lados das bases, que lhes dão o nome: Veremos a seguir os volumes de alguns dos prismas mais utilizados em nosso cotidiano. Página 10

11 O Cubo Cubo é um prisma em que todas as faces são quadradas. O cubo é um prisma quadrangular regular cuja altura é igual à medida da aresta da base. É, de entre todos os poliedros, talvez o mais conhecido, por existirem muitos objetos de uso diário de forma cúbica, como por exemplo um dado. O cubo é um poliedro regular pois as suas faces são geometricamente iguais. O cubo tem os seguintes elementos: 6 faces, que são quadrados geometricamente iguais; 12 arestas iguais, que são segmentos de reta; 8 vértices, que são pontos. Para construir um cubo basta conhecer a medida de uma aresta. Aresta é o nome que se dá à linha que separa uma face da outra. Os lados dos quadrados que formam o cubo são as arestas do cubo. Página 11

12 O Volume do Cubo O volume de um cubo depende da medida de sua aresta, consideramos apenas uma medida, pois o cubo possui todas as arestas de tamanhos iguais e seu volume é apresentado pela expressão, onde a corresponde à medida da aresta. EXEMPLO: Quantos litros cabem no reservatório abaixo? Solução: l l Página 12

13 O Paralelepípedo Uma caixa de fósforos, uma embalagem de detergente, um tijolo, algumas caixas de medicamentos, um livro, uma pedra de dominó são objetos com os quais lidamos diariamente e cuja forma se associa a um sólido geométrico a que chamamos paralelepípedo retângulo. Paralelepípedo é um prisma que possui em suas bases um paralelogramo. Sendo que o paralelepípedo é configurado pela reunião dos seis paralelogramos que o constituem. Este sólido geométrico tem os seguintes elementos: 6 faces (são retângulos iguais dois a dois); 12 arestas (iguais quatro a quatro); 8 vértices. Para a construção de um paralelepípedo é necessário conhecer os comprimentos das três arestas concorrentes a um mesmo vértice. Página 13

14 O Volume do Paralelepípedo O volume de um paralelepípedo é o produto das medidas de suas arestas. Matematicamente dizemos que: ou EXEMPLO: Quantos litros de água são necessários para encher completamente uma caixa d água cujas dimensões são: 0,90 m de comprimento, 0,80 m de largura e 0,70 m de altura? Como l, teremos então: x 1000 l São necessários 504l para encher, completamente, essa caixa d água. Página 14

15 Exercícios Questão 07: Os cubos seguintes têm, respectivamente, arestas 1, 2 e 3 cm. Calcule o valor de cada um dos cubos. Questão 08: A piscina de um clube tem 2 m de profundidade, 12 m de comprimento e 8 m de largura. Quantos litros de água são necessários para enchê-la? Questão 09: Uma caixa cúbica tem 50 cm de aresta e será totalmente enchida de água. Determine: a) Qual o seu volume? b) Quantas garrafas de 500 ml cada uma podem ser enchidas com a água desta caixa? Questão 10: Precisamos construir uma caixa d água com o formato de um paralelepípedo. Quais podem ser as dimensões dessa caixa para que sua capacidade seja de litros? Página 15

16 Questão 11: Uma caixa de vinho tem as seguintes dimensões: 30 cm de altura, 40 cm de comprimento e 25 cm de largura. Um comerciante importou um container de 20 pés (32,88 m 3 ) de caixas de vinho. Quantas caixas de vinho ele encomendou? Questão 12: Um supermercado vende pedaços de goiabada. Os pedaços têm a forma aproximada de paralelepípedos. Um pedaço mede 6 cm x 5 cm x 8 cm e custa R$ 0,72. Um outro pedaço, de 8 cm x 6 cm x 9 cm, é vendido a R$ 1,35. Qual dos dois pedaços será mais vantajoso comprar? Questão 13: O doce de leite é vendido, em um supermercado, em dois tipos de embalagem: um tijolo, cujas medidas são 8 cm x 10 cm x 9 cm e que custa R$ 4,80. pequenas unidades, medindo 1,5 cm x 3 cm x 1,0 cm. Por quanto deve ser vendida cada uma das pequenas unidades, de modo a não haver vantagem de uma embalagem sobre a outra? Página 16

17 Introdução Pirâmide A pirâmide é considerada um dos mais antigos sólidos geométricos construídos pelo homem. Uma das mais famosas é a pirâmide de Quéops, construída em a.c., com 150 m de altura, aproximadamente - o que pode ser comparado a um prédio de 50 andares. Quando pensamos numa pirâmide, vem-nos à cabeça a imagem da pirâmide egípcia, cuja base é um quadrado. Contudo, o conceito geométrico de pirâmide é um pouco mais amplo: sua base pode ser formada por qualquer polígono. As figuras abaixo representam pirâmides: Página 17

18 Elementos da Pirâmide Uma pirâmide é um sólido geométrico, cuja base é um polígono e cujas faces laterais são triângulos que possuem um vértice comum. Em uma pirâmide, podemos identificar vários elementos: Base: A base da pirâmide é a região plana poligonal sobre a qual se apoia a pirâmide. Vértice: O vértice da pirâmide é o ponto isolado P mais distante da base da pirâmide. Eixo: Quando a base possui um ponto central, isto é, quando a região poligonal é simétrica ou regular, o eixo da pirâmide é a reta que passa pelo vértice e pelo centro da base. Altura: Distância do vértice da pirâmide ao plano da base. Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base. Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base. Apótema: É a altura de cada face lateral. Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais. Aresta da base: É qualquer um dos lados do polígono da base. Página 18

19 O Volume da Pirâmide O volume de uma pirâmide pode ser obtido como um terço do produto da área da base pela altura da pirâmide, isto é: EXEMPLO 01: Qual o volume de uma pirâmide quadrangular, cuja altura mede 5 cm e a aresta da base, 3 cm? Resolução: O volume dessa pirâmide é de 15 cm 3. EXEMPLO 02: Uma indústria irá fabricar uma peça no formato de uma pirâmide de base triangular com as medidas indicadas na figura. Sabendo que serão fabricadas peças maciças de aço, determine o volume de aço gasto na produção dessa peça. Resolução: O volume dessa pirâmide é de 45 cm 3. Página 19

20 Exercícios Questão 14: Uma pirâmide de base quadrangular possui altura medindo 2 metros e cada lado da base com medida igual a 3 metros. Determine o volume dessa pirâmide. Questão 15: Juliana tem um perfume contido em um frasco com a forma de uma pirâmide regular com base quadrada. A curiosa Juliana quer saber o volume de perfume que o frasco contém. Para isso ela usou uma régua e tirou duas informações: a medida da aresta da base de 4cm e a medida da altura do frasco que é de 6cm. Quantos ml de perfume há nesse frasco? Página 20

21 Corpos Redondos Introdução Você sabia que: Três quartos da superfície da Terra são cobertos de água? A linha do Equador mede, aproximadamente, km? Pense agora nas seguintes questões, relativas ao planeta Terra: Qual é o seu volume de sua superfície? Qual é a área coberta de água em sua superfície? As respostas a essas questões são possíveis com o estudo dos corpos redondos, que faremos nesse capítulo. Veja exemplos de corpos redondos: Cilindro Cone Esfera Página 21

22 O Cilindro O conceito de cilindro é muito importante. Nas cozinhas encontramos aplicações intensas do uso de cilindros. Nas construções, observamos caixas d'água, ferramentas, objetos, vasos de plantas, todos eles com formas cilíndricas. Aplicações práticas Os cilindros abaixo sugerem alguma aplicação importante em sua vida? O Volume do Cilindro Podemos imaginar um cilindro formado por círculos de cartolina, todos do mesmo tamanho, empilhados. Por isso, temos que o volume do cilindro é também igual ao produto da área da base pela altura. Onde: r h = altura r = raio d = diâmetro d Como a base do cilindro é circular, utilizamos a área do círculo para calcular a área da base, sendo assim,onde. Assim, teremos: Página 22

23 EXEMPLO 01: Um galão de vinho de forma cilíndrica tem o raio da base igual a 2m e sua altura é 5m e está completamente cheio. Qual é a quantidade de vinho existente, em litros, nesse galão? Resolução: l x 1000 Nesse galão há 62800l de vinho. EXEMPLO 02: Um reservatório tem as dimensões e a forma da figura abaixo. Quantos litros de combustível ele pode armazenar? Resolução: l l 1000 Ele poderá armazenar 14,130l de combustível. Página 23

24 Exercícios Questão 16: São comuns os objetos em forma cilíndrica. Num supermercado, se você observar as embalagens, vai identificar facilmente essa forma. Uma pessoa dispõe de dois recipientes cilíndricos: um tem raio de 20 cm e altura de 12 cm; o outro tem a metade do raio, porém o dobro da altura. Qual o recipiente de maior capacidade? Questão 17: Uma lata de óleo tem a forma de um cilindro. Seu diâmetro mede 8,4 cm e, sua altura, 18,2 cm. Será que ela comporta 1000 ml de óleo? Questão 18: Uma seringa tem a forma cilíndrica com 1cm de diâmetro, quando o êmbolo estiver a 5cm da extremidade da seringa próxima à agulha, qual o volume aproximado, em ml, de remédio líquido que a seringa pode conter? Página 24

25 Questão 19: Para fabricar uma caixa de lápis de cor, é preciso saber inicialmente qual é o volume de cada lápis. a) Calcule então o volume de um lápis (sem apontar) que tem 0,8cm de diâmetro e 8cm de comprimento. b) Determine agora o volume aproximado de uma caixa que contém 12 desses lápis. Questão 20: Uma panela caseira tem a forma de um cilindro; sua altura é 12cm e o diâmetro, 20cm. Deve-se enchê-la com cubos de gelo de 2cm de aresta, de tal forma que não transborde ao derreter o gelo. Qual a quantidade máxima de cubos de gelo necessária para encher a panela? Questão 21: As bebidas normalmente, são vendidas em embalagens diferentes. É preciso ter sempre atenção na hora de decidir qual comprar. Veja o exemplo: Certa bebida é vendida em dois tipos de embalagem: em garrafa de 600 ml, por R$ 0,78. em lata de 350 ml, por R$ 0,49. Qual das duas embalagens é mais vantajosa? Página 25

26 O Cone Quando falamos em cone logo vem em nossa mente a imagem do instrumento utilizado no trânsito, além desse exemplo, temos outros como as casquinhas de sorvetes, chapeuzinho de aniversário, entre outros. O Volume do Cone O volume, V, de um cone de altura, h, e base com raio, r, é 1/3 do volume do cilindro com as mesmas dimensões, assim, teremos: Onde: h = altura r = raio d = diâmetro Como a base do cone é circular, utilizamos a área do círculo para calcular a área da base, sendo assim,onde. Assim, teremos: Página 26

27 EXEMPLO 01: Qual é o volume de um cone de raio 5cm e altura 12cm? Resolução: l O volume desse cone é de 314 ml. EXEMPLO 02: Qual é o volume de um cone de diâmetro 6cm e altura 8cm? Resolução: l O volume desse cone é de aproximadamente 75 ml. Página 27

28 Exercícios Questão 22: Qual é a capacidade de uma casquinha de sorvete de forma cônica cujo raio é 3cm e cuja altura é 10cm? Questão 23: Um tanque cônico tem 4m de profundidade e seu topo circular tem 6m de diâmetro. Qual é o volume máximo, em litros, que esse tanque pode conter de líquido? Questão 24: Uma taça de champanhe, no formato de um cone, tem 8cm de diâmetro e 12cm de altura. Qual a capacidade dessa taça? Questão 25: Há um pirulito em forma de guarda-chuvinha sabor chocolate, com 6cm de altura e 2cm de diâmetro. a) Qual é o volume desse pirulito? b) Uma fábrica fez uma encomenda de 1000 desses pirulitos, quantos litros de chocolate serão necessários para fazê-los? Página 28

29 A Esfera Sem dúvida alguma, a esfera é considerada um dos sólidos mais curiosos que existem, e sua forma tem sido extremamente útil ao homem. É possível que os homens tenham criado a forma esférica a partir da observação e do estudo dos corpos celestes, como o Sol e a Lua. Ou da verificação de fenômenos como a sombra da Terra projetada sobre a Lua. O formato de nosso planeta foi reproduzido em diversos objetos até chegar às bolas de futebol, vôlei e outros. Matematicamente, a esfera pode ser definida como "um sólido geométrico formado por uma superfície curva contínua cujos pontos estão eqüidistantes de um outro fixo e interior chamado centro"; ou seja, é uma superfície fechada de tal forma que todos os pontos dela estão à mesma distância de seu centro, ou ainda, de qualquer ponto de vista de sua superfície, a distância ao centro é a mesma. O Volume da Esfera A fórmula que dá o volume da esfera foi demonstrada pelo matemático grego Arquimedes, no século III a.c., em seu livro sobre a esfera e o cilindro. Usando o método de exaustão, inventado por outro matemático grego chamado Eudoxo, Arquimedes provou que o volume de uma esfera é igual a quatro vezes o volume do cone, cujo raio é o raio da esfera e cuja altura é também o raio da esfera. Assim, o volume da esfera é: Página 29

30 EXEMPLO 01: Qual é o volume de uma esfera cujo raio mede 5 cm? Resolução: l O volume dessa esfera é de aproximadamente 523 ml. EXEMPLO 02: Qual é o volume de uma esfera cujo diâmetro mede 6 cm? Resolução: l O volume dessa esfera é de aproximadamente 113 ml. Página 30

31 Exercícios Questão 26: O raio de uma esfera de ferro fundido é 4 cm. Qual é o volume aproximado dessa esfera? Questão 27: Qual é o volume de uma bola de basquete cujo diâmetro mede 26 cm? Questão 28: Uma fábrica de suco de laranja confeccionou suas embalagens em dois formatos: uma esférica de 8 cm de diâmetro e outra cilíndrica. Sabendo que as duas embalagens têm a mesma altura e a mesma largura, calcule seus volumes. Lembre-se: Página 31

32 Gabarito Questão 01: a) ml b) ml c) l d) ml Questão 02: a) 1000cm 3 b) 1cm 3 c) 1000l d) 2l e) 5000l Questão 03: 750ml Questão 04: 50 latas Questão 05: 480 garrafas Questão 06: resposta pessoal Questão 07: V 1 = 1cm 3 ; V 2 = 8cm 3 ; V 3 = 27cm 3 Questão 08: l Questão 09: a) V= cm 3 = 125l b) V= 250 garrafas Questão 10: l = 1m; c = 5m; a = 1m Questão 11: 1096 caixas Questão 12: O segundo pedaço Questão 13: R$0,03 Questão 14: 6 m 3 Questão 15: 32 ml Questão 16: Recipiente 1 Questão 17: Sim, V=1008,09cm 3 Questão 18: 3,9 ml Questão 19: a) V= 4,0192cm 3 b) V= 48,23 cm 3 Página 32

33 Questão 20: 471 cubos Questão 21: Garrafa Questão 22: V= 94,20cm 3 Questão 23: V= 37,68m 3 Questão 24: V= 200,96cm 3 Questão 25: a) V= 6,28cm 3 b) 6,28 litros Questão 26: V= 267,94 cm 3 Questão 27: V= 9198,10 cm 3 Questão 28: V cilindro = 401,92cm 3 ; V esfera = 267,94cm 3 Página 33

34 Bibliografia Os textos e os exercícios foram retirados e/ou pesquisados nos seguintes livros: Telecurso 2000 Matemática: Volumes 1,2 e 3 Ensino Médio. - São Paulo: Editora Globo, Matemática: Aula por Aula: Volume Único: Ensino Médio / Benigno Barreto Filho, Cláudio Xavier Barreto. - São Paulo: FTD, Matemática: Contexto & Aplicações: Volumes 1, 2 e 3: Ensino Médio. - São Paulo: Ática,1999. Matemática Fundamental, 2º grau: Volume Único / José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. São Paulo: FTD, Coleção Base: Matemática: Volume Único / Manoel Paiva. São Paulo: Moderna, Curso Prático de Matemática: Volumes 1, 2 e 3 Ensino Médio / Paulo Bucchi. São Paulo: Moderna, Matemática: Temas e Metas: Volumes 1,2 e 3 / Antônio dos Santos Machado. São Paulo: Atual, Praticando Matemática: 6º ao 9º ano /Álvaro Andrini, Maria José Vasconcellos. São Paulo: Editora do Brasil, A Conquista da Matemática Nova: 6º ao 9º ano / José Ruy Giovanni, Benedito Castrucci, José Ruy Giovanni Jr. São Paulo: FTD, Página 34

35 Este conjunto de apostilas foi elaborado pelos professores da Área de Matemática do CEEJA Max Dadá Gallizzi, com base nos livros didáticos descritos na Bibliografia, ora transcrevendo exercícios e teorias, ora criando com base nos conteúdos observados. Professores Ednilton Feliciano Francis Mara C. Sirolli Paulo Teles de Araújo Jr Satie Sandra Soares Taira 2010 Página 35

Pirâmide, cone e esfera

Pirâmide, cone e esfera A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais

Leia mais

Cubo, prismas, cilindro

Cubo, prismas, cilindro A UUL AL A Cubo, prismas, cilindro Qual é a quantidade de espaço que um sólido ocupa? Esta é uma das principais questões quando estudamos as figuras espaciais. Para respondê-la, a geometria compara esse

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 13 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 09 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 12 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

ÁREA. Unidades de medida de área. Prof. Patricia Caldana

ÁREA. Unidades de medida de área. Prof. Patricia Caldana ÁREA Prof. Patricia Caldana Área ou superfície de uma figura plana tem a ver com o conceito (primitivo) de sua extensão (bidimensional). Usamos a área do quadrado de lado unitário como referência de unidade

Leia mais

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade A UA UL LA Unidades de volume Introdução Com esta aula iniciamos uma nova unidade do Telecurso 2000: a Geometria Espacial. Nesta unidade você estudará as propriedades de figuras espaciais, tais como: o

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 06 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

75, 840 Lê-se "75 metros cúbicos e 840 decímetros cúbicos".

75, 840 Lê-se 75 metros cúbicos e 840 decímetros cúbicos. VOLUME Prof. Patricia Caldana Definimos volume como o espaço ocupado por um corpo ou a capacidade que ele tem de comportar alguma substância. As figuras espaciais como o cubo, paralelepípedo, cone, pirâmide,

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 11 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA

MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA 360 = 4πR 2 α = S t 360 = 4πR 3 3 α = V c Como pode cair no enem (UERJ) A superfície de uma esfera pode ser calculada através da fórmula: 4. π. R 2, onde R é o raio

Leia mais

Professor: Pedro Ítallo

Professor: Pedro Ítallo Professor: Pedro Ítallo 01 - (UNIRG TO) O reservatório de água de uma cidade tem formato cilíndrico, com 4 m de altura e 6 m de diâmetro. Para resolver o problema de abastecimento de água decidiram construir

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine:

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: I) PRISMAS 1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: a) a área da base, o apótema da base, a área lateral, área total e volume considerando

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é

Leia mais

Observando embalagens

Observando embalagens Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

Noções de Geometria. Professora: Gianni Leal 6º B.

Noções de Geometria. Professora: Gianni Leal 6º B. Noções de Geometria Professora: Gianni Leal 6º B. Figuras geométricas no espaço: mundo concreto e mundo abstrato Mundo concreto: é mundo no qual vivemos e realizamos nossas atividades. Mundo abstrato:

Leia mais

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados.

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados. ALUNO(A) AULA 002 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 002 - DE MATEMÁTICA Geometria Espacial Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. (UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Prof..: Rogério de Souza Lima. Questão 1 Uma chapa de alumínio com 1,3 m2 de área será totalmente recortada em pedaços, cada um deles com 25 cm2

Prof..: Rogério de Souza Lima. Questão 1 Uma chapa de alumínio com 1,3 m2 de área será totalmente recortada em pedaços, cada um deles com 25 cm2 CENTRO UNIVERSITÁRIO NOSSA SENHORA DO PATROCÍNIO CEUNSP LISTA DE EXERCÍCIO 1 Matemática e Geometria Aplicada à Arquitetura e Urbanismo. TURMA: 82211 Prof..: Rogério de Souza Lima Questão 1 Uma chapa de

Leia mais

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

Lista de exercícios Prisma e cilindro

Lista de exercícios Prisma e cilindro Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - 3 Matemática Questões Professores: Guilherme Neydiwan 01-5 6-45 ª Série 3º Bimestre - N 30 / 09 / 016 LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais

Matemática Pirâmides Fácil [20 Questões]

Matemática Pirâmides Fácil [20 Questões] Matemática Pirâmides Fácil [0 Questões] 01 - (MACK SP) Considere uma pirâmide cuja base é um polígono convexo. Se a soma das medidas dos ângulos internos de todas as suas faces é 600º, o número de lados

Leia mais

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos.

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. O cilindro A tem altura 20cm e raio da base 5cm. O cilindro B tem altura 10cm e raio da base de 10cm. a) Em qual das duas

Leia mais

UNITAU APOSTILA PRISMAS

UNITAU APOSTILA PRISMAS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PRISMAS Nome: nº: blog.portalpositivo.com.br/capitcar 1 PRISMAS São os poliedros convexos que têm duas faces paralelas e congruentes (chamadas

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA ALUNO TURMA: 2 Ano DATA / /205 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /205 LISTA DE ESFERA ) (UFJF-MG) Um reservatório de água tem a forma de um hemisfério acoplado a um cilindro circular,

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site: GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem

Leia mais

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0). Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na

Leia mais

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem: 1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados

Leia mais

CLASSIFICAÇÃO DOS POLIEDROS

CLASSIFICAÇÃO DOS POLIEDROS COLÉGIO SHALOM 65 Ensino Fundamental II 6º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO 1) Complete os quadros com as respectivas características: TRABALHO DE

Leia mais

AULA 01. Assim sendo, a quantidade total dessa substância no lago é de: (A) g (B) g (C) g (D) 0, g (E) 0, g

AULA 01. Assim sendo, a quantidade total dessa substância no lago é de: (A) g (B) g (C) g (D) 0, g (E) 0, g AULA 01 (ITA-SP/1999) Um poliedro convexo de 10 vértices apresenta faces triangulares e quadrangulares. O número de faces quadrangulares, o número de faces triangulares e o número total de faces formam,

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 06 matemática Calculando volume de sólidos geométricos Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico

Leia mais

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. 1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c)

Leia mais

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar lista de exercícios - 3º ano - matemática Aluno: Série: Turma: Data: Questão 1 É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo,

Leia mais

A Geometria nas Provas de Aferição

A Geometria nas Provas de Aferição Escola E.B. 2 e 3 de Sande Ficha de Trabalho de Matemática 6.º Ano A Geometria nas Provas de Aferição Nome: N.º Turma: 1. Assinala com um x a figura em que os triângulos representados são simétricos em

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 06 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 26/09/2015. A lista deverá apresentar

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

Centro Estadual de Educação Supletiva de Votorantim

Centro Estadual de Educação Supletiva de Votorantim Centro Estadual de Educação Supletiva de Votorantim APRESENTAÇÃO Nesta apostila, elaborada pelos orientadores de Matemática, você encontrará o conteúdo da programação da 3ª série do Ensino Médio (2º Grau).

Leia mais

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Geometria Espacial [2014 - FUVEST] Três das arestas de um cubo, com um vértice em comum, são também arestas de

Leia mais

Prof Alexandre Assis

Prof Alexandre Assis 1 1. Na figura adiante, têm-se um cilindro circular reto, onde A e B são os centros das bases e C é um ponto da intersecção da superfície lateral com a base inferior do cilindro. Se D é o ponto do segmento

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 ) Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior

Leia mais

Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro

Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: No

Leia mais

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data: / 04 / 01 Assunto: Áreas e Volumes de Sólidos II Lições nº, 1. Para vedar um terreno quadrangular com 900 m de área, o

Leia mais

Unidade 10 Geometria Espacial. Esfera

Unidade 10 Geometria Espacial. Esfera Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto

PROFESSOR: Guilherme Franklin Lauxen Neto ALUNO TURMA: 2 Ano DATA / /2015 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /2015 1) Dado um cilindro de revolução de altura 12 cm e raio da base 4 cm, determine: a) a área da base do cilindro.

Leia mais

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS GEOMETRIA ESPACIAL CONTEÚDOS Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS Capacidade e volume Na receita de bolo estava indicado 500 ml de leite ou 500 cm³?

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

6. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho.

6. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho. 1. (Unesp 2004) Um recipiente, na forma de um cilindro circular reto de raio R e altura 32 cm, está até à metade com água (figura 1). Outro recipiente, na forma de um cone circular reto, contém uma substância

Leia mais

Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano

Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano Os conteúdos estão abaixo selecionados e deverão ser estudados pelo caderno

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

Geometria Espacial. Parte I. Página 1

Geometria Espacial. Parte I.  Página 1 Geometria Espacial Parte I 1. (Insper 014) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais

Leia mais

Rua 13 de junho,

Rua 13 de junho, QUESTÕES 1. (Unicamp 01) Numa piscina em formato de paralelepípedo, as medidas das arestas estão em progressão geométrica de razão q > 1. a) Determine o quociente entre o perímetro da face de maior área

Leia mais

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança 1. Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: Data da entrega

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL

MATEMÁTICA ENSINO FUNDAMENTAL CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP APRESENTAÇÃO Nesta apostila, a intenção é que você adquira a capacidade de visualizar e nomear, pontos, retas, planos, ângulos e reconhecer triângulos. É uma pequena

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo

Leia mais