CAPÍTULO V. Em um corpo que está submetido a um sistema de forças ativas e reativas, isto é, que está em equilíbrio ocorre:

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO V. Em um corpo que está submetido a um sistema de forças ativas e reativas, isto é, que está em equilíbrio ocorre:"

Transcrição

1 37 CAPÍTULO V I. INTRODUÇÃO Em um corpo que está submetido a um sistema de forças ativas e reativas, isto é, que está em equilíbrio ocorre: 1. Um fenômeno geométrico que é a mudança da sua forma original: Isto é deformação. 2. Um fenômeno mecânico que é a difusão dos esforços para as diversas partes do corpo: Isto é tensão. É claro que podemos entender que a capacidade que um material tem de resistir as solicitações que lhe são impostas é limitada, isto é, pode ocorrer a ruptura do corpo quando o carregamento for excessivo, portanto é necessário conhecer esta capacidade para que possamos projetar com segurança. II. TENSÕES Suponhamos um corpo carregado e em equilíbrio estático. Se cortarmos este corpo por uma seção qualquer "S" ao separarmos as partes cortadas podemos observar as forças distribuídas que atuam na seção do corte e equilibram cada uma das partes da barra. Estas forças distribuídas são as tensões. Os esforços solicitantes são obtidos pela redução das tensões no centro de gravidade da seção transversal onde atuam. ρ S Sejam: A elemento de área F elemento de força ρ = tensão atuante em um ponto ou tensão resultante em um ponto F df ρ = lim = A 0 A da ou graficamente:

2 38 Como a tensão é um elemento vetorial ela pode, como qualquer vetor, ser decomposta no espaço segundo 3 direções ortogonais que queiramos, e, portanto escolheremos como referência de costume 2 direções contidas pelo plano da seção de referência "S" (x,y) e a terceira perpendicular à este plano (n). Isto nos permite categorias: dividir as componentes da tensão do ponto em duas - Tensões Tangenciais ou de Cisalhamento (τ) - contidas pela seção de referência - Tensão Normal (σ) - perpendicular à seção de referência III. TRAÇÃO OU COMPRESSÃO AXIAL- TENSÃO NORMAL Seja uma barra prismática de eixo longitudinal reto e seção transversal constante de área A. Quando sob ação de duas forças iguais e opostas, coincidentes com o seu eixo (lugar geométrico de todas as seções transversais) originam-se esforços no seu interior. Neste caso, apenas a solicitação de esforço normal N, atuando no centro de gravidade da seção de corte é necessária para manter o equilíbrio.por meio deste artifício (corte) os esforços internos transformaram-se em externos e o seu cálculo se fez aplicando-se uma equação de equilíbrio. Admite-se que este esforço normal se distribui uniformemente na área em que atua(a), ficando a tensão definida pela expressão:

3 39 σ = N A sendo: N Esforço Normal desenvolvido A Área da seção transversal Na prática, vistas isométricas do corpo são raramente empregadas, sendo a visualização simplificada como: ΣF y = 0 Q = 0 Σ Ms = 0 M = 0 Σ Fx = 0 N - F = 0 N = F Deformação específica longitudinal (ε) Costuma-se medir a deformação de peças sujeitas a tensão normal pela deformação específica longitudinal que é a relação que existe entre a deformação

4 medida em um corpo e o seu comprimento inicial, sendo as medidas feitas na direção da tensão. Seja: l i comprimento inicial da barra l f comprimento final da barra l deformação total l = l f - l i ε = l li Observe que no exemplo dado l > 0 portanto ε > 0 (alongamento) Poderíamos mostrar um outro exemplo onde l < 0 conseqüentemente ε < 0 (encurtamento) 40 Neste exemplo l 0 portanto ε 0 b. sinal: (+) - alongamento Corresponde à uma tensão de tração que também será positiva (-) - encurtamento Corresponde à uma tensão de compressão que também será negativa c. Unidade: - adimensional quando tomarmos para l a mesma unidade que para l i -Taxa milésima (o/ oo ) - Nestes casos medimos l em mm e l i em m(metros). IV. CISALHAMENTO CONVENCIONAL - TENSÕES TANGENCIAIS ( τ ) Consideremos inicialmente um sistema formado por duas chapas de espessura "t" ligadas entre si por um pino de diametro "d", conforme esquematizado abaixo.a largura destas chapas é representada por "l" e a ligação está sujeita à uma carga de tração "P".

5 41 Considerando-se o método das seções, se cortarmos a estrutura por uma seção "S", perpendicular ao eixo do pino e justamente no encontro das duas chapas, nesta seção de pino cortada devem ser desenvolvidos esforços que equilibrem o sistema isolado pelo corte. Então: Isolando: Aplicando as equações de equilíbrio: Σ F x = 0 Q - P = 0 Σ M S = 0 Q = P M - P.t/2 =0 M = P. t 2 Vimos então que as solicitações que se desenvolvem na seção de corte do pino são de Momento Fletor e Esforço Cortante, com os valores acima calculados. Podemos, nestes casos, fazer uma aproximação, desprezando o efeito do momento fletor em presença do efeito do esforço cortante. Isto facilitaria o desenvolvimento matemático do problema, mas teóricamente não é exato pois sabemos que momento e cortante são grandezas interligadas: Q = dm dx Em casos de ligações de peças de pequena espessura, como normalmente aparecem em ligações rebitadas, soldadas, parafusadas, pregadas e cavilhas, esta solução simplificada nos leva a resultados práticos bastante bons, e então adotaremos nestes casos, o cisalhamento aproximado, também chamado de cisalhamento convencional. Conceito: O cisalhamento convencional é uma aproximação do cisalhamento real, onde o efeito do momento é desprezado. Como teríamos apenas uma área sujeita à uma força contida em seu plano e passando pelo seu centro de gravidade, para o cálculo das tensões desenvolvidas adotaríamos a da distribuição uniforme, dividindo o valor da força atuante pela área de atuação da mesma, área esta denominada de ÁREA RESISTENTE, que deveria então ser o objeto da nossa análise. A distribuição uniforme nos diz que em cada ponto desta área a tensão tangencial teria o mesmo valor dada por:

6 42 τ = Q Aresist A lei exata da distribuição de tensões deve ser posteriormente estudada para os outros casos em que o cisalhamento convencional não é adotado. Distorção Específica ( γ ) Medida de deformação de corpos submetidos a tensões tangenciais. Vamos supor um bloco com arestas A, B, C e D, submetido a tensões tangenciais em suas faces. Para melhor visualizarmos a deformação vamos considerar fixa a face compreendida pelas arestas A e B. tg DD = CC' ' γ = CA DB Como em estruturas trabalharemos sempre no campo das pequenas deformações e então γ <<< 1 rad, então arco e tangente se confundem : γ CC' CA = DD ' DB a. Conceito: Distorção específica é a relação entre o deslocamento observado e a distância respectiva, medida perpendicular ao deslocamento. Representa fisicamente a variação que sofre o ângulo reto de um corpo submetido a tensões de cisalhamento. b. Unidade: As observações quanto a unidade da distorção seguem as da deformação específica longitudinal: adimensional ou taxa milésima, ressalvando-se que quando adimensional representa um arco expresso em radianos. IV. LEI DE HOOKE Robert Hooke em 1678 enunciou a lei que leva o seu nome e que é a base de funcionamento dos corpos em regime elástico.

7 43 "As tensões desenvolvidas e suas deformações específicas conseqüentes são proporcionais enquanto não se ultrapassa o limite elástico do material." Expressões analíticas: σ = E(mod. de elasticidade longitudinal) ε τ γ = G( mod. de elasticidade transversal) Estes módulos de elasticidade são constantes elásticas de um material, e são determinados experimentalmente. VI.LEI DE POISSON ( DEFORMAÇÃO ESPECÍFICA TRANSVERSAL)-εt Poisson determinou experimentalmente a deformação que as peças sofrem nas direções perpendiculares a da aplicação da tensão normal. Conceito: Deformação específica transversal é a relação entre a deformação apresentada e o seu comprimento respectivo, ambos medidos em direção perpendicular à da tensão. D ε t = D Os estudos de Poisson sobre a deformação transversal nos levam as seguintes conclusões: 1. ε e εt tem sempre sinais contrários 2. As deformações específicas longitudinais e transversais são proporcionais em um mesmo material ε t = µ ε O coeficiente de Poisson é a terceira constante elástica de um material, também determinada experimentalmente. 3. Em uma mesma seção a deformação específica transversal é constante para qualquer direção perpendicular ao eixo.

8 44 a b = = ε t = cons tan te a b 4. As constantes elásticas de um mesmo material se relacionam pela expressão: G = E 2( 1+ µ ) VII. PROPRIEDADES MECÂNICAS DOS MATERIAIS Para serem determinadas as características mecânicas dos materiais são realizados em laboratório ensaios com amostras do material, que são chamadas de corpos de prova.o ensaio de tração axial é o que discreveremos a seguir.ele consiste em submeter-se uma barra de aço a duas forças axiais iguais e opostas nas extremidades da barra Com a realização destes ensaios podemos separar os materiais em dois grupos Materiais dúcteis : são aqueles que sofrem grandes deformações antes da ruptura. Materiais Frágeis: são materiais que se caracterizam por pequenas deformações anteriores a ruptura. 1. Dúctil com escoamento real: Num ensaio de tração axial simples costuma-se demonstrar os resultados através de um diagrama tensão x deformação específica (σ x ε ). No caso de material dúctil com escoamento real a forma deste diagrama segue o seguinte modelo: reta AB - Indica a proporcionalidade entre σ x ε, portanto o período em que o material trabalha em regime elástico (lei de Hooke). Deformações reversíveis.

9 45 σp - Tensão de proporcionalidade Representa o limite do regime elástico. curva BC - A curvatura indica o fim da proporcionalidade, caracterizando o regime plástico do material. Podemos notar que as deformações crescem mais rapidamente do que as tensões e cessado o ensaio já aparecem as deformações residuais, que graficamente podemos calcular traçando pelo ponto de interesse uma reta paralela à do regime elástico. Notamos que neste trecho as deformações residuais são ainda pequenas mas irreversíveis. σe - Tensão de escoamento Quando é atingida a tensão de escoamento o material se desorganiza internamente (a nível molecular) e sem que se aumente a tensão ao qual ele é submetido, aumenta grandemente a deformação que ele apresenta. trecho CD - Chamado de patamar de escoamento. Durante este período começam a aparecer falhas no material, ficando o mesmo invalidado para a função resistente. curva DE - Após uma reorganização interna o material continua a resistir a tensão em regime plástico, porém agora com grandes e visíveis deformações residuais. σr - Tensão de ruptura 2. Dúctil com escoamento convencional Se comporta de maneira semelhante ao anterior, mas não apresenta patamar de escoamento. Como em estruturas não se admitem grandes deformações residuais se convenciona em 2 o/ oo este limite, ficando a tensão correspondente convencionada como TENSÃO DE ESCOAMENTO. B. MATERIAIS FRÁGEIS São materiais que se caracterizam por pequenas deformações anteriores a ruptura. O diagrama σ x ε é quase linear sendo quase global a aplicação da lei de Hooke.

10 46 σt = Limite de ruptura a tração σ C = Limite ruptura a compressão Em geral estes materiais resistem melhor a compressão do que a tração. VIII. ANÁLISE PLÁSTICA E ANÁLISE ELÁSTICA O dimensionamento das estruturas pode ser realizado no domínio elástico do material ou no domínio plástico. Atualmente a maioria das normas construtivas permitem que os elementos estruturais sofram deformações plásticas objetivando economia de material. Por outro lado, até não muito tempo atrás, todas as normas construtivas trabalhavam com os materiais no domínio elástico.a análise elástica é ainda usada para uma aproximação inicial das dimensões necessárias as estruturas. Na análise elástica, as propriedades mecânicas relativas a resistência, permitem que se fixe uma tensão admissível do material, que nada mais são do que as tensões de escoamento dividida por um coeficiente se segurança nos materiais dúcteis e a tensão de ruptura dividida por um coeficiente de seguranças nos materiais frágeis. EXERCÍCIOS : 1. Uma barra de latão de seção circular de diâmetro 3 cm está tracionada com uma força axial de 50 kn. Determinar a diminuição de seu diâmetro. São dados do material o módulo de elasticidade longitudinal de 1, kn/cm 2 e o seu coeficiente de Poisson 0,3. R: 5, cm 2. Uma barra de aço de 25 cm de comprimento e seção quadrada de lado 5 cm suporta uma força axial de tração de 200 kn. Sendo E = 2, kn/cm2 e ν = 0,3, qual a variação unitária do seu volume? R: 0, Suponha a barra do problema anterior submetida à uma força axial de tração. Experimentalmente determinou-se o módulo de sua deformação específica longitudinal 0,001. Sabendo-se que o seu coeficiente de Poisson é de 0,33, pergunta-se qual o volume final desta barra? R: 625,212 cm 3

11 4. Uma barra de alumínio de seção circular de diâmetro 1. 1/4" está sujeita à uma força de tração de kgf. Determine: a. Tensão normal (a) 651,89 kgf/cm 2 b. Deformação específica longitudinal (b) 0, c. Alongamento em 8" (c) 0,163 mm d. Variação do diâmetro (d) - 0,006 mm e. Variação da área da seção (e) -0,3 mm 2 f. Variação de volume em um comprimento de 200 mm (f) 65 mm3 Admita-se E = 0, kgf/cm 2 ν = 0,25 1" = 25 mm Considere um ensaio cuidadosamente conduzido no qual uma barra de alumínio de 50 mm de diâmetro é solicitada em uma máquina de ensaio. Em certo instante a força aplicada é de 100 kn e o alongamento medido na direção do eixo da barra 0,219 mm em uma distancia padrão de 300 mm.o diâmetro sofreu uma diminuição de 0,0125 mm. Calcule o coeficiente de Poisson do material e o seu módulo de elasticidade longitudinal. R: ν = 0,33 E =0, kn/cm2 6. Uma barra de aço e outra de alumínio tem as dimensões indicadas na figura.determine a carga "P" que provocará um encurtamento total de 0,25 mm no comprimento do sistema. Admitimos que as barras são impedidas de flambar lateralmente, e despresa-se o peso próprio das barras. Dados: Eaço = kn/cm 2 EAl = 0, kn/cm 2 OBS : medidas em cm R : P kn 7. A carga P aplicada à um pino de aço é transmitida por um suporte de madeira por intermédio de uma arruela de diâmetro interno 25 mm e de diâmetro externo "d". Sabendo-se que a tensão normal axial no pino de aço não deve ultrapassar 35

12 MPa e que a tensão de esmagamento média entre a peça de madeira e a arruela não deve exceder 5MPa, calcule o diâmetro "d" necessário para a arruela. 48 R: 6,32 cm 8. Aplica-se à extremidade C da barra de aço ABC uma carga de 66,7 kn. Sabe-se que E aço é de 2,1.104 kn/cm2. Determinar o diâmetro "d" da parte BC para a qual o deslocamento do ponto C seja de 1,3 mm. R: 21,8 mm 9. Usando o desenho do problema anterior, suponha as duas partes da barra de alumínio com módulo de elasticidade longitudinal de 0, kn/cm 2. O diâmetro da parte BC é de 28 mm. Determinar a máxima força que pode ser aplicada na extremidade C sabendo-se que o seu deslocamento não pode ultrapassar 3,8 mm. Sabe-se que a tensão de escoamento admissível para o alumínio é de 16,5 kn/cm 2. R: P 84 kn 10. O fio de aço CD de 2 mm de diâmetro tem seu comprimento ajustado para que sem nenhum carregamento exista uma distancia média de 1,5 mm entre a extremidade B da viga rígida ABC e o ponto de contato E. Pede-se determinar em que ponto deve ser colocado o bloco de 20 kgf sobre a viga de modo a causar contato entre B e E. Dados do aço: E = kn/cm 2.

13 49 R: x = 10 cm 11. Uma barra de aço tem seção transversal de 10 cm2 e está solicitada pelas forças axiais indicadas. Determinar as tensões desenvolvidas nos diversos trechos da barra. R: trecho 1 : kgf/cm2 trecho 2 : 700 kgf/cm 2 trecho 3 : 900 kgf/cm2 12. Uma barra de aço colocada na horizontal mede 5 m. Calcular o seu alongamento quando suspensa verticalmente por uma extremidade. Dados do aço: E = 2, kn/cm2 γ = 80 kn/m3 R: 0, mm 13.Uma guilhotina para cortes de chapas tem mesa com 2 metros de largura de corte e 450 kn de capacidade. Determinar as espessuras máximas de corte em toda a largura para as chapas : a. Aço (τ = 220 MPa ) R: (a) 0.10 cm b. Cobre (τ = 130 MPa ) (b) 0.17 cm c. Alumínio (τ = 70 MPa) (c) 0.32 cm 14.As chapas soldadas abaixo na figura tem espessura de 5/8". Qual o valor de 'P' se na solda usada a tensão admissível ao cisalhamento é de 8 kn/cm2. Determine também o menor trespasse possível adotando-se todas as possibilidades de solda.

14 50 R: P kn g 14 cm 15.Considere-se o pino de 12.5 mm de diametro da junta da figura. A força "P" igual à kn. Admita a distribuição de tensões de cisalhamento uniforme. Qual o valor destas tensões nos planos a-a' e b-b'. R: Kgf/cm2 16.De acôrdo com a figura, a força P tende a fazer com que a peça superior (1) deslize sobre a inferior (2). Sendo P = Kgf, qual a tensão desenvolvida no plano de contato entre as duas peças? R: 4,71 kn/cm 2 1. O aço de baixo teor de carbono usado em estruturas tem limite de resistência ao cisalhamento de 31 kn/cm 2. Pede-se a força P necessária para se fazer um furo de 2.5 cm de diametro, em uma chapa deste aço com 3/8" de espessura. R: 231,91 kn

15 51 17.Considere-se o corpo de prova da figura, de seção transversal retangular 2.5 x 5 cm, usado para testar a resistência a tração da madeira. Sendo para a peroba de 1,3 kn/cm 2 a tensão de ruptura ao cisalhamento, pede-se determinar comprimento mínimo "a" indicado, para que a ruptura se de por tração e não por cisalhamento nos encaixes do corpo de prova. Sabe-se que a carga de ruptura do corpo por tração é de 10,4 kn.

CAPÍTULO V ESFORÇO NORMAL E CORTANTE

CAPÍTULO V ESFORÇO NORMAL E CORTANTE 1 CAPÍTULO V ESFORÇO NORMAL E CORTANTE I. TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) A. TENSÕES E DEFORMAÇÕES: Sempre que tivermos uma peça de estrutura, submetida à carga externa com componente no seu eixo

Leia mais

CAPÍTULO IV INTRODUÇÃO Á RESISTÊNCIA DOS MATERIAIS

CAPÍTULO IV INTRODUÇÃO Á RESISTÊNCIA DOS MATERIAIS CAPÍTULO IV 1 INTRODUÇÃO Á RESISTÊNCIA DOS MATERIAIS I. OBJETIVO FUNDAMENTAL A Resistência dos Materiais se preocupa fundamentalmente com o comportamento das diversas partes de um corpo quando sob a ação

Leia mais

Exercícios de Resistência dos Materiais A - Área 3

Exercícios de Resistência dos Materiais A - Área 3 1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO CONTROLE DE QUALIDADE INDUSTRIAL Tensão Tensão é ao resultado da ação de cargas externas sobre uma unidade de área da seção analisada na peça, componente mecânico ou estrutural submetido à solicitações

Leia mais

Resistência dos Materiais Teoria 2ª Parte

Resistência dos Materiais Teoria 2ª Parte Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

Relações entre tensões e deformações

Relações entre tensões e deformações 9 de agosto de 06 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões

Leia mais

Estabilidade. Marcio Varela

Estabilidade. Marcio Varela Estabilidade Marcio Varela Esforços internos O objetivo principal deste módulo é estudar os esforços ou efeitos internos de forças que agem sobre um corpo. Os corpos considerados não são supostos perfeitamente

Leia mais

CAPÍTULO I INTRODUÇÃO À RESISTENCIA DOS MATERIAIS ESFORÇO NORMAL SIMPLES

CAPÍTULO I INTRODUÇÃO À RESISTENCIA DOS MATERIAIS ESFORÇO NORMAL SIMPLES 1 CAPÍTULO I INTRODUÇÃO À RESISTENCIA DOS MATERIAIS ESFORÇO NORMAL SIMPLES I. INTRODUÇÃO A RESISTÊNCIA DOS MATERIAIS Um corpo em equilíbrio, sujeito a cargas externas ativas e reativas, possui em seu interior

Leia mais

Propriedades mecânicas dos materiais

Propriedades mecânicas dos materiais Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente

Leia mais

Teste de tração - compressão

Teste de tração - compressão PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Renata Machado Soares - REMA I Teste de tração - compressão Resistência capacidade de suportar carga sem deformação excessiva ou ruptura; A partir de um ensaio

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS

CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS I. OBJETIVO FUNDAMENTAL A Resistência dos Materiais se preocupa fundamentalmente com o comportamento das diversas partes de um corpo quando sob a ação

Leia mais

CAPÍTULO VIII TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES)

CAPÍTULO VIII TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) 1 CÍTULO VIII TRÇÃO OU COMRESSÃO XIL (SIMLES) I. CONCEITO: Quando um corpo que está sob ação de forças externas, na direção do seu eixo longitudinal, origina-se Esforços Normal no seu interior, mesmo sendo

Leia mais

CAPÍTULO 3 ESFORÇO CORTANTE

CAPÍTULO 3 ESFORÇO CORTANTE CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento

Leia mais

Capítulo 3: Propriedades mecânicas dos materiais

Capítulo 3: Propriedades mecânicas dos materiais Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade

Leia mais

Este é um material de apoio para os alunos do técnico em Eletromecânica. Bons estudos.

Este é um material de apoio para os alunos do técnico em Eletromecânica. Bons estudos. Este é um material de apoio para os alunos do técnico em Eletromecânica. Bons estudos. Prof. Lucas Boeira Michels 2010_1 Aprender é um dom natural do ser humano, e ninguém tem o direito de destruí-lo.

Leia mais

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma

Leia mais

MECSOL34 Mecânica dos Sólidos I

MECSOL34 Mecânica dos Sólidos I MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão

Leia mais

Deformação. - comportamento de um material quando carregado

Deformação. - comportamento de um material quando carregado Deformação - comportamento de um material quando carregado : tipos de deformação Deformação - deformação normal variação do comprimento de uma fibra em relação a uma direção. : tipos de deformação Deformação

Leia mais

3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL

3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 3ª LISTA

Leia mais

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

Tema III. TRAÇÃO E COMPRESSÃO 3.1. Introdução. Esforços solicitantes são esforços (efeitos) internos:

Tema III. TRAÇÃO E COMPRESSÃO 3.1. Introdução. Esforços solicitantes são esforços (efeitos) internos: Tema III. TRAÇÃO E COMRESSÃO 3.1. Introdução Esforços solicitantes são esforços (efeitos) internos: Força normal ou axial (N), É definida como força axial ou normal a carga que atua na direção do eixo

Leia mais

Tensões. Professores: Nádia Forti Marco Carnio

Tensões. Professores: Nádia Forti Marco Carnio Tensões Professores: Nádia Forti Marco Carnio SOLICITAÇÃO AXIAL Se uma força tende a alongar o elemento, é chamada de força de tração. Se uma força tende a encurtar o elemento, é chamada de força de compressão.

Leia mais

MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano

MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer o comportamento dos materiais na tração e compressão Compreender o gráfico de tensão x deformação

Leia mais

Capítulo 4 Propriedades Mecânicas dos Materiais

Capítulo 4 Propriedades Mecânicas dos Materiais Capítulo 4 Propriedades Mecânicas dos Materiais Resistência dos Materiais I SLIDES 04 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Propriedades Mecânicas dos Materiais 2 3 Propriedades

Leia mais

CENTRO UNIVERSITÁRIO PLANALDO DO DISTRITO FEDERAL

CENTRO UNIVERSITÁRIO PLANALDO DO DISTRITO FEDERAL 7. Propriedades Mecânicas dos Materiais As propriedades mecânicas de um material devem ser conhecidas para que os engenheiros possam relacionar a deformação medida no material com a tensão associada a

Leia mais

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016. Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal. Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo

Leia mais

Equações Diferenciais aplicadas à Flexão da Vigas

Equações Diferenciais aplicadas à Flexão da Vigas Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...

Leia mais

CAPÍTULO VII FLEXÃO PURA

CAPÍTULO VII FLEXÃO PURA 59 CAPÍTULO VII FLEXÃO PURA I. ELEMENTOS DE VIGA São elementos lineares, isto é, que apresentam uma das dimensões (comprimento) muito maior do que as outras duas (dimensões da seção transversal) e que

Leia mais

Objetivo do capítulo. O ensaio de tração e compressão

Objetivo do capítulo. O ensaio de tração e compressão Capítulo 3: Propriedades mecânicas dos materiais Adaptado pela prof. Dra. Danielle Bond Objetivo do capítulo Agora que já discutimos os conceitos básicos de tensão e deformação, mostraremos, neste capítulo,

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais Ciências dos Materiais Propriedades Mecânicas dos Materiais IMPORTÂNCIA Aplicações onde são necessárias solicitações mecânicas. Atender as exigências de serviço previstas. POR QUÊ ESTUDAR? A determinação

Leia mais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05

Leia mais

DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO

DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO 1) A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento de 10 mm para baixo na extremidade

Leia mais

AULA 4 Materiais de Construção II

AULA 4 Materiais de Construção II AULA 4 Materiais de Construção II Introdução Para a construção, as propriedades que interessam considerar aos metais são várias, concretamente, a aparência, densidade, dilatação e condutibilidade térmica,

Leia mais

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE 3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE

Leia mais

CAPÍTULO VII FLEXÃO PURA

CAPÍTULO VII FLEXÃO PURA 1 CAPÍTULO VII FLEXÃO PURA I. VIGAS CARREGADAS TRANSVERSALMENTE Uma viga é um elemento linear de estrutura que apresenta a característica de possuir uma das dimensões (comprimento) muito maior do que as

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05

Leia mais

Capítulo 3 Propriedades Mecânicas dos Materiais

Capítulo 3 Propriedades Mecânicas dos Materiais Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

5 Resultados Experimentais

5 Resultados Experimentais 5 Resultados Experimentais 5.1. Introdução Neste capítulo são apresentados os resultados medidos dos dois testes experimentais em escala real realizados para a comparação dos resultados teóricos. 5.2.

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Tensões associadas a esforços internos

Tensões associadas a esforços internos Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

AULA 03 - TENSÃO E DEFORMAÇÃO

AULA 03 - TENSÃO E DEFORMAÇÃO AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. A - DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito

Leia mais

Equações diferenciais

Equações diferenciais Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q

Leia mais

Aula 2 - Tensão Normal e de Cisalhamento.

Aula 2 - Tensão Normal e de Cisalhamento. Aula 2 - Tensão Normal e de Cisalhamento. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a figura 1.17a. Se AB tiver diâmetro de 10 mm

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da

Leia mais

Aula 6 Propriedades dos materiais

Aula 6 Propriedades dos materiais Aula 6 Propriedades Mecânicas dos Materiais E-mail: daniel.boari@ufabc.edu.br Universidade Federal do ABC Princípios de Reabilitação e Tecnologias Assistivas 3º Quadrimestre de 2018 Conceitos fundamentais

Leia mais

Mecânica dos Sólidos I Lista de exercícios I Barras e treliças

Mecânica dos Sólidos I Lista de exercícios I Barras e treliças Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,

Leia mais

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN) PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas

Leia mais

ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2015/2016

ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2015/2016 CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2015/2016 1 a QUESTÃO Valor: 1,0 Viga Seção transversal T A figura acima mostra uma viga de seção transversal

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

Problema resolvido 4.2

Problema resolvido 4.2 Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)

Leia mais

Resistência dos Materiais

Resistência dos Materiais 1ª Parte Capítulo 1: Introdução Conceito de Tensão Professor Fernando Porto Resistência dos Materiais 1.1. Introdução O principal objetivo do estudo da mecânica dos materiais é proporcionar ao engenheiro

Leia mais

para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por:

para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por: Lista de torção livre Circular Fechada - Valério SA. - 2015 1 1) a. Determinar a dimensão a de modo a se ter a mesma tensão de cisalhamento máxima nos trechos B-C e C-D. b. Com tal dimensão pede-se a máxima

Leia mais

1ª Lista de Exercícios

1ª Lista de Exercícios Universidade do Estado de Mato Grosso Engenharia Elétrica Mecânica dos Sólidos Prof. MSc. Letícia R. Batista Rosas 1ª Lista de Exercícios 01) A coluna está sujeita a uma força axial de 8 kn aplicada no

Leia mais

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por: PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;

Leia mais

Exercícios de flexão pura e composta - prof. Valério SA Universidade de São Paulo - USP

Exercícios de flexão pura e composta - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1. Obter o máximo valor admissível de P para a estrutura abaixo. Admita que o cabo CD esteja preso em C no CG da seção da viga AB. Dados para a viga AB: 250 MPa, 100 MPa. Dados

Leia mais

3 DIMENSIONAMENTO À TRAÇÃO SIMPLES 3.1 CONCEITOS GERAIS 3.2 EQUAÇÃO DE DIMENSIONAMENTO FORÇA AXIAL RESISTENTE DE CÁLCULO

3 DIMENSIONAMENTO À TRAÇÃO SIMPLES 3.1 CONCEITOS GERAIS 3.2 EQUAÇÃO DE DIMENSIONAMENTO FORÇA AXIAL RESISTENTE DE CÁLCULO 3 DIMENSIONAMENTO À TRAÇÃO SIMPLES As condições para o dimensionamento de peças metálicas à tração simples estão no item 5.2 da NBR 8800. Essa seção (seção 5) da NBR trata do dimensionamento de elementos

Leia mais

AULA 4 Materiais de Construção II

AULA 4 Materiais de Construção II Faculdade de Engenharia - Licenciatura em Engenharia Civil UL 4 Materiais de Construção II Capítulo ula 4 (Teórica/Prática) II ços para Construção Introdução Ensaios sobre os aços: 1) Ensaio de Tracção;

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

Tensões de Cisalhamento em Vigas sob Flexão

Tensões de Cisalhamento em Vigas sob Flexão 31 de outubro de 2016 (a) Peças sem acoplamento. (b) Peças com acoplamento. (a) Peças sem acoplamento. (b) Peças com acoplamento. Na primeira situação, mostrada na Figura (a), as peças trabalham de forma

Leia mais

Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP

Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme

Leia mais

Barras prismáticas submetidas à força axial de tração

Barras prismáticas submetidas à força axial de tração 4 Barras prismáticas submetidas à força axial de tração Este capítulo apresenta o dimensionamento de barras prismáticas submetidas à força axial de tração, incluindo barras ligadas por pinos e barras redondas

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 02: Estruturas com barras sob corportamento axial

Leia mais

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para

Leia mais

Várias formas da seção transversal

Várias formas da seção transversal Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com

Leia mais

1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em

1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em 1.36. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que θ = 60º.

Leia mais

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da

Leia mais

COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I

COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I PMT 2100 - Introdução à Ciência dos Materiais para Engenharia

Leia mais

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,

Leia mais

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS

Leia mais

Teoria das Estruturas I - Aula 08

Teoria das Estruturas I - Aula 08 Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;

Leia mais

a) Os três materiais têm módulos de elasticidade idênticos. ( ) Introdução à Ciência dos Materiais para Engenharia PMT 3110

a) Os três materiais têm módulos de elasticidade idênticos. ( ) Introdução à Ciência dos Materiais para Engenharia PMT 3110 Lista de Exercícios 06 / 2018 Comportamento mecânico dos materiais - Parte I 1. Um pedaço de arame recozido de aço baixo carbono tem 2 mm de diâmetro, limite de escoamento 210 MPa e módulo de elasticidade

Leia mais

AULA 03 - TENSÃO E DEFORMAÇÃO

AULA 03 - TENSÃO E DEFORMAÇÃO AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito

Leia mais

3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 09/08/2012

3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 09/08/2012 1 2 Dureza: é a resistência que os corpos opõem ao serem riscados, a dureza pode ser avaliada a partir da capacidade que um material tem, de riscar o outro. Ex.: Diamante e vidro. Escala de dureza de Mohs:

Leia mais

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção Estruturas de concreto Armado II Aula IV Flexão Simples Equações de Equilíbrio da Seção Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR

Leia mais

COMPORTAMENTO MECÂNICO DOS MATERIAIS

COMPORTAMENTO MECÂNICO DOS MATERIAIS UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES COMPORTAMENTO MECÂNICO DOS MATERIAIS Propriedades Mecânicas dos Materiais

Leia mais

Barras prismáticas submetidas a momento fletor e força cortante

Barras prismáticas submetidas a momento fletor e força cortante Barras prismáticas submetidas a momento fletor e força cortante Introdução Os esforços mais comuns de incidência em vigas estruturais são a força cortante e o momento fletor, os quais são causados por

Leia mais

Resistência dos Materiais

Resistência dos Materiais CONCURSO PETROBRAS TÉCNICO(A) DE MANUTENÇÃO JÚNIOR - MECÂNICA Resistência dos Materiais Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO DRAFT Produzido por Exatas Concursos www.exatas.com.br

Leia mais

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída)

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída) ESTRUTURS DE CONCRETO RMDO Lista para a primeira prova Questão 1) P1 V1 P2 V4 P3 V2 V3 4m 2m 3m V5 P4 h ' s s b d Seção das vigas: b=20cm ; h=40cm ; d=36cm Carga de serviço sobre todas as vigas: 15kN/m

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares

Leia mais

QUESTÕES DE PROVAS QUESTÕES APROFUNDADAS

QUESTÕES DE PROVAS QUESTÕES APROFUNDADAS UNIVERSIDDE FEDERL DO RIO GRNDE DO SUL ESOL DE ENGENHRI DEPRTMENTO DE ENGENHRI IVIL ENG 01201 MEÂNI ESTRUTURL I QUESTÕES DE PROVS QUESTÕES PROFUNDDS ISLHMENTO ONVENIONL TEORI TÉNI DO ISLHMENTO TORÇÃO SIMPLES

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 2 Tensão e deformação: Carregamento axial Conteúdo Tensão e Deformação: Carregamento Axial Deformação Normal

Leia mais

MORFOLOGIA DAS ESTRUTURAS

MORFOLOGIA DAS ESTRUTURAS I - ESTRUTURAS RESISTENTES MORFOLOGIA DAS ESTRUTURAS É um conjunto de elementos ligados entre si que tem a finalidade de suportar cargas e transferi-las ao solo. Os esforços externos ativos ou cargas que

Leia mais