CAPÍTULO I INTRODUÇÃO À RESISTENCIA DOS MATERIAIS ESFORÇO NORMAL SIMPLES

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO I INTRODUÇÃO À RESISTENCIA DOS MATERIAIS ESFORÇO NORMAL SIMPLES"

Transcrição

1 1 CAPÍTULO I INTRODUÇÃO À RESISTENCIA DOS MATERIAIS ESFORÇO NORMAL SIMPLES I. INTRODUÇÃO A RESISTÊNCIA DOS MATERIAIS Um corpo em equilíbrio, sujeito a cargas externas ativas e reativas, possui em seu interior esforços. Estes esforços internos ou solicitações internas são devidos ao deslocamento das partículas que compõem o corpo, até que seja atingido o equilíbrio. Observe-se que o equilíbrio se dá na configuração deformada do corpo, que admitiremos como igual a configuração inicial pois em estruturas estaremos sempre no campo das pequenas deformações. A Resistência dos Materiais se preocupa fundamentalmente com o comportamento das diversas partes de um corpo quando sob a ação destas solicitações internas. Podemos resumir um problema de Resistência dos Materiais conforme fluxograma abaixo: Estrutura Cargas Externas Ativas Solicitações Tensões Cargas Externas Reativas Deformaçõe Limite Resistente do Material Critério de Resistência (Coeficiente de Segurança) PROJETO VERIFICAÇÃO

2 2 II. TENSÕES Conforme já citamos, as tensões que se desenvolvem entre as partículas de um corpo são conseqüência dos esforços internos desenvolvidos. Como os esforços são elementos vetoriais (módulo, direção e sentido) a tensão como conseqüência também o será. Lembrando o método das seções visto em Isostática: "Supondo um corpo carregado e em equilíbrio estático. Se cortarmos este corpo por uma seção qualquer "S" isolando, como exemplo, a parte da esquerda, podemos dizer que na seção cortada devem se desenvolver esforços que se eqüivalham aos esforços da parte da direita retirada, para que assim o sistema permaneça em equilíbrio. Estes esforços, convenientemente decompostos, se constituem nas solicitações internas fundamentais. O isolamento da parte da esquerda foi um exemplo, pois com a parte da direita o mesmo pode ser feito." Partindo deste raciocínio podemos afirmar que em cada elemento de área que constitui a seção cortada está sendo desenvolvido um elemento de força, cujo somatório (resultante) mantém o equilíbrio do corpo isolado. A tensão () desenvolvida no elemento de área citado nada mais é do que a distribuição do efeito da força pela área de atuação da mesma. Substituindo-se a representação da força pela tensão que ela provoca, teremos o representado na figura (a). Como a tensão é um elemento vetorial ela pode, como qualquer vetor, ser decomposta no espaço segundo 3 direções ortogonais que queiramos, e, portanto

3 3 conforme foi feito com as solicitações, vamos fazer esta decomposição em direções convenientes (fig b) levando-se em consideração as deformações que provocam. Isto nos permite dividir as componentes da tensão do ponto em duas categorias: - Tensões Tangenciais ou de Cisalhamento (τ) - Contidas pelo plano da seção de referência. - Tensão Normal () - Perpendicular à seção de referência. A. TENSÕES NORMAIS () Conceito: A tensão normal tem a direção perpendicular à seção de referência e o seu efeito é o de provocar alongamento ou encurtamento das fibras longitudinais do corpo, mantendoas paralelas. Deformação específica longitudinal (ε) Costuma-se medir a deformação de peças sujeitas a tensão normal pela deformação específica longitudinal, representando-a pela letra ε

4 4 Deformação Específica Longitudinal é a relação que existe entre a deformação medida em um corpo e o seu comprimento inicial, sendo as medidas feitas na direção da tensão. Seja: l i comprimento inicial da barra l f comprimento final da barra l deformação total l = l f - l i ε = l li Observe que no exemplo dado l > 0 portanto ε > 0 (alongamento) Poderíamos mostrar um outro exemplo onde l < 0 consequentemente ε < 0 (encurtamento) Neste exemplo l 0 portanto ε 0 OBSERVAÇÕES: 1. Sinal: (+) Alongamento Corresponde à uma tensão de tração que também é positiva (-) Encurtamento Corresponde à uma tensão de compressão que também é negativa 2. Unidade: - adimensional quando tomarmos para l a mesma unidade que para li -Taxa milesimal ( o / oo ) - Nestes casos medimos l em mm e l i em m(metros). B. TENSÕES TANGENCIAIS ( τ ) Conceito: Tensão desenvolvida no plano da seção de referência tendo o efeito de provocar corte ou cisalhamento nesta seção.

5 5 Distorção Específica ( γ ) Medida de deformação de corpos submetidos a tensões tangenciais, sendo representada pela letra grega γ. Vamos supor um bloco com arestas A, B, C e D, submetido a tensões tangenciais em suas faces. Para melhor visualizarmos a deformação vamos considerar fixa a face compreendida pelas arestas A e B. tg DD = CC' ' γ = CA DB Como em estruturas trabalharemos sempre no campo das pequenas deformações e então γ <<< 1 rad, então arco e tangente se confundem e podemos considerar: γ CC' CA = DD ' DB Distorção específica é a relação entre o deslocamento observado e a distância respectiva, medida perpendicular ao deslocamento. Representa fisicamente a variação que sofre o ângulo reto de um corpo submetido a tensões de cisalhamento. OBSERVAÇÃO: Quanto a unidade, a distorção segue a da deformação específica longitudinal: adimensional ou taxa milesimal, ressalvando-se que quando adimensional representa um arco expresso em radianos. III. DEFORMAÇÕES E ELASTICIDADE

6 6 Deformação é a alteração da forma que sofre um corpo submetido a solicitações, devido ao movimentos das partículas que o constituem. Existe a tendência dos corpos de voltarem a forma original devido a força de atração entre as partículas. Podemos diferenciar os tipos de deformações observando um ensaio simples, de uma mola presa a uma superfície fixa e submetida sucessivamente a cargas cada vez maiores até a sua ruptura. a. Deformações elásticas Iniciando o ensaio observamos que a mola se distende sob a ação das cargas, e se medirmos numéricamente o valor da carga e sua respectiva distensão teremos: P1 P2 = =... = P = k (constante elástica da mola) d1 d2 dn n Além disto, se o ensaio for interrompido durante esta fase, a mola voltará a ter sua forma e seu comprimento inicial. Este comportamento caracteriza uma deformação elástica, cujas propriedades são: - deformações reversíveis - proporcionalidade entre carga e deformação. b. Deformações plásticas:

7 7 Se aumentássemos a carga sobre esta mola ela chegaria a uma situação em que terminaria a proporcionalidade e apesar da tendência do corpo em assumir sua forma original, sempre restariam as chamadas Deformações Residuais. Considera-se então terminado o regime elástico e o corpo passa a atuar em regime plástico. Note-se então que no regime plástico termina a proporcionalidade e a reversibilidade das deformações. Se aumentássemos ainda mais a carga, o próximo limite seria a Ruptura. IV. LEI DE HOOKE Conforme veremos, a maioria dos projetos de peças serão tratados no regime elástico do material, sendo os casos mais sofisticados trabalhados em regime plástico e se constituindo no que há de mais moderno e ainda em estudo no campo da Resistência doa Materiais. Robert Hooke em 1678 enunciou a lei que leva o seu nome e que é a base de funcionamento dos corpos em regime elástico. "As tensões desenvolvidas e suas deformações específicas conseqüentes são proporcionais enquanto não se ultrapassa o limite elástico do material." ] Expressões analíticas: ε = E(mod. de elasticidade longitudinal)

8 8 τ γ = G( mod. de elasticidade transversal) Estes módulos de elasticidade são constantes elásticas de um material, e são determinados experimentalmente. Exemplo: Aço Comum : E 2, kn/cm 2 G 0, kn/cm 2 V. LEI DE POISSON Estudos realizados por POISSON determinam que ao mesmo tempo em que as tensões normais provocam deformação em sua direção também o fazem em direções perpendiculares a sua: Observando o modelo acima podemos notar que enquanto o corpo sofre um encurtamento (diminuição no seu comprimento), as dimensões de sua seção transversal aumentam. Se observássemos um corpo tracionado, veríamos que o aumento de seu comprimento viria acompanhado de uma diminuição nas dimensões de sua seção transversal.

9 9 Além disto os estudos de Poisson nos conduzem a uma proporcionalidade entre as deformações longitudinais e transversais, definindo a constante chamada de coeficiente de Poisson, e se constituindo na terceira constante elástica de um material, que também é determinada experimentalmente. ε t = µ ε Também foi observado que em qualquer direção perpendicular a da tensão a deformação específica transversal tem o mesmo valor. As constantes elásticas de um mesmo material se relacionam pela expressão: G = E 2( 1+ µ ) Concluindo: Tensão em uma só direção não implica em deformação em uma só direção. VI. PROPRIEDADES MECÂNICAS DOS MATERIAIS Para serem determinadas as características mecânicas dos materiais são realizados em laboratório ensaios com amostras do material, que são chamadas de corpos de prova. No Brasil estes ensaios são realizados empregando-se métodos padronizados e regulamentados pela ABNT. O ensaio mais costumeiro é o de tração simples, onde determinamos TENSÕES LIMITES dos diversos materiais, que indica a tensão máxima alcançada pelo material, em laboratório, sem que se inicie o seu processo de ruptura. Com a realização destes ensaios já podemos separar os materiais em dois grandes grupos: DÚTEIS E FRÁGEIS A. MATERIAIS DÚTEIS : São considerados materiais dúteis aqueles que sofrem grandes deformações antes da ruptura. Dentre os materiais dúteis ainda temos duas categorias:

10 10 1. Dútil com escoamento real: exemplo: aço comum Num ensaio de tração axial simples costuma-se demonstrar os resultados através de um diagrama tensão x deformação específica ( x ε ). No caso de material dútil com escoamento real a forma deste diagrama segue o seguinte modelo: reta AB - Indica a proporcionalidade entre x ε, portanto o período em que o material trabalha em regime elástico (lei de Hooke). Deformações reversíveis. p - Tensão de proporcionalidade - Representa o limite do regime elástico. curva BC - A curvatura indica o fim da proporcionalidade, caracterizando o regime plástico do material. Podemos notar que as deformações crescem mais rapidamente do que as tensões e cessado o ensaio já aparecem as deformações residuais, que graficamente podemos calcular traçando pelo ponto de interesse uma reta paralela à do regime elástico. Notamos que neste trecho as deformações residuais são ainda pequenas mas irreversíveis. e - Tensão de escoamento Quando é atingida a tensão de escoamento o material se desorganiza internamente (a nível molecular) e sem que se aumente a tensão ao qual ele é submetido, aumenta grandemente a deformação que ele apresenta. trecho CD - Chamado de patamar de escoamento. Durante este período começam a aparecer falhas no material (estricções), ficando o mesmo invalidado para a função resistente.

11 11 curva DE - Após uma reorganização interna o material continua a resistir a tensão em regime plástico, porém agora com grandes e visíveis deformações residuais. As estricções são agora perceptíveis nitidamente. Não se admitem estruturas com esta ordem de grandeza para as deformações residuais. R - Tensão de ruptura Conforme pudemos analisar no ensaio acima, para estruturas, o material pode ser aproveitado até o escoamento, portanto sua TENSÃO LIMITE será a TENSÃO DE ESCOAMENTO. 2. Dútil com escoamento convencional Exemplo: aços duros Se comporta de maneira semelhante ao anterior, mas não apresenta patamar de escoamento. Como em estruturas não se admitem grandes deformações residuais se convenciona em 2 o /oo este limite, ficando a tensão correspondente convencionada como TENSÃO DE ESCOAMENTO, que é também a TENSÃO LIMITE do material.

12 12 OBSERVAÇÕES: Os materiais dúteis de uma maneira geral são classificados como aqueles que apresentam grandes deformações antes da ruptura, podendo também ser utilizados em regime plástico com pequenas deformações residuais. Apresentam uma propriedade importantíssima que é: RESISTEM IGUALMENTE A TRAÇÃO E A COMPRESSÃO Isto quer dizer que o escoamento serve como limite de tração e de compressão. B. MATERIAIS FRÁGEIS Exemplo : concreto São materiais que se caracterizam pôr pequenas deformações anteriores a ruptura. O diagrama x ε é quase linear sendo quase global a aplicação da lei de Hooke. Nestes casos a TENSÃO LIMITE é a TENSÃO DE RUPTURA. Ao contrário dos materiais dúteis, eles resistem diferentemente a tração e a compressão, sendo necessário ambos os ensaios e obtendo-se assim dois limites: T = Limite de ruptura a tração C = Limite ruptura a compressão Em geral estes materiais resistem melhor a compressão do que a tração. VII. CRITÉRIO DE RESISTÊNCIA - COEFICIENTE DE SEGURANÇA Em termos gerais um projeto está sempre ligado ao binômio economia x segurança. Devemos ter um índice que otimize este binômio. Poderíamos dizer também que mesmo sendo determinada em laboratório a utilização da tensão limite em projetos é arriscada, pois trabalhamos com diversos fatores de incerteza.

13 13 Em vista do que foi exposto adotamos o seguinte critério: A tensão limite é reduzida dividindo-a pôr um número que chamaremos de coeficiente de segurança (s). Para que este número reduza o módulo da tensão limite, ele deve ser maior do que a unidade. Então, para que haja segurança: s 1 As tensões assim reduzidas, que são as que realmente podemos utilizar, são chamadas de TENSÕES ADMISSÍVEIS ou TENSÕES DE SERVIÇO que para serem diferenciadas das tensões limites são assinaladas com uma barra ( ). adm s = lim Podemos resumir analíticamente o critério de segurança conforme abaixo, para os diversos casos: MATERIAIS DÚTEIS MATERIAIS FRÁGEIS e T = = (tensão de escoa. adm.) = = (tensão de tração adm.) máxt e máxt T s s e c = = máxc e (tensão de esc. adm.) máxc = = c (tensão de compr. adm.) s s VIII. ESFORÇO NORMAL AXIAL Seja uma barra prismática de eixo longitudinal reto e seção transversal constante de área A. Quando sob ação de duas forças iguais e opostas, coincidentes com o seu eixo (lugar geométrico de todas as seções transversais) originam-se esforços no seu interior, mesmo sendo de equilíbrio a situação. Pode-se imaginar a barra sendo cortada ao longo de uma seção transversal qualquer, por exemplo b-b (fig a). Assim como todo o corpo está em equilíbrio, qualquer parte sua também estará. Na seção de corte de área A, deve aparecer uma força equivalente ao esforço normal N, capaz de manter o equilíbrio das partes do corpo isoladas pelo corte (fig b e c).

14 14 Observe que se as partes isoladas forem novamente unidas, voltamos a situação precedente ao corte. Neste caso, apenas a solicitação de esforço normal N, atuando no centro de gravidade da seção de corte é necessária para manter o equilíbrio. Por meio deste artifício (corte) os esforços internos transformaram-se em externos e o seu cálculo se fez aplicando-se uma equação de equilíbrio. Admite-se que este esforço normal se distribui uniformemente na área em que atua(a), ficando a tensão definida pela expressão: = N A sendo: N Esforço Normal desenvolvido A Área da seção transversal

15 15 Na prática, vistas isométricas do corpo são raramente empregadas, sendo a visualização simplificada como: ΣF y = 0 Q = 0 Σ Ms = 0 M = 0 Σ Fx = 0 N - F = 0 N = F A tração ou Compressão axial simples pode ser observada, por exemplo, em tirantes, pilares e treliças. Lembramos a convenção adotada para o esforço normal (N) Nas tensões normais, adotamos a mesma convenção.

16 16 As deformações desenvolvidas podem ser calculadas diretamente pela lei de Hooke: ε = l l ε = E N = P = N A l l = E l l = N EA ou : l = N.l E.A II. VALIDADE DA DISTRIBUIÇÃO UNIFORME Ao aceitarmos as equações acima, deve-se ter em mente que o comportamento do material é idealizado, pois todas as partículas do corpo são consideradas com contribuição igual para o equilíbrio da força N. Podemos calcular a resultante de força N aplicada no centróide da seção se somarmos todas as resultantes de força que atuam em todos os elementos de área que constituem a seção transversal. N =. da A Como partimos da premissa de que em todos os elementos de área atua a mesma tensão, decorre daí que: N =. A Nos materiais reais esta premissa não se verifica. Por exemplo, os metais consistem em grande número de grãos e as madeiras são fibrosas. Sendo assim, algumas partículas contribuirão mais para a resistência de que outras, e o diagrama verdadeiro de distribuição de tensões varia em cada caso particular e é bastante irregular. Os métodos de obtenção desta distribuição exata de tensões são tratados na teoria matemática da elasticidade e mesmo assim apenas casos simples podem ser resolvidos.

17 17 Neste caso observa-se que quanto mais perto da carga aplicada estiver a seção em estudo, maior será o pico de tensões normais. Em termos práticos porém, os cálculos pela equação da tensão uniforme são considerados corretos. Outros dois fatores de concentração de tensões, onde a distribuição uniforme não é válida, são mostrados abaixo, e representam peças com variações bruscas de seção. Deve-se ter um cuidado adicional para com as peças comprimidas, pois peças esbeltas devem ser verificadas a flambagem. A flambagem representa uma situação de desequilíbrio elasto-geométrico do sistema e pode provocar o colapso sem que se atinja o esmagamento.

18 18 III. PESO PRÓPRIO DAS PEÇAS 1. ASPECTOS GERAIS O peso próprio das peças constitui-se em uma das cargas externas ativas que devem ser resistidas. Podemos observar como se dá a ação do peso próprio: Podemos notar que nas peças horizontais o peso próprio constitui-se em uma carga transversal ao eixo, desenvolvendo Momento Fletor e Esforço Cortante. No caso das peças verticais o peso próprio (G), atua na direção do eixo longitudinal da peça e provoca Esforço Normal, que pode ter um efeito diferenciado dependendo da sua vinculação: Nas peças suspensas (tirantes) o efeito do peso é de tração e nas apoiadas (pilares) este efeito é de compressão. O peso próprio de uma peça (G) pode ser calculado, multiplicando-se o volume da mesma pelo peso específico do material: G = A. γ. l

19 19 Sendo: A - área da seção transversal da peça l - comprimento γ peso específico do material Na tração ou compressão axial a não consideração do peso próprio é o caso mais simples. A não consideração do peso próprio se dá em peças construídas em materiais de elevada resistência, quando a mesma é capaz de resistir a grandes esforços externos com pequenas dimensões de seção transversal, ficando portanto o seu peso próprio um valor despresível em presença da carga externa. Nestes casos é comum desprezarmos o peso próprio da peça. Exemplo: Treliças e tirantes. 2. ESFORÇO NORMAL E TENSÕES NORMAIS Consideremos uma barra sujeita a uma carga externa P e ao seu próprio peso, conforme exemplo abaixo: Sejam: A - área de seção transversal da peça γ - peso específico do material l - comprimento da peça P - carga externa atuante na peça Usando o método das seções cortamos a barra acima por uma seção S qualquer e isolamos um dos lados do corte, por exemplo, o lado de baixo. OBS: Sempre que ao separarmos em 2 partes um corpo uma delas for uma extremidade livre é conveniente isolarmos esta parte pois evita o cálculo das reações vinculares.

20 20 Como o peso do material não pode mais ser desprezado, na seção cortada deve aparecer um esforço normal que equilibre a carga externa e também o peso próprio do material isolado. Isto já nos indica que a posição da seção de corte tem agora importância pois ela determina o peso da peça isolado pelo corte. De acordo com esta conclusão devemos criar uma variável que nos indique a posição da seção de corte desejada. Sendo: x ordenada genérica da posição da seção à ser analizada Como a barra tem um comprimento l 0 x l Aplicando a equação de equilíbrio pertinente: Σ F y = 0 N - P - g = 0 N = P + g(x) onde g x é o peso parcial da barra isolada pelo corte Para avaliarmos o peso de um corpo, multiplicamos o seu volume por seu peso específico V = A.x gx = A. γ. x N = P + A. γ. x Observe que o esforço normal varia linearmente em função da ordenada x da seção de referência. Como 0 x l podemos calcular os valores extremos do esforço normal x = 0 x = l N = P N máx = P + A. γ. l

21 21 Chamando: G - Peso total da barra G = A. γ. l Então podemos escrever de outra forma o máximo esforço normal: Nmáx = P + G Podemos descrever a variação de esforço normal sob a forma gráfica: Da mesma maneira como desenvolvemos as expressões analíticas para o esforço normal podemos faze-lo com as tensões normais: Sabemos que ( x ) = N A γ. Como N(x) = P + A. γ. x então: ( x ) = P + A. x A ou ( x ) = P γ A +.x Substituindo x por seus valores extremos teremos:

22 22 x = 0 = P A x = l máx = P γ A +. l Podemos com modificações algébricas expressar o valor da tensão máxima em função do peso total da barra,colocando A como denominador comum as parcelas: máx = P + A. γ.l A ou máx = P + G A OBS: 1. Nas expressões acima deduzidas a carga P das primeiras parcelas representa esforços externos à peça em estudo ficando as segundas parcelas com o efeito do peso próprio. 2. Tanto o esforço normal máximo como a tensão normal máxima foram expressas em duas equações, uma em função do peso específico do material e outra em função do peso total da peça. A utilização de uma ou outra equação depende dos dados que possuimos e da conveniência do problema. 3. Como ao deduzirmos estas expressões utilizamos como exemplo um caso em que tanto a carga externa como o peso próprio são esforços de tração, ambas as parcelas são positivas. No caso de haver qualquer um destes efeitos negativo (compressão) deveremos mudar o sinal da parcela correspondente. C. DEFORMAÇÕES

23 23 Para determinarmos a deformação total ( l ) sofrida por uma barra sujeita à uma carga externa (P) e ao seu peso próprio (G), utilizando o método das seções, isolamos um trecho desta barra cortando-a por duas seções transversais S e S' infinitamente próximas, formando um prisma de comprimento elementar dx que se alongará apresentando um comprimento dx + dx. ε = dx dx dx = ε. dx = E x x dx =. dx E (alongamento do trecho de comprimento dx) como vimos anteriormente x P = + γ. x então: A P + γx dx = A dx E P dx EA dx γ.x =. +. E dx Como queremos o alongamento da barra toda devemos fazer o somatório dos diversos trechos de comprimento dx que compõem a barra, ou seja:

24 24 L = ou L L = dx L 0 l = 0 P EA L + γ x dx dx E 2 P.l E. A + γ. l 2.E 0 Podemos expressar a equação da deformação total em função do peso total G da peça, fazendo algumas modificações algébricas: OBS: 2 PL γl L G L = + ou L = P + EA 2EA EA 2 1. As duas parcelas que figuram, nas equações são facilmente identificáveis: a primeira é o alongamento devido a carga externa P e segunda devido ao peso próprio. 2. O sinal das parcelas que compõem a deformação deve ser trocado quando seu efeito correspodente (carga externa ou peso próprio) fôr de compressão, o que já observamos na tensão. 3. O alongamento da barra causado pelo peso próprio é igual à metade daquele que se obteria caso aplicássemos todo o seu peso G em sua extremidade livre.

CAPÍTULO IV INTRODUÇÃO Á RESISTÊNCIA DOS MATERIAIS

CAPÍTULO IV INTRODUÇÃO Á RESISTÊNCIA DOS MATERIAIS CAPÍTULO IV 1 INTRODUÇÃO Á RESISTÊNCIA DOS MATERIAIS I. OBJETIVO FUNDAMENTAL A Resistência dos Materiais se preocupa fundamentalmente com o comportamento das diversas partes de um corpo quando sob a ação

Leia mais

CAPÍTULO V ESFORÇO NORMAL E CORTANTE

CAPÍTULO V ESFORÇO NORMAL E CORTANTE 1 CAPÍTULO V ESFORÇO NORMAL E CORTANTE I. TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) A. TENSÕES E DEFORMAÇÕES: Sempre que tivermos uma peça de estrutura, submetida à carga externa com componente no seu eixo

Leia mais

CAPÍTULO VIII TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES)

CAPÍTULO VIII TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) 1 CÍTULO VIII TRÇÃO OU COMRESSÃO XIL (SIMLES) I. CONCEITO: Quando um corpo que está sob ação de forças externas, na direção do seu eixo longitudinal, origina-se Esforços Normal no seu interior, mesmo sendo

Leia mais

CAPÍTULO V. Em um corpo que está submetido a um sistema de forças ativas e reativas, isto é, que está em equilíbrio ocorre:

CAPÍTULO V. Em um corpo que está submetido a um sistema de forças ativas e reativas, isto é, que está em equilíbrio ocorre: 37 CAPÍTULO V I. INTRODUÇÃO Em um corpo que está submetido a um sistema de forças ativas e reativas, isto é, que está em equilíbrio ocorre: 1. Um fenômeno geométrico que é a mudança da sua forma original:

Leia mais

CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS

CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS I. OBJETIVO FUNDAMENTAL A Resistência dos Materiais se preocupa fundamentalmente com o comportamento das diversas partes de um corpo quando sob a ação

Leia mais

Propriedades mecânicas dos materiais

Propriedades mecânicas dos materiais Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente

Leia mais

Estabilidade. Marcio Varela

Estabilidade. Marcio Varela Estabilidade Marcio Varela Esforços internos O objetivo principal deste módulo é estudar os esforços ou efeitos internos de forças que agem sobre um corpo. Os corpos considerados não são supostos perfeitamente

Leia mais

Capítulo 3: Propriedades mecânicas dos materiais

Capítulo 3: Propriedades mecânicas dos materiais Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade

Leia mais

Relações entre tensões e deformações

Relações entre tensões e deformações 9 de agosto de 06 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO CONTROLE DE QUALIDADE INDUSTRIAL Tensão Tensão é ao resultado da ação de cargas externas sobre uma unidade de área da seção analisada na peça, componente mecânico ou estrutural submetido à solicitações

Leia mais

Equações Diferenciais aplicadas à Flexão da Vigas

Equações Diferenciais aplicadas à Flexão da Vigas Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...

Leia mais

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE 3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE

Leia mais

Tema III. TRAÇÃO E COMPRESSÃO 3.1. Introdução. Esforços solicitantes são esforços (efeitos) internos:

Tema III. TRAÇÃO E COMPRESSÃO 3.1. Introdução. Esforços solicitantes são esforços (efeitos) internos: Tema III. TRAÇÃO E COMRESSÃO 3.1. Introdução Esforços solicitantes são esforços (efeitos) internos: Força normal ou axial (N), É definida como força axial ou normal a carga que atua na direção do eixo

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Resistência dos Materiais Teoria 2ª Parte

Resistência dos Materiais Teoria 2ª Parte Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Teste de tração - compressão

Teste de tração - compressão PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Renata Machado Soares - REMA I Teste de tração - compressão Resistência capacidade de suportar carga sem deformação excessiva ou ruptura; A partir de um ensaio

Leia mais

CAPÍTULO 3 ESFORÇO CORTANTE

CAPÍTULO 3 ESFORÇO CORTANTE CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

1. O equilíbrio não leva em conta o modo como o corpo transmite as cargas para os apoios.

1. O equilíbrio não leva em conta o modo como o corpo transmite as cargas para os apoios. 24 CAPÍTULO IV EQUILÍBRIO EM DUAS DIMENSÕES SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA I. INTRODUÇÃO Vimos até aqui que quando existe um sistema de cargas ativas atuando em um corpo são desenvolvidas

Leia mais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05

Leia mais

CAPÍTULO VII FLEXÃO PURA

CAPÍTULO VII FLEXÃO PURA 1 CAPÍTULO VII FLEXÃO PURA I. VIGAS CARREGADAS TRANSVERSALMENTE Uma viga é um elemento linear de estrutura que apresenta a característica de possuir uma das dimensões (comprimento) muito maior do que as

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 02: Estruturas com barras sob corportamento axial

Leia mais

Capítulo 4 Propriedades Mecânicas dos Materiais

Capítulo 4 Propriedades Mecânicas dos Materiais Capítulo 4 Propriedades Mecânicas dos Materiais Resistência dos Materiais I SLIDES 04 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Propriedades Mecânicas dos Materiais 2 3 Propriedades

Leia mais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares

Leia mais

Tensões associadas a esforços internos

Tensões associadas a esforços internos Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões

Leia mais

CAPÍTULO VII FLEXÃO PURA

CAPÍTULO VII FLEXÃO PURA 59 CAPÍTULO VII FLEXÃO PURA I. ELEMENTOS DE VIGA São elementos lineares, isto é, que apresentam uma das dimensões (comprimento) muito maior do que as outras duas (dimensões da seção transversal) e que

Leia mais

MORFOLOGIA DAS ESTRUTURAS

MORFOLOGIA DAS ESTRUTURAS I - ESTRUTURAS RESISTENTES MORFOLOGIA DAS ESTRUTURAS É um conjunto de elementos ligados entre si que tem a finalidade de suportar cargas e transferi-las ao solo. Os esforços externos ativos ou cargas que

Leia mais

Teoria das Estruturas I - Aula 08

Teoria das Estruturas I - Aula 08 Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da

Leia mais

AULA 03 - TENSÃO E DEFORMAÇÃO

AULA 03 - TENSÃO E DEFORMAÇÃO AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. A - DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito

Leia mais

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

MAC de outubro de 2009

MAC de outubro de 2009 MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em

Leia mais

Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.

Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:

Leia mais

Tensões associadas a esforços internos

Tensões associadas a esforços internos Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões

Leia mais

mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular

mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular UNIDADES DE MEDIDAS UTILIZADAS N = Newton é uma unidade de medida de força, denominada em homenagem a Isaac Newton. Corresponde

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

AULA 4 Materiais de Construção II

AULA 4 Materiais de Construção II AULA 4 Materiais de Construção II Introdução Para a construção, as propriedades que interessam considerar aos metais são várias, concretamente, a aparência, densidade, dilatação e condutibilidade térmica,

Leia mais

CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA

CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA I. CONVENÇÕES: Conforme já vimos, se cortarmos uma estrutura por uma seção, nesta seção devem aparecer esforços que equilibrem o sistema isolado

Leia mais

CENTRO UNIVERSITÁRIO PLANALDO DO DISTRITO FEDERAL

CENTRO UNIVERSITÁRIO PLANALDO DO DISTRITO FEDERAL 7. Propriedades Mecânicas dos Materiais As propriedades mecânicas de um material devem ser conhecidas para que os engenheiros possam relacionar a deformação medida no material com a tensão associada a

Leia mais

Aula 6 Propriedades dos materiais

Aula 6 Propriedades dos materiais Aula 6 Propriedades Mecânicas dos Materiais E-mail: daniel.boari@ufabc.edu.br Universidade Federal do ABC Princípios de Reabilitação e Tecnologias Assistivas 3º Quadrimestre de 2018 Conceitos fundamentais

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

Objetivo do capítulo. O ensaio de tração e compressão

Objetivo do capítulo. O ensaio de tração e compressão Capítulo 3: Propriedades mecânicas dos materiais Adaptado pela prof. Dra. Danielle Bond Objetivo do capítulo Agora que já discutimos os conceitos básicos de tensão e deformação, mostraremos, neste capítulo,

Leia mais

Tensões. Professores: Nádia Forti Marco Carnio

Tensões. Professores: Nádia Forti Marco Carnio Tensões Professores: Nádia Forti Marco Carnio SOLICITAÇÃO AXIAL Se uma força tende a alongar o elemento, é chamada de força de tração. Se uma força tende a encurtar o elemento, é chamada de força de compressão.

Leia mais

AULA 4 Materiais de Construção II

AULA 4 Materiais de Construção II Faculdade de Engenharia - Licenciatura em Engenharia Civil UL 4 Materiais de Construção II Capítulo ula 4 (Teórica/Prática) II ços para Construção Introdução Ensaios sobre os aços: 1) Ensaio de Tracção;

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

São Carlos, outubro de 2001

São Carlos, outubro de 2001 - Solicitação por Força Normal - 1 Aula2a : SOLICITAÇÃO POR FORÇA NORMAL São Carlos, outubro de 2001 Sergio Persival Baroncini Proença - Solicitação por Força Normal - 2 1-) SOLICITAÇÃO POR FORÇA NORMAL

Leia mais

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS 1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não

Leia mais

Capítulo 5 Carga Axial

Capítulo 5 Carga Axial Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Determinar a tensão normal e as deformações em elementos

Leia mais

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos RESISTÊNCI DOS MTERIIS 2 Marcel Merlin dos Santos REVISÃO DE DIGRM DE ESORÇOS INTERNOS SOLICITNTES Vamos imaginar que a barra B esteja sendo seccionada. Vamos considerar qua a barra tenha 6 m de comprimento

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA Curso de Graduação em Engenharia Civil ECC 1006 Concreto Armado A ESTRUTURAS. Gerson Moacyr Sisniegas Alva

UNIVERSIDADE FEDERAL DE SANTA MARIA Curso de Graduação em Engenharia Civil ECC 1006 Concreto Armado A ESTRUTURAS. Gerson Moacyr Sisniegas Alva UNIVERSIDADE FEDERAL DE SANTA MARIA Curso de Graduação em Engenharia Civil ECC 1006 Concreto Armado A COMPORTAMENTO DOS MATERIAIS E DAS ESTRUTURAS Gerson Moacyr Sisniegas Alva A prática sem teoria é cega

Leia mais

4 ESFORÇO DE FLEXÃO SIMPLES

4 ESFORÇO DE FLEXÃO SIMPLES 4 ESFORÇO DE FLEXÃO SIMPLES O esforço de flexão simples é normalmente resultante da ação de carregamentos transversais que tendem a curvar o corpo e que geram uma distribuição de tensões aproximadamente

Leia mais

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal. Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo

Leia mais

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por: PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 2 Tensão e deformação: Carregamento axial Conteúdo Tensão e Deformação: Carregamento Axial Deformação Normal

Leia mais

5 CISALHAMENTO SIMPLES

5 CISALHAMENTO SIMPLES 5 CISALHAMENTO SIMPLES Conforme visto anteriormente, sabe-se que um carregamento transversal aplicado em uma viga resulta em tensões normais e de cisalhamento em qualquer seção transversal dessa viga.

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 2 CARGAS X DESLOCAMENTOS

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO   2 CARGAS X DESLOCAMENTOS LINHAS DE 2 CARGAS X DESLOCAMENTOS Equilíbrio x Deslocamento x Deformação Já conhecemos o conceito de equilíbrio, e as diferenças entre deslocamento e deformação. Vimos que o deslocamento pode ocorre com

Leia mais

CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES

CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES ESTABILIDADE ESFORÇOS SIMPLES Apostila Organizada pelo professor: Edilberto Vitorino de Borja 2016.1 1. CARGAS ATUANTES NAS ESTRUTURAS 1.1 CARGAS EXTERNAS Uma estrutura

Leia mais

Estruturas Hiperestáticas Planas

Estruturas Hiperestáticas Planas Estruturas Hiperestáticas Planas P1 19/09/96 1ª Questão Traçar o diagrama de momentos fletores e forças cortantes decorrentes de um resfriamento T da barra CE da estrutura da figura abaixo. Considerar

Leia mais

Capítulo 3 Propriedades Mecânicas dos Materiais

Capítulo 3 Propriedades Mecânicas dos Materiais Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa

Leia mais

5 Resultados Experimentais

5 Resultados Experimentais 5 Resultados Experimentais 5.1. Introdução Neste capítulo são apresentados os resultados medidos dos dois testes experimentais em escala real realizados para a comparação dos resultados teóricos. 5.2.

Leia mais

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais Ciências dos Materiais Propriedades Mecânicas dos Materiais IMPORTÂNCIA Aplicações onde são necessárias solicitações mecânicas. Atender as exigências de serviço previstas. POR QUÊ ESTUDAR? A determinação

Leia mais

CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS

CAPÍTULO VII INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS CAPÍTULO VII INTRODUÇÃO À RSISTÊNCIA DOS MATRIAIS I. OBJTIVO FUNDAMNTAL A Resistência dos Materiais se preocupa fundamentalmente com o comportamento das diversas partes de um corpo quando sob a ação de

Leia mais

Estruturas Metálicas PROPRIEDADES DOS AÇOS

Estruturas Metálicas PROPRIEDADES DOS AÇOS Estruturas Metálicas PROPRIEDADES DOS AÇOS 1. Diagrama Tensão- Deformação Uma propriedade mecânica importante para os materiais em geral é a chamada tensão ( ), definida por: F A o Onde F é a carga aplicada

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

a) Flexão Pura: Quando não há esforço cortante atuando na seção, ou seja só atua o momento fletor. Como na região central do exemplo abaixo.

a) Flexão Pura: Quando não há esforço cortante atuando na seção, ou seja só atua o momento fletor. Como na região central do exemplo abaixo. 7 Flexão Simples Para o estudo das estruturas em concreto armado devemos estudar os esforços internos gerados pelas cargas, neste primeiro momento iremos estudar a flexão. 7.1 Tipo de flexão a) Flexão

Leia mais

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 8

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 8 Resistências dos Materiais dos Materiais - Aula 5 - Aula 8 RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 8 Membros Carregados axialmente Professor Alberto Dresch Webler Veremos Introdução; Variações nos comprimentos

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

O que é Resistência dos Materiais?

O que é Resistência dos Materiais? Roteiro de aula O que é Resistência dos Materiais? Definições Resistência x Rigidez Análise x Projeto Áreas de Aplicação Forças externas Esforços internos Elementos estruturais Hipóteses básicas Unidades

Leia mais

Sistemas Estruturais. Prof. Rodrigo mero

Sistemas Estruturais. Prof. Rodrigo mero Sistemas Estruturais Prof. Rodrigo mero Aula 2 Cargas que Atuam nas estruturas Índice Forças Vetoriais Geometria das Forças Cargas Quanto a Frequência Levantamento de Cargas Simples Equilíbrio Interno

Leia mais

Resistência dos Materiais

Resistência dos Materiais - Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão

Leia mais

MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano

MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer o comportamento dos materiais na tração e compressão Compreender o gráfico de tensão x deformação

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016. Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama

Leia mais

TORÇÃO. Prof. Dr. Carlos A. Nadal

TORÇÃO. Prof. Dr. Carlos A. Nadal TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está

Leia mais

3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 09/08/2012

3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPIEDADES DOS CORPOS SÓLIDOS: 3.1 PROPRIEDADES DOS CORPOS SÓLIDOS: 09/08/2012 1 2 Dureza: é a resistência que os corpos opõem ao serem riscados, a dureza pode ser avaliada a partir da capacidade que um material tem, de riscar o outro. Ex.: Diamante e vidro. Escala de dureza de Mohs:

Leia mais

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm² CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação

Leia mais

Sergio Persival Baroncini Proença

Sergio Persival Baroncini Proença ula n.4 : ESTUDO D FLEXÃO São Carlos, outubro de 001 Sergio Persival Baroncini Proença 3-) ESTUDO D FLEXÃO 3.1 -) Introdução No caso de barras de eixo reto e com um plano longitudinal de simetria, quando

Leia mais

COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I

COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I PMT 2100 - Introdução à Ciência dos Materiais para Engenharia

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

Equações diferenciais

Equações diferenciais Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q

Leia mais

AULA 03 - TENSÃO E DEFORMAÇÃO

AULA 03 - TENSÃO E DEFORMAÇÃO AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito

Leia mais

Ensaio de compressão

Ensaio de compressão A UU L AL A Ensaio de compressão Podemos observar o esforço de compressão na construção mecânica, principalmente em estruturas e em equipamentos como suportes, bases de máquinas, barramentos etc. Às vezes,

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Q1: ESCOA POITÉCNICA DA UNIVERSIDADE DE SÃO PAUO Q: Q3: Nota: PME310 Mecânica dos Sólidos I Prova Substitutiva 04/07/018 Duração: 10 minutos Não é permitido o uso de equipamentos eletrônicos durante a

Leia mais

Barras prismáticas submetidas a momento fletor e força cortante

Barras prismáticas submetidas a momento fletor e força cortante Barras prismáticas submetidas a momento fletor e força cortante Introdução Os esforços mais comuns de incidência em vigas estruturais são a força cortante e o momento fletor, os quais são causados por

Leia mais

Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento

Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento estrutural a partir do qual ele é feito Materiais são frequentemente

Leia mais

Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO

Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO PROF.: KAIO DUTRA Estado Plano de Deformações O estado geral das deformações em determinado ponto de um corpo é representado pela combinação

Leia mais

2 Fundamentos para a avaliação de integridade de dutos com perdas de espessura e reparados com materiais compósitos

2 Fundamentos para a avaliação de integridade de dutos com perdas de espessura e reparados com materiais compósitos 2 Fundamentos para a avaliação de integridade de dutos com perdas de espessura e reparados com materiais compósitos Este capítulo apresenta um resumo dos fundamentos básicos de avaliação de dutos com e

Leia mais

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da

Leia mais

COMPORTAMENTO MECÂNICO DOS MATERIAIS

COMPORTAMENTO MECÂNICO DOS MATERIAIS UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES COMPORTAMENTO MECÂNICO DOS MATERIAIS Propriedades Mecânicas dos Materiais

Leia mais