3 DIMENSIONAMENTO À TRAÇÃO SIMPLES 3.1 CONCEITOS GERAIS 3.2 EQUAÇÃO DE DIMENSIONAMENTO FORÇA AXIAL RESISTENTE DE CÁLCULO

Tamanho: px
Começar a partir da página:

Download "3 DIMENSIONAMENTO À TRAÇÃO SIMPLES 3.1 CONCEITOS GERAIS 3.2 EQUAÇÃO DE DIMENSIONAMENTO FORÇA AXIAL RESISTENTE DE CÁLCULO"

Transcrição

1 3 DIMENSIONAMENTO À TRAÇÃO SIMPLES As condições para o dimensionamento de peças metálicas à tração simples estão no item 5.2 da NBR Essa seção (seção 5) da NBR trata do dimensionamento de elementos estruturais quando submetidos a ações estáticas. Condições adicionais de dimensionamento de peças onde, por exemplo, deva ser considerado o comportamento de fadiga, estão no item 9 da NBR. 3.1 CONCEITOS GERAIS O dimensionamento apresentado a seguir é aplicável a barras prismáticas e a barras redondas com roscas nas extremidades e submetidas à força axial de tração. A expressão geral do dimensionamento é basicamente proveniente da resistência dos materiais, nessa expressão estão adicionados coeficientes que levam em consideração a distinção entre o comportamento de trechos do elemento com seção integral e o comportamento de outras regiões da peça que está sendo dimensionada, que possua vazados, furos ou descontinuidade de sua ligação com o elemento de fixação da peça dimensionada. A figura a seguir ilustra esse conceito. Figura 3.1: Variação das tensões em peças metálicas. 3.2 EQUAÇÃO DE DIMENSIONAMENTO A expressão que representa o atendimento aos critérios de segurança do item 4 do capítulo 2, para o dimensionamento de peças tracionadas, pode ser escrita como (NBR 8800, ): Nt,Sd Nt,Rd onde: Nt,Sd é a força axial de tração solicitante de cálculo, definida conforme estabelecido no capítulo anterior, e Nt,Rd é a força axial de tração, resistente de cálculo, determinada como segue FORÇA AXIAL RESISTENTE DE CÁLCULO Devem ser consideradas duas condições (estados limites ou modos de ruptura), para o atendimento à expressão geral, acima: a) Escoamento da seção bruta (ESB): 3-17

2 b) Ruptura da seção líquida efetiva (RSE) onde (ver tabela 3 da NBR8800, reproduzida no capítulo 2, item 6.1): a1 1,10 2 1,35 a Ag = área bruta da seção transversal da barra; Ae = Ct.An; área líquida efetiva da seção transversal da barra, definida a seguir, no item 3.2; fy = é a resistência ao escoamento do aço; fu = é a resistência á ruptura do aço; ÁREA LÍQUIDA EFETIVA (Ae) A área líquida efetiva é calculada como: Ae = Ct.An Na expressão de Ae, An é a área líquida da barra, item 3.2.1, e Ct é um coeficiente de redução da área líquida, função das condições de ligação da barra aos elementos adjacentes e que considera efeito da não uniformidade de tensões nessa região de ligação (item 3.2.2) ÁREA LÍQUIDA (An) Em regiões com furos ou aberturas (tanto furos feitos para passagem de parafusos como os furos e/ou aberturas para qualquer outra finalidade) a área líquida, An, de uma barra é definida no item da NBR, como sendo a soma dos produtos da espessura pela largura líquida de cada elemento (ou seja, para seções compostas por elementos, a largura líquida do elemento da seção é sua largura descontando os furos). Para o cálculo da largura líquida considera-se: a) Em ligações parafusadas, o diâmetro dos furos deve ser considerado 2,0 mm maior que o diâmetro real destes furos. Isto se deve ao fato de que ocorrem danos mecânicos no aço ao redor do furo, durante o processo de furação. Como exemplo, caso se utilize o chamado furo-padrão para executar uma ligação parafusada, o diâmetro teórico do furo é: df=db+1,5mm (onde df é o diâmetro teórico do furo e db é o diâmetro do parafuso utilizado na ligação). b) No caso de uma série de furos distribuídos transversalmente ao eixo da barra, em diagonal a este eixo ou em zig-zag, a largura líquida desta parte da barra dever ser calculada deduzindo-se da largura bruta a soma das larguras de todos os furos em cadeia, e somando-se para cada linha ligando dois furos a quantidade s2/(4g), sendo s e g os espaçamentos longitudinal e transversal entre estes dois furos (Figura 3.2); c) A largura líquida crítica será determinada para a cadeia de furos que produza a menor largura líquida dentre as possíveis linhas (possibilidades) de ruptura; d) Para cantoneiras, o gabarito g dos furos em abas opostas deve ser considerado igual a soma dos gabaritos medidos a partir da aresta da cantoneira, subtraída de sua espessura; e) Na determinação da área líquida de seção que compreenda soldas de tampão ou soldas de filete em furos, a área do metal da solda deve ser desprezada. 3-18

3 Figura 3.2: Espaçamentos longitudinal e transversal entre estes dois furos. Em regiões onde não existam furos a área líquida deve ser tomada igual a área bruta da seção transversal COEFICIENTE DE REDUÇÃO CT O coeficiente de redução da área líquida, tem os seguintes valores: a) Quando a força de tração for transmitida diretamente para cada um dos elementos da seção transversal da barra, por soldas ou parafusos: Ct = 1,00 b) Quando a força de tração for transmitida somente por soldas transversais: C t A A c g onde, Ac é a área da seção transversal dos elementos conectados. c) Nas barras com seções transversais abertas, quando a força de tração for transmitida somente por parafusos ou por soldas longitudinais ou ainda por uma combinação de soldas longitudinais e transversais para alguns (não todos) os elementos da seção transversal (devendo, no entanto, 0,90 como limite superior, e não se permitindo ligações que resultem em um valor menor que 0,60) onde: ec - é a excentricidade da ligação, igual à distância do centro geométrico da seção da barra, G, ao plano de cisalhamento da ligação (em perfis com um plano de simetria, a ligação deve ser simétrica em relação a ele e são consideradas, para cálculo de Ct, duas barras fictícias e simétricas, cada uma correspondente ao plano de cisalhamento da ligação, por ex. duas seções T no caso de perfis I ou H ligados pelas mesas ou duas seções U, no caso desses perfis serem ligados pela alma- Figura 3.3. c - é o comprimento efetivo da ligação (esse comprimento, nas ligações soldadas, é igual a ao comprimento as solda na direção da força axial; nas ligações parafusadas é igual a distancia do primeiro ao último parafuso da linha de furação com maior número de parafusos, na direção da força axial). 3-19

4 Figura 3.3: Excentricidades. d) Nas chapas planas, quando a força de tração for transmitida somente por soldas longitudinais ao longo de ambas as suas bordas, conforme a Figura 3.4. Ct = 1,00 para w 2b Ct = 0,87 para 2b > w 1,5b Ct = 0,75 para 1,5 > w b onde: w é o comprimento dos cordões de solda b é a largura da chapa (distância entre as soldas situadas nas duas bordas). Figura 3.4: Chapas planas Soldadas. e) Como na alínea c), nas barras com seções tubulares retangulares, quando a força de tração for transmitida por meio de uma chapa de ligação concêntrica ou por chapas de ligação em dois lados opostos da seção, desde que o comprimento da ligação, c, não seja inferior à dimensão da seção na direção paralela à(s) chapa(s) de ligação (Figura 3.5) ( ) *fórmula válida apenas para espessura constante ( ) *fórmula válida apenas para espessura constante Figura 3.5: Excentricidade barras com seções tubulares. f) Nas barras com seções tubulares circulares, quando a força de tração for transmitida por meio de uma chapa de ligação concêntrica, indicada na Figura 3.6. Se o comprimento da ligação lc for superior ou igual a 1.30 x o diâmetro externo da barra, então: Ct = 1,

5 Ct deve ser calculado como na alínea (c), se o comprimento da ligação for superior ou igual ao diâmetro da barra e inferior a 1,30 x esse diâmetro. Figura 3.6: Excentricidades barras com seções tubulares BARRAS LIGADAS POR PINOS Para o caso de barras ligadas por pinos, a força axial de tração resistente é dada pelo menor valor obtido, considerando os estados limites definidos a seguir. a) Escoamento da seção bruta, conforme definido anteriormente, em 3.1, sub-item (a); b) Resistência à pressão de contato na área projetada do pino (a verificação deste ítem será estudada no capítulo de ligações); c) Ruptura da seção liquida efetiva. N t, Rd 2 t. bef. f a2 u d) Ruptura da seção líquida efetiva por cisalhamento N t, Rd onde: 0,60 Asf. f a2 u Asf = 2t(a+dp/2) t = espessura da chapa ligada pelo pino bef é uma largura efetiva, igual a 2t+16mm, mas não mais que a distancia real do furo à borda mais próxima da peça medida na direção perpendicular á força axial atuante a = é a menor distância da borda do furo à extremidade da barra medida na direção paralela à força axial atuante dp = diâmetro do pino Além do estabelecido anteriormente, para a ligação com pino devem também ser atendidos os seguintes requisitos (Figura 3.7): Figura 3.7: Barra com ligação por pinos. 3-21

6 a) O furo do pino deve estar situado a meia distância entre as bordas da barra na direção normal à força axial atuante; b) Caso o furo também tiver função de permitir rotações relativas entre as partes conectadas, o diâmetro do furo, dh, pode ser, no máximo, 1,0mm maior que o do pino dp; c) O comprimento da chapa, além da borda do furo não pode ser menor que (2bef+dp) e a distância a (figura 3.7) não pode ser menor que 1,33 bef; d) Os cantos da barra, além do furo de passagem do pino, podem ser cortados (chanfrados) em ângulos de 45º em relação ao eixo longitudinal, desde que a seção líquida da seção entre a borda do furo e a borda cortada, num plano perpendicular ao corte, não seja inferior àquela necessária alem da borda do furo, paralelamente ao eixo da peça. Os itens acima se referem ao dimensionamento da barra tracionada, a NBR8800, estabelece também que o pino deve ser dimensionado para resistir aos esforços de flexão e cisalhamento BARRAS REDONDAS COM EXTREMIDADES ROSQUEADAS A definição da força axial resistente de cálculo, Nt,Rd, das barras redondas com extremidades rosqueadas, é o menor dos valores, considerando os estados-limites últimos de escoamento da seção bruta e de ruptura da parte rosqueada, neste caso a área da barra á tração, será: A be 2 db 0, LIMITAÇÃO DO ÍNDICE DE ESBELTEZ. Recomenda-se que a esbeltez de peças tracionadas, não exceda 300, exceto no caso de barras pré- tensionadas (geralmente utilizadas na fabricação de peças de contraventamento). 3.3 EXEMPLOS EX. 3.1 Determine qual a máxima força de tração que pode solicitar a barra indicada na figura abaixo. Dados: Aço A36 (MR250), fy=25kn/cm 2 ; fu=40kn/cm 2. A chapa (5,0 x 50mm) está ligada por meio de solda ao seu elemento de apoio. a) Área bruta = Área líquida, pois não há furos ou aberturas na seção. Ag = 0,5 x 5,0 = 2,5cm 2. b) Coeficiente de redução Ct, como a força de tração está sendo transmitida uniformemente ao elemento a ser dimensionado Ct = 1,

7 c) Verificação ESB: Nt,Rd = (2,5 x 25)/1,1 = 56,82kN d) Verificação RSE: Nt,Rd = (2,5 x 40)/1,35 = 74,07kN De (c) e (d), Nt,Rd = 56,82kN EX. 3.2 Determine se o perfil abaixo resiste a uma força de tração centrada de 650kN. Dados: Aço A36, perfil cantoneira de abas iguais, L-152x12,7mm. Ligação da barra ao elemento adjacente através de parafusos com 12,7mm, furo padrão. Das tabelas de perfis: Ag=37,1cm 2 (fornecida pelo fabricante). Área teórica: 15,2x1,27+(15,2-1,27)x1,27=Ag =36,9951cm 2 yg=42,69mm. a) ESB: Nt,Rd = (37,1 x 25)/1,1 = 843,18kN b) RSE: Área Líquida: Parafuso db=12,7mm, furo padrão: dfuro teórico=12,7 + 1,5 = 14,2mm, folga obrigatória a ser considerada: 14,2 + 2,0mm = 16,2mm. 3-23

8 An = 15,2 x 1,27 + (15,2-1,62-1,27) x 1,27 = 34,94cm2, ou An = 37,1 1,62 x 1,27 = 35,04cm2, a diferença deve-se aos valores diferentes de área real, fornecida pelo fabricante, e teórica, calculada a partir de dimensões nominais da seção. Sob o aspecto prático, pode-se utilizar qualquer um dos valores. Neste exemplo será utilizado An=35,04cm2. Coeficiente Ct: Como a força de tração não é transmiida uniformemente a toda a seção transversal no local da ligação - Ct 1,0. Aplica-se (c),. Com Ct 0,9 e 0,6. Para cálculo do comprimento da ligação lc, pode-se supor inicialmente a distância entre os centros dos furos igual a 3db (mínimo de norma será visto quando for estudada a ligação parafusada), ou seja: lc = 2 x 3 x 12,7 = 76,2mm.Com esse valor Ct = 1-42,69/76,20 = 0,44, menor que o mínimo 0,6, deve-se alterar a ligação. 42,69 C 1 0,6, daí: lc 106,73mm, adotando-se lc = 110mm. t c Ct = 1-42,69/110 = 0,61, e Ae = 0,61 x 35,04 = 21,37cm 2. Nt,Rd = 21,37 x 40/1,35 = 633,19kN < 843,18kN, logo Nt,Rd = 633,00kN, a barra não resiste. EX. 3.3 Verifique se a barra resiste à força indicada. Dados: Aço A36, barra chata com espessura 8,0mm. Ligação da barra ao elemento adjacente através de parafusos com 10,0mm, furo padrão. Distância entre linhas de parafusos, 90mm, distância entre o primeiro/último furo e as bordas verticais, 40mm, entre as linha de furos e as bordas horizontais, 55mm a) ESB: Ag = 0,8 x 20 = 16cm 2. Nt,Rd = 16 x 25/1,1 = 363,64kN. 3-24

9 b) RSE: Diâmetro do furo: 10,0 + 3,5mm = 13,5mm Seção 1: An1 = 16 - (1,35 x /(4 x 9)) x 0,8 = 15,64cm 2 ; Seção 2: An2 = 16-1,35 x 0,8 = 14,92cm 2 crítica; Ct = 1,0; Ae = 1,0 x 14,92 = 14,92cm 2 Nt,Rd = 14,92 x 40/1,35 = 442,07kN c) Nt,Rd = 363,64kN, a barra resiste. 3-25

ESTRUTURAS METÁLICAS PEÇAS TRACIONADAS. Prof. Alexandre Augusto Pescador Sardá

ESTRUTURAS METÁLICAS PEÇAS TRACIONADAS. Prof. Alexandre Augusto Pescador Sardá ESTRUTURAS METÁLICAS PEÇAS TRACIONADAS Prof. Alexandre Augusto Pescador Sardá Peças Tracionadas Denominam-se peças tracionadsas as peças sujeitas a solicitação de tração axial, ou tração simples. Tirantes

Leia mais

Figura 4.1: Chapa submetida à tração. f y = 250MP a = 25kN/cm 2 A área bruta necessária pode ser determinada através do escoamento da seção bruta:

Figura 4.1: Chapa submetida à tração. f y = 250MP a = 25kN/cm 2 A área bruta necessária pode ser determinada através do escoamento da seção bruta: 4 Exercícios de Tração 4.1 Resolvidos Ex. 4.1.1 Chapa simples tracionada Calcular a espessura necessária de uma chapa de 100 mm de largura, sujeita a um esforço axial de 100 kn (10 tf) de cálculo, figura

Leia mais

AULA 02: DIMENSIONAMENTO DE PEÇAS TRACIONADAS

AULA 02: DIMENSIONAMENTO DE PEÇAS TRACIONADAS UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 113 ESTRUTURAS DE CONCRETO, METÁLICAS E DE MADEIRA AULA 02: DIMENSIONAMENTO DE

Leia mais

ESTRUTURAS METÁLICAS 9 LIGAÇÕES parte 2

ESTRUTURAS METÁLICAS 9 LIGAÇÕES parte 2 PUC Pontifícia Universidade Católica de Goiás Departamento de Engenharia Civil ESTRUTURAS METÁLICAS 9 LIGAÇÕES parte 2 Professor: Juliano Geraldo Ribeiro Neto, MSc. Goiânia, junho de 2016. 9.5 CONDIÇÕES

Leia mais

Figura 4.1: Chapa submetida à tração =

Figura 4.1: Chapa submetida à tração = 4 Exercícios de Tração 4.1 Resolvidos Ex. 4.1.1 Chapa simples tracionada Calcular a espessura necessária de uma chapa de 100 mm de largura, sujeita a um esforço axial de 100 KN (10 tf), figura 4.1. Resolver

Leia mais

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS LIGAÇÕES COM CONECTORES TIPOS DE CONECTORES Rebites Conectores instalados a quente Aperto muito impreciso e variável

Leia mais

ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS. Prof. Alexandre Augusto Pescador Sardá

ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS. Prof. Alexandre Augusto Pescador Sardá ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS Prof. Alexandre Augusto Pescador Sardá LIGAÇÕES Edificações Ligações entre vigas; Ligações entre viga e coluna; Emenda de colunas; Emenda de vigas; Apoio de colunas;

Leia mais

TIPOS DE CONECTORES. Conector: Meio de união que trabalha através de furos feitos nas chapas.

TIPOS DE CONECTORES. Conector: Meio de união que trabalha através de furos feitos nas chapas. ESTRUTURAS METÁLICAS LIGAÇÕES COM CONECTORES Prof. Alexandre Augusto Pescador Sardá TIPOS DE CONECTORES Conector: Meio de união que trabalha através de furos feitos nas chapas. Rebites; Parafusos comuns;

Leia mais

Construções Metálicas I AULA 5 Compressão

Construções Metálicas I AULA 5 Compressão Universidade Federal de Ouro Preto Escola de Minas Ouro Preto - MG Construções Metálicas I AULA 5 Compressão Introdução Denomina-se coluna uma peça vertical sujeita à compressão centrada. Exemplos de peças

Leia mais

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte Dimensionamento de Estruturas em Aço Parte 1 Módulo 3 2ª parte Sumário Módulo 3 : 2ª Parte Dimensionamento de um Galpão estruturado em Aço Dados de projeto página 3 1. Definição página 5 2. Combinações

Leia mais

AULA 03: DIMENSIONAMENTO DE LIGAÇÕES PARAFUSADAS

AULA 03: DIMENSIONAMENTO DE LIGAÇÕES PARAFUSADAS UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 113 ESTRUTURAS DE CONCRETO, METÁLICAS E DE MADEIRA AULA 03: DIMENSIONAMENTO DE

Leia mais

1. Ligações em estruturas de aço

1. Ligações em estruturas de aço 1. Ligações em estruturas de aço Bibliografia: ABNT NBR 8800:2008 Projeto de estruturas de aço e de estrutura mista de aço e concreto de edifícios QUEIROZ, G.; VILELA, P. M. L. Ligações, regiões nodais

Leia mais

Estruturas de Aço e Madeira Aula 10 Ligações com Solda

Estruturas de Aço e Madeira Aula 10 Ligações com Solda Estruturas de Aço e Madeira Aula 10 Ligações com Solda - Tipos de Solda; - Definições para Soldas de Filete; - Simbologia e Dimensionamento de Soldas de Filete; Prof. Juliano J. Scremin 1 Aula 10 - Seção

Leia mais

SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO MAJ MONIZ DE ARAGÃO. Generalidades. (Item 6.1 da NBR 8800/2008)

SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO MAJ MONIZ DE ARAGÃO. Generalidades. (Item 6.1 da NBR 8800/2008) SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Ligações em Estruturas Metálicas MAJ MONIZ DE ARAGÃO Generalidades d (Item 6.1 da NBR 8800/2008) Item 6.1 NBR 8800 / 2008 Elementos de ligação:

Leia mais

ESTRUTURAS METÁLICAS, MADEIRAS E ESPECIAIS

ESTRUTURAS METÁLICAS, MADEIRAS E ESPECIAIS ESTRUTURAS METÁLICAS, MADEIRAS E ESPECIAIS TARSO LUÍS CAVAZZANA Engenheiro Civil, Mestre em Recursos Hídricos e Tecnologias Ambientais, MBA em Gestão Empresarial tarsocavazzana@yahoo.com.br Plano de ensino

Leia mais

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,

Leia mais

Exercícios de Ligações Parafusadas Resolvidos

Exercícios de Ligações Parafusadas Resolvidos 11 Exercícios de Ligações Parafusadas 11.1 Resolvidos Ex. 11.1.1 Ligação Simples Chapas Duas chapas de 204mm x 12,7mm (1/2 ) de aço ASTM A36 são emendadas com chapas laterais de 9,5mm (3/8 ) e parafusos

Leia mais

Curso de Dimensionamento de Pilares Mistos EAD - CBCA. Módulo

Curso de Dimensionamento de Pilares Mistos EAD - CBCA. Módulo Curso de Dimensionamento de Pilares Mistos EAD - CBCA Módulo 4 Sumário Módulo 4 Dimensionamento de Pilares Mistos 4.1. Considerações Gerais página 3 4.2. Critérios de dimensionamento página 3 4.3. Dimensionamento

Leia mais

Ligações Parafusadas. 9.1 Tipos de ligações parafusadas

Ligações Parafusadas. 9.1 Tipos de ligações parafusadas 9 Ligações Parafusadas Tanto as ligações parafusadas quanto as ligações soldadas são utilizadas largamente nas ligações de fábrica e de campo de estruturas metálicas. É muito comum a utilização de soldas

Leia mais

Estruturas de Aço e Madeira Aula 17 Peças de Madeira Ligadas por Parafusos e Pregos

Estruturas de Aço e Madeira Aula 17 Peças de Madeira Ligadas por Parafusos e Pregos Estruturas de Aço e Madeira Aula 17 Peças de Madeira Ligadas por Parafusos e Pregos - Generalidades sobre Ligações em Madeira; - Ligações com Pinos Metálicos; Prof. Juliano J. Scremin 1 Aula 17 - Seção

Leia mais

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte Dimensionamento de Estruturas em Aço Parte 1 Módulo 2 2ª parte Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da Viga V2 =

Leia mais

Em uma estrutura, quando se avalia a sua estabilidade, pode-se diferenciar dois tipos básicos de instabilidade:

Em uma estrutura, quando se avalia a sua estabilidade, pode-se diferenciar dois tipos básicos de instabilidade: 4 DIMENSIONAMENTO À COMPRESSÃO SIMPLES O dimensionamento de barras prismáticas submetidas à compressão simples tem suas condições estabelecidas pelo item 5.3 da NBR 8800, complementado pelos anexos E e

Leia mais

ESTRUTURAS METÁLICAS DE AÇO

ESTRUTURAS METÁLICAS DE AÇO ESTRUTURAS METÁLICAS DE AÇO LIGAÇÕES POR CONECTORES Edson Cabral de Oliveira TIPOS DE CONECTORES E DE LIGAÇÕES O conector é um meio de união que trabalha através de furos feitos nas chapas. Tipos de conectores:

Leia mais

ESTRUTURAS METÁLICAS. Vigas em Flexão Simples DIMENSIONAMENTO SEGUNDO A NBR-8800:2008. Prof Marcelo Leão Cel Prof Moniz de Aragão Maj

ESTRUTURAS METÁLICAS. Vigas em Flexão Simples DIMENSIONAMENTO SEGUNDO A NBR-8800:2008. Prof Marcelo Leão Cel Prof Moniz de Aragão Maj SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO ESTRUTURAS METÁLICAS DIMENSIONAMENTO SEGUNDO A NBR-8800:2008 Vigas em Flexão Simples Prof Marcelo Leão Cel Prof Moniz de Aragão Maj 1 Peças em

Leia mais

Conceituação de Projeto

Conceituação de Projeto Noção Gerais sobre Projeto de Estruturas Metálicas Etapas e documentos de projetos Diretrizes normativas e Desenhos de projeto Eng. Wagner Queiroz Silva, D.Sc UFAM Conceituação de Projeto Pré-projeto ou

Leia mais

I. TIPOS DE LIGAÇÃO I.1. INTRODUÇÃO:

I. TIPOS DE LIGAÇÃO I.1. INTRODUÇÃO: I. TIPOS DE LIGAÇÃO I.1. INTRODUÇÃO: Neste curso estudaremos as ligações usuais em estruturas metálicas. O termo ligações é utilizado para ligações entre componentes de um perfil, emendas de barras, ligações

Leia mais

ESTRUTURAS METÁLICAS VIGAS EM TRELIÇAS. Prof. Alexandre Augusto Pescador Sardá

ESTRUTURAS METÁLICAS VIGAS EM TRELIÇAS. Prof. Alexandre Augusto Pescador Sardá ESTRUTURAS METÁLICAS VIGAS EM TRELIÇAS Prof. Alexandre Augusto Pescador Sardá As treliças são constituídas de segmentos de hastes, unidos em pontos denominados nós, formando uma configuração geométrica

Leia mais

Professora: Engª Civil Silvia Romfim

Professora: Engª Civil Silvia Romfim Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão

Leia mais

CAMPUS CATALÃO DEPARTAMENTO DE ENGENHARIA CIVIL. Estruturas de Aço. Tópico:

CAMPUS CATALÃO DEPARTAMENTO DE ENGENHARIA CIVIL. Estruturas de Aço. Tópico: CAMPUS CATALÃO DEPARTAMENTO DE ENGENHARIA CIVIL Estruturas de Aço Tópico: Conceituação de Ligações e Dimensionamento e Verificação de Ligações Parafusadas. 1 1. Conceitos Gerais O termo LIGAÇÃO se aplica

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA. Módulo

Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA. Módulo Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA Módulo 3 Sumário Módulo 3 Dimensionamento das vigas a flexão 3.1 Dimensionamento de vigas de Perfil I isolado página 3 3.2 Dimensionamento

Leia mais

MECSOL34 Mecânica dos Sólidos I

MECSOL34 Mecânica dos Sólidos I MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

Aula 2 - Tensão Normal e de Cisalhamento.

Aula 2 - Tensão Normal e de Cisalhamento. Aula 2 - Tensão Normal e de Cisalhamento. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a figura 1.17a. Se AB tiver diâmetro de 10 mm

Leia mais

DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO

DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO 1) A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento de 10 mm para baixo na extremidade

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

LIGAÇÕES EM ESTRUTURAS METÁLICAS VOLUME 2. 4ª. Edição revisada e atualizada

LIGAÇÕES EM ESTRUTURAS METÁLICAS VOLUME 2. 4ª. Edição revisada e atualizada LIGAÇÕES EM ESTRUTURAS METÁLICAS VOLUME 2 4ª. Edição revisada e atualizada Série Manual de Construção em Aço Galpões para Usos Gerais Ligações em Estruturas Metálicas Edifícios de Pequeno Porte Estruturados

Leia mais

QUALIDADE INDUSTRIAL

QUALIDADE INDUSTRIAL PROJETO E EXECUÇÃO DEESTRUTURAS 02.332 DE AÇO EM EDIFÍCIOS (Métodos dos Estados Limites) NBR 8800 Procedimento ABR/1986 SUMÁRIO 1 Objetivo 2 Documentos complementares 3 Definições 4 Condições gerais de

Leia mais

MEMORIAL DE CÁLCULO / 1-0 MINI GRUA MODELO RG MG 500.1

MEMORIAL DE CÁLCULO / 1-0 MINI GRUA MODELO RG MG 500.1 MEMORIAL DE CÁLCULO 060513 / 1-0 MINI GRUA MODELO RG MG 500.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210 Porto alegre - RS TELEFONE: ( 51 )

Leia mais

Exercícios de Resistência dos Materiais A - Área 3

Exercícios de Resistência dos Materiais A - Área 3 1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento

Leia mais

DIMENSIONAMENTO DE BARRA COMPRIMIDAS

DIMENSIONAMENTO DE BARRA COMPRIMIDAS UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 113 ESTRUTURAS DE CONCRETO, METÁLICAS E DE MADEIRA DIMENSIONAMENTO DE BARRA COMPRIMIDAS

Leia mais

LIGAÇÕES SOLDADAS Maj Moniz de Aragão

LIGAÇÕES SOLDADAS Maj Moniz de Aragão SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO ESTRUTURAS METÁLICAS LIGAÇÕES SOLDADAS Maj Moniz de Aragão 1. Resistência do material da solda (pág. 11). Coeficientes de ponderação (pág. 14)

Leia mais

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016. Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama

Leia mais

Figura 1: Corte e planta da estrutura, seção transversal da viga e da laje da marquise

Figura 1: Corte e planta da estrutura, seção transversal da viga e da laje da marquise Exemplo 4: Viga de apoio de marquise 1. Geometria e resistências ELU: Torção Combinada, Dimensionamento 1,50 m h=0,50 m 0,10 m 0,20 m Espessura mínima da laje em balanço cf. item 13.2.4.1 e = 1, cf. Tabela

Leia mais

5.3 COMPORTAMENTO DA SEÇÃO TRANSVERSAL SOB MOMENTO FLETOR CRESCENTE, SEM INFLUÊNCIA DA INSTABILIDADE

5.3 COMPORTAMENTO DA SEÇÃO TRANSVERSAL SOB MOMENTO FLETOR CRESCENTE, SEM INFLUÊNCIA DA INSTABILIDADE 5 DIMENSIONAMENTO BARRAS PRISMÁTICAS À FLEXÃO 5.1 INTRODUÇÃO Os capítulos 5 e 6 deste trabalho apresentam início do estudo das vigas constituídas por perfis metálicos em estruturas, que a literatura costuma

Leia mais

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da

Leia mais

ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA. Prof. Alexandre Augusto Pescador Sardá

ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA. Prof. Alexandre Augusto Pescador Sardá ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA Prof. Alexandre Augusto Pescador Sardá Vigas de Alma Cheia Vigas de Alma Cheia Conceitos gerais: As almas das vigas metálicas servem principalmente para ligar as

Leia mais

MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1

MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1 MEMORIAL DE CÁLCULO 071211 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210

Leia mais

Espessura = 2,76 mm. Tubo 76,6x1mm. Disposições construtivas:

Espessura = 2,76 mm. Tubo 76,6x1mm. Disposições construtivas: Exemplos Ligações PGECIV Mestrado Acadêmico aculdade de Engenharia EN/UERJ Disciplina: Projeto de Elementos Estruturais em Chapa Dorada Professor: Luciano Rodrigues Ornelas de Lima Exemplo 1 Verificar

Leia mais

III. LIGAÇÕES PARAFUSADAS

III. LIGAÇÕES PARAFUSADAS III. LIGAÇÕES PARAFUSADAS III.1 - INTRODUÇÃO Tanto as ligações parafusadas quanto as ligações soldadas são utilizadas largamente nas ligações de fábrica e de campo de estruturas metálicas. É muito comum

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

Disciplina de Estruturas Metálicas

Disciplina de Estruturas Metálicas DECivil Departamento de Engenharia Civil e Arquitectura Disciplina de Estruturas Metálicas Aulas de Problemas Prof. Francisco Virtuoso Prof. Eduardo Pereira 2009/2010 Capítulo 7 Ligações em estruturas

Leia mais

1 INTRODUÇÃO CONCEITOS GERAIS DO COMPORTAMENTO DAS LIGAÇÕES LIGAÇÕES SOLDADAS... 7

1 INTRODUÇÃO CONCEITOS GERAIS DO COMPORTAMENTO DAS LIGAÇÕES LIGAÇÕES SOLDADAS... 7 INDICE CAPÍTULO 7 LIGAÇÕES EM ESTRUTURAS METÁLICAS (PARTE1)... 1 1 INTRODUÇÃO... 1 2 CONCEITOS GERAIS DO COMPORTAMENTO DAS LIGAÇÕES... 3 3 LIGAÇÕES SOLDADAS... 7 3.1 Solda de filete... 8 3.1.1 Tipos de

Leia mais

Exercícios de Compressão. 5.1 Resolvidos

Exercícios de Compressão. 5.1 Resolvidos 5 Exercícios de Compressão 5.1 Resolvidos Ex. 5.1.1 Comparação entre seções comprimidas A figura desse problema mostra diversas formas de seção transversal com a área da seção transversal aproximadamente

Leia mais

CAPÍTULO 3 ESFORÇO CORTANTE

CAPÍTULO 3 ESFORÇO CORTANTE CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular

Leia mais

Várias formas da seção transversal

Várias formas da seção transversal Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS RESISTÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS Torção 1º SEM./2001 1) O eixo circular BC é vazado e tem diâmetros interno e externo de 90 mm e 120 mm, respectivamente. Os eixo AB e CD são maciços, com diâmetro

Leia mais

II.9 LIGAÇÕES EXCÊNTRICAS

II.9 LIGAÇÕES EXCÊNTRICAS II.9 LIGAÇÕES EXCÊNTRICAS Existem diversas situações onde a resultante das cargas na ligação não passa pelo centro de gravidade do grupo de soldas. Neste caso temos uma ligação excêntrica e o eeito desta

Leia mais

Escola de Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica

Escola de Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica PROBLEMA 01 (Sussekind, p.264, prob.9.3) Determinar, pelo Método dos Nós, os esforços normais nas barras da treliça. vãos: 2m x 2m PROBLEMA 02 (Sussekind, p.264, prob.9.5) Determinar, pelo Método dos Nós,

Leia mais

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para

Leia mais

Quanto ao efeito dos deslocamentos Em relação aos deslocamentos, a NBR 8800 usa a seguinte classificação:

Quanto ao efeito dos deslocamentos Em relação aos deslocamentos, a NBR 8800 usa a seguinte classificação: 3 Estabilidade e Análise Estrutural O objetivo da análise estrutural é determinar os efeitos das ações na estrutura (esforços normais, cortantes, fletores, torsores e deslocamentos), visando efetuar verificações

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.

Leia mais

Resistência dos Materiais Teoria 2ª Parte

Resistência dos Materiais Teoria 2ª Parte Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:

Leia mais

3.1 TENSÃO TANGENCIAL E DISTORÇÃO

3.1 TENSÃO TANGENCIAL E DISTORÇÃO 3.0 CORTE PURO Corte Puro 3.1 TENSÃO TANGENCIAL E DISTORÇÃO A análise das tensões e deformações em peças submetidas à solicitação pura de corte será feita de maneira simples, computando-se o valor médio

Leia mais

CURITIBA 2016 EMERSON CARVALHO

CURITIBA 2016 EMERSON CARVALHO 1.1.1.1.2 1.1.1.1.1 UNIVERSIDADE FEDERAL DO PARANÁ EMERSON CARVALHO ERALDO GUEDES JORGE LUÍS FERREIRA ENOMOTO 1.1.1.1.3 PROJETO DE GALPÃO METÁLICO 1.1.1.1.3.1 CURITIBA 2016 EMERSON CARVALHO ERALDO GUEDES

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

DIMENSIONAMENTO DE UNIÕES UTILIZANDO CONECTORES METÁLICOS PARAFUSOS

DIMENSIONAMENTO DE UNIÕES UTILIZANDO CONECTORES METÁLICOS PARAFUSOS 03/12/2015 14:18:18 1 Manaus, 2015 MINICURSO Eng. Civil A SEREM ABORDADOS NESTE MINICURSO: - Contextualização; - Características dos Conectores Metálicos - Parafusos; - Normas; - Princípios básicos da

Leia mais

CÁLCULOS DE VIGAS COM SEÇÃO T

CÁLCULOS DE VIGAS COM SEÇÃO T CÁLCULOS DE VIGAS COM SEÇÃO T Introdução Nas estruturas de concreto armado, com o concreto moldado no local, na maioria dos casos as lajes e as vigas que as suportam estão fisicamente interligadas, isto

Leia mais

LAJES COGUMELO e LAJES LISAS

LAJES COGUMELO e LAJES LISAS LAJES COGUMELO e LAJES LISAS Segundo Montoja são consideradas lajes cogumelo as lajes contínuas apoiadas em pilares ou suportes de concreto, ou seja, sem vigas. Podem ser apoiadas diretamente nos pilares

Leia mais

270 Estruturas metálicas

270 Estruturas metálicas 270 Estruturas metálicas x y bf CG x x Tabela E.1 Cantoneiras de abas iguais Propriedades para dimensionamento bf tf z b f P A t f I x = I y W x = W y r x = r y r z min x pol cm kg/m cm 2 pol cm cm 4 cm

Leia mais

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 313 ESTRUTURAS DE CONCRETO AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO ana.paula.moura@live.com

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

FIXADORES PARA ESTRUTURAS METÁLICAS

FIXADORES PARA ESTRUTURAS METÁLICAS FIXADORES PARA ESTRUTURAS METÁLICAS LINHA ASTM A325 TIPO 1 São fixadores específicos de alta resistência, empregados em ligações parafusadas estruturais e indicados em montagens de maior responsabilidade.

Leia mais

Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ Disciplina: Tópicos Especiais em Projeto

Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ Disciplina: Tópicos Especiais em Projeto Ligações Aparafusadas Quarta Parte Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ Disciplina: Tópicos Especiais em Projeto (Ligações em Aço e

Leia mais

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada - Limites de Esbeltez; - Peças Curtas e Medianamente Esbeltas; - Peças Esbeltas; - Compressão Normal e Inclinada em Relação

Leia mais

Estudo teórico-experimental sobre a estabilidade estrutural de painéis de cisalhamento ( Shear Wall ) do sistema construtivo Light Steel Framing

Estudo teórico-experimental sobre a estabilidade estrutural de painéis de cisalhamento ( Shear Wall ) do sistema construtivo Light Steel Framing Estudo teórico-experimental sobre a estabilidade estrutural de painéis de cisalhamento ( Shear Wall ) do sistema construtivo Light Steel Framing Arq. Sabrina Moreira Villela Prof. Dr. Francisco Carlos

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO CONTROLE DE QUALIDADE INDUSTRIAL A resistência dos materiais é um assunto bastante antigo. Os cientistas da antiga Grécia já tinham o conhecimento do fundamento da estática, porém poucos sabiam do problema

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição) 11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.

Leia mais

ROTEIRO DE PRÁTICAS ESTRUTURAS METÁLICAS

ROTEIRO DE PRÁTICAS ESTRUTURAS METÁLICAS ROTEIRO DE PRÁTICAS ESTRUTURAS METÁLICAS OBJETIVOS O aluno será capaz de determinar os esforços solicitantes em estruturas metálicas, e de dimensionar as principais peças estruturais em aço de acordo com

Leia mais

teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos.

teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. EME311 Mecânica dos Sólidos Objetivo do Curso: ornecer ao aluno os fundamentos teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. 1-1 EME311

Leia mais

Resistência dos Materiais

Resistência dos Materiais 1ª Parte Capítulo 1: Introdução Conceito de Tensão Professor Fernando Porto Resistência dos Materiais 1.1. Introdução O principal objetivo do estudo da mecânica dos materiais é proporcionar ao engenheiro

Leia mais

ESTRUTURAS METÁLICAS 9 LIGAÇÕES parte 1

ESTRUTURAS METÁLICAS 9 LIGAÇÕES parte 1 PUC Pontifícia Universidade Católica de Goiás Departamento de Engenharia Civil ESTRUTURAS METÁLICAS 9 LIGAÇÕES parte 1 Professor: Juliano Geraldo Ribeiro Neto, MSc. Goiânia, junho de 2016. 9.1 INTRODUÇÃO

Leia mais

Sistemas Estruturais. Prof. Rodrigo mero

Sistemas Estruturais. Prof. Rodrigo mero Sistemas Estruturais Prof. Rodrigo mero Aula 7 Características dos aços Índice Perfis Estruturais Tipos de Perfis Perfil Laminado Perfil de Chapa Dobrada Perfil de Chapa Soldada Perfil Calandrado Cantoneiras

Leia mais

FLEXÃO COMPOSTA RETA E OBLÍQUA

FLEXÃO COMPOSTA RETA E OBLÍQUA Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado FLEXÃO COMPOSTA RETA E OBLÍQUA Profa. Rovadávia Aline Jesus Ribas Ouro Preto,

Leia mais

Estudo de Caso - Prédio Comercial de 2 pavimentos EAD - CBCA. Módulo

Estudo de Caso - Prédio Comercial de 2 pavimentos EAD - CBCA. Módulo Estudo de Caso - Prédio Comercial de 2 pavimentos EAD - CBCA Módulo 7 h Sumário Módulo 7 Estudo de Caso - Prédio Comercial de 2 pavimentos 1. Concepção página 5 1.1. Análise da Arquitetura página 5 1.2.

Leia mais

CAPÍTULO V ESFORÇO NORMAL E CORTANTE

CAPÍTULO V ESFORÇO NORMAL E CORTANTE 1 CAPÍTULO V ESFORÇO NORMAL E CORTANTE I. TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) A. TENSÕES E DEFORMAÇÕES: Sempre que tivermos uma peça de estrutura, submetida à carga externa com componente no seu eixo

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

Aula 8 Uniões sujeitos à cisalhamento: parafusos e rebites

Aula 8 Uniões sujeitos à cisalhamento: parafusos e rebites SEM 0326 Elementos de Máquinas II Aula 8 Uniões sujeitos à cisalhamento: parafusos e rebites Profa. Zilda de C. Silveira São Carlos, Outubro de 2011. 1. Parafusos sob cisalhamento - Parafusos sob carregamento

Leia mais

Resistência dos Materiais

Resistência dos Materiais Capítulo 3: Tensões em Vasos de Pressão de Paredes Finas Coeficiente de Dilatação Térmica Professor Fernando Porto Resistência dos Materiais Tensões em Vasos de Pressão de Paredes Finas Vasos de pressão

Leia mais

Ligações por entalhes ou sambladuras

Ligações por entalhes ou sambladuras Ligações por entalhes ou sambladuras d a Compressão normal às fibras Tensão de cálculo de compressão normal às fibras: Fd: força de cálculo de compressão normal às fibras Ac : área de contato que pode

Leia mais

I 't = 0,6 a 0,8 ai. 8.9 Exercícios Parafusos. 1 = 80 MPa Pinos

I 't = 0,6 a 0,8 ai. 8.9 Exercícios Parafusos. 1 = 80 MPa Pinos Pressão média de contato (cisalhamento duplo): 0d = 280MPa Pressão média de contato (cisalhamento simples): 0d = 105MPa 8.8.2 Parafusos Tração: 0=140MPa Corte: parafusos não ajustados 1 = 80 MPa parafusos

Leia mais

Construções Metálicas I AULA 6 Flexão

Construções Metálicas I AULA 6 Flexão Universidade Federal de Ouro Preto Escola de inas Ouro Preto - G Construções etálicas I AULA 6 Flexão Introdução No estado limite último de vigas sujeitas à flexão simples calculam-se, para as seções críticas:

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

Elementos de máquina. Diego Rafael Alba

Elementos de máquina. Diego Rafael Alba E Diego Rafael Alba Rebites Um rebite compõe-se de um corpo em forma de eixo cilíndrico e de uma cabeça. A cabeça pode ter vários formatos. A solda é um bom meio de fixação, mas, por causa do calor, ela

Leia mais

Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ Disciplina: Tópicos Especiais em

Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ Disciplina: Tópicos Especiais em Ligações Aparafusadas Primeira Parte Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ Disciplina: Tópicos Especiais em Estruturas (Ligações em

Leia mais

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída)

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída) ESTRUTURS DE CONCRETO RMDO Lista para a primeira prova Questão 1) P1 V1 P2 V4 P3 V2 V3 4m 2m 3m V5 P4 h ' s s b d Seção das vigas: b=20cm ; h=40cm ; d=36cm Carga de serviço sobre todas as vigas: 15kN/m

Leia mais

2.3.3 Norma canadense

2.3.3 Norma canadense ap. 2 Revisão bibliográfica 47 2.3.3 Norma canadense Nos anos 80, o projeto de estruturas de madeira no anadá passou a incorporar as mudanças que se manifestaram em outros países e, sobretudo, tornando

Leia mais