= {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos}

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "= {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos}"

Transcrição

1 = {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos}

2 2 2 = = 2 = 2 =

3 < > < > < < < > > > 3 1,7 < 3 < 1, ,7 < < 2 + 1,8 3,7 < < 3, ,7 < 2 3 < 2 1,8 3,4 < 2 3 < 3,6

4

5

6

7

8

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Razões Trigonométricas

Razões Trigonométricas Curso Preparatório - PROFMAT 2014 Germán Ignacio Gomero Ferrer gigferrer@uesc.br 13 de Agosto de 2013 Problema 13 (The New York City Contest - Outono 1983) No triângulo ABC, sin 2 A + sin 2 B = 1. Encontre

Leia mais

Mat 9 Números Reais. . π Cláudia Maria Diegues Araújo 1/23

Mat 9 Números Reais. . π Cláudia Maria Diegues Araújo 1/23 .. 1 2... 2, 05050505050505....-3-2-10123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100....

Leia mais

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br ( ) 4t 1. Para que valores 5 + 1, 2t 4 pertence ao eixo das ordenadas? A linguagem das funções Sistema de coordenadas Conceito de função

Leia mais

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2,

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2, AV1 - MA 11-01 Questão 1. Prove que se a, b, c e d são números racionais tais que a + b 3 = c + d 3 então a = c e b = d. A igualdade a + b 3 = c + d 3 implica que (a c) = (d b) 3. Suponha que tenhamos

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros

Leia mais

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada. CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1

Leia mais

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA: C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno 1 Matemática Instrumental 2008.1 Aula 1 Introdução Hoje em dia temos a educação presencial, semi-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontram

Leia mais

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22 Resolução das atividades complementares Matemática M7 Função do o grau p. 0 Estude os sinais da função quadrática ƒ dada por: a) 5 x 8x c) 5 x 4x 4 b) 5 x x d) x x a) zeros de f: x 8x 5 0 x 4x 5 0 (x )?

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

Matemática E Extensivo V. 7

Matemática E Extensivo V. 7 Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Basta callocar a razão entre as áreas do quadrado que é de 1cm 2 pelo do círculo que é de cm 2.

Basta callocar a razão entre as áreas do quadrado que é de 1cm 2 pelo do círculo que é de cm 2. PROVA DE MATEMÁTICA CADERNO 1 UFMG 2010 QUESTÃO 49 Por razões antropológicas desconhecidas, certa comunidade utilizava uma unidade de área singular, que consistia em um círculo, cujo raio media 1 cm, e

Leia mais

QUERIDO(A) ALUNO(A):

QUERIDO(A) ALUNO(A): 1 QUERIDO(A) ALUNO(A): SEJA BEM-VINDO AO CURSO LIVRE MATEMÁTICA PARA CONCURSOS I. ESTE CURSO OBJETIVA PRIORITARIAMENTE QUE VOCÊ DESENVOLVA COMPETÊNCIAS SIGNIFICATIVAS ATRAVÉS DOS TEMAS ABORDADOS PARA USO

Leia mais

1.1 Propriedades Básicas

1.1 Propriedades Básicas 1.1 Propriedades Básicas 1. Classi que as a rmações em verdadeiras ou falsas, justi cando cada resposta. (a) Se x < 2, então x 2 < 4: (b) Se x 2 < 4, então x < 2: (c) Se 0 x 2, então x 2 4: (d) Se x

Leia mais

Prova: MATEMÁTICA GABARITO

Prova: MATEMÁTICA GABARITO ESCOLA INTERNACIONAL DE JOINVILLE Sociesc PROCESSO SELETIVO DE BOLSA DE ESTUDOS PARA O ANO LETIVO DE 2017 EDITAL 03/2016 Prova: MATEMÁTICA GABARITO 1) (UECE-adaptada) Considere a expressão algébrica x+1

Leia mais

Sistemas Digitais / Sistemas Digitais I 6 Representação de números com sinal

Sistemas Digitais / Sistemas Digitais I 6 Representação de números com sinal Os números têm valores negativos e positivos. Como representar essa informação (sinal do número) em binário? Por outras palavras, como representar o positivo (+) e o negativo (-)? Há três formas de o fazer:

Leia mais

Relação de Conteúdos para Seleção 2016

Relação de Conteúdos para Seleção 2016 Candidatos ao 6º ano do Ensino Fundamental Substantivos Adjetivos Encontros vocálicos Encontros consonantais Dígrafos Artigo Verbos ( Tempos verbais) As 4 operações Situações- problemas (Raciocínio lógico

Leia mais

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,... ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início

Leia mais

Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b

Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Inequações do Primeiro Grau Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Se os números a e b forem distintos, então a < b ou a > b e

Leia mais

Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre

Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre ALUNO (S) SÉRIE / TURMA Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre 01. Observe o par de polígonos semelhantes e responda: b) Calcule o valor de x: a) Qual é a razão de semelhança? 02.

Leia mais

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}?

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}? Lista de Exercícios de Matemática 01-) Quantos números naturais há na sequência {10, 104, 105,..., 87, 88}? 0-) V ou F: a) Todo número natural é inteiro. Todo número racional é inteiro. c) Existe número

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998 PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Aula 8: Modelos clássicos da análise e compreensão da sociedade e das instituições sociais e políticas: A Sociologia de Max Weber (I).

Aula 8: Modelos clássicos da análise e compreensão da sociedade e das instituições sociais e políticas: A Sociologia de Max Weber (I). Aula 8: Modelos clássicos da análise e compreensão da sociedade e das instituições sociais e políticas: A Sociologia de Max Weber (I). CCJ0001 - Fundamentos das Ciências Sociais Profa. Ivana Schnitman

Leia mais

Relações entre os seres vivos de uma comunidade

Relações entre os seres vivos de uma comunidade Relações entre os seres vivos de uma comunidade ANEXO CAPÍTULO 2 Aula 1/1 Relações ecológicas Relações intra-específicas Relações interespecíficas Relações ecológicas Relações ecológicas são relações que

Leia mais

Aula 4 Estrutura Condicional

Aula 4 Estrutura Condicional Aula 4 Estrutura Condicional Relações e Exp. Booleanas Relações Operadores: >, =,

Leia mais

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre A melhor maneira de nos prepararmos para o futuro é concentrar toda a imaginação e entusiasmo na execução perfeita do trabalho de hoje. Dale Carnegie 1. Conjuntos Numéricos 1) Pense e Responda: a) Qual

Leia mais

ESCOLA E. B. 2,3 DE ARADAS

ESCOLA E. B. 2,3 DE ARADAS ESCOLA E. B. 2,3 DE ARADAS RELATÓRIO PROVAS FINAIS DO ENSINO BÁSICO 4.º, 6º E 9º ANOS ANO LETIVO 2012-2013 1. INTRODUÇÃO O presente relatório tem por base a análise dos resultados alcançados pelos alunos

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

Aula 4: Bases Numéricas

Aula 4: Bases Numéricas Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 9º ano Ano Letivo 2014/2015

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

O PROCESSO ELETRÔNICO NO DISTRIBUIDOR DO TRT 1ª REGIÃO. por. Ricardo José Muniz da Cunha

O PROCESSO ELETRÔNICO NO DISTRIBUIDOR DO TRT 1ª REGIÃO. por. Ricardo José Muniz da Cunha O PROCESSO ELETRÔNICO NO DISTRIBUIDOR DO TRT 1ª REGIÃO por Ricardo José Muniz da Cunha Trabalho de Conclusão de Curso apresentado ao Curso de Pós-Graduação em Administração Judiciária Pós-Graduação lato

Leia mais

RLM - PROFESSOR CARLOS EDUARDO AULA 3

RLM - PROFESSOR CARLOS EDUARDO AULA 3 AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo de potências. Expoentes positivos. Aula 7 Potências. Francisco A. M. Gomes.

Roteiro da aula. MA091 Matemática básica. Cálculo de potências. Expoentes positivos. Aula 7 Potências. Francisco A. M. Gomes. Roteiro da aula MA091 Matemática básica Aula 7 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 6 Francisco A. M. Gomes

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

1.1 Propriedades básicas dos números reais, axiomática dos números reais.

1.1 Propriedades básicas dos números reais, axiomática dos números reais. I - Funções reais de variável real 1. Números Reais. 1.1 - Números naturais, números relativos, números racionais e números reais. De uma forma muito simples vamos recordar os números: Números Naturais

Leia mais

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados?

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados? AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/1 NOME N.º Turma Nas questões 1 a, assinale com x a opção correta. 1. O valor de 4 : 4 10. A soma de dois números negativos é um número: Positivo

Leia mais

MANUAL DO USUÁRIO DCP Projeto Pai Presente

MANUAL DO USUÁRIO DCP Projeto Pai Presente MANUAL DO USUÁRIO DCP Projeto Pai Presente TRIBUNAL DE JUSTIÇA DO ESTADO DO RIO DE JANEIRO 2/6 Para o Distribuidor/Distribuição: 1) Escolha da Competência 16 Registro Civil de Pessoas Naturais. 2) Escolha

Leia mais

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2

UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2 UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE de 3.0. IMAGEM DE UM ELEMENTO ATRAVÉS DO DIAGRAMA DE FLECHAS 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DE Y = F(X) 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DO GRÁFICO

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

IN={0, 1, 2, 3, 4, 5,...}

IN={0, 1, 2, 3, 4, 5,...} ALUNO(A) AULA 001 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 001 - DE MATEMÁTICA Conjunto dos números naturais (IN) IN={0, 1, 2, 3, 4, 5,...} CONJUNTOS NUMÉRICOS Um subconjunto

Leia mais

Conjuntos e sua Representação

Conjuntos e sua Representação Conjuntos e sua Representação Professor: Nuno Rocha nuno.ahcor@gmail.com Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países

Leia mais

CAP. 2 RESPOSTA EM FREQÜÊNCIA

CAP. 2 RESPOSTA EM FREQÜÊNCIA CAP. 2 RESPOSTA EM FREQÜÊNCIA 1 2.1 PÓLOS, ZEROS E CURVAS DE BODE Função de transferência no domínio s: T s V o s V i s T s a m sm a m 1 s m 1 a 0 b n s n b n 1 s n 1 b 0 Coeficientes a, b são reais m

Leia mais

Cronograma de Projeto

Cronograma de Projeto Cronograma de Projeto O que é um Cronograma Calendário de realização para um plano. - Definição de datas de início e fim para as atividades do projeto. - Não pode ser estabelecido antes que se tenha um

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil

TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Introdução Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Ementa Matrizes. Sistemas lineares. Zeros

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Professora Bruna FÍSICA A. Aula 14 Velocidades que variam sempre da mesma forma. Página 189

Professora Bruna FÍSICA A. Aula 14 Velocidades que variam sempre da mesma forma. Página 189 FÍSICA A Aula 14 Velocidades que variam sempre da mesma forma Página 189 INTRODUÇÃO O que já vimos até agora? Movimento Uniforme (velocidade constante) gráficos s x t, gráficos v x t e função horária.

Leia mais

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem

Leia mais

Arquitetura e Organização de Computadores. Sistemas Numéricos

Arquitetura e Organização de Computadores. Sistemas Numéricos Arquitetura e Organização de Computadores Sistemas Numéricos 1 A Notação Posicional Todos os sistemas numéricos usados são posicionais. Exemplo 1 (sistema decimal): 1999 = 1 x 1000 + 9 x 100 + 9 x 10 +

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 9º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Identificar e dar exemplos de fenómenos aleatórios e deterministas, usando o vocabulário

Leia mais

CONTEÚDO PROGRAMÁTICO. Língua Portuguesa

CONTEÚDO PROGRAMÁTICO. Língua Portuguesa CONTEÚDO PROGRAMÁTICO Língua Portuguesa 5º ano Interpretação de Texto; Verbos; Silaba Tônica; Pronomes (Tratamento); Substantivo; Acentuação e Pontuação; Adjetivo; Artigo; Advérbio de Tempo e Espaço. 6º

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Polinômios em Z[x] Matheus Secco

XIX Semana Olímpica de Matemática. Nível 3. Polinômios em Z[x] Matheus Secco XIX Semana Olímpica de Matemática Nível 3 Polinômios em Z[x] Matheus Secco O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Polinômios em Z[x] N3 Professor Matheus Secco 1 Ferramentas

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Extensivo V. Exercícios 01) 01. Falso. Substitua a e b por e, respectivamente. ( + ) = + 9+ 16 = 7 = 7 = 7 (falso) Como a equação já não vale para esses números, não vale para todos os reais. 0. Verdadeiro.

Leia mais

Eletrotécnica. Potência aparente, fator de potência Potência complexa. Joinville, 21 de Março de 2013

Eletrotécnica. Potência aparente, fator de potência Potência complexa. Joinville, 21 de Março de 2013 Eletrotécnica Potência aparente, fator de potência Potência complexa Joinville, 21 de Março de 2013 Escopo dos Tópicos Abordados Potência aparente e fator de potência; Potência Complexa 2 Potência Aparente

Leia mais

MANUAL DE NORMAS GRÁFICAS. LOGÓTIPOS DOS CURSOS DE LICENCIATURA DA ESCOLA SUPERIOR DE TECNOLOGIA DA SAÚDE DE LISBOA (ESTeSL)

MANUAL DE NORMAS GRÁFICAS. LOGÓTIPOS DOS CURSOS DE LICENCIATURA DA ESCOLA SUPERIOR DE TECNOLOGIA DA SAÚDE DE LISBOA (ESTeSL) MANUAL DE NORMAS GRÁFICAS LOGÓTIPOS DOS CURSOS DE LICENCIATURA DA ESCOLA SUPERIOR DE TECNOLOGIA DA SAÚDE DE LISBOA (ESTeSL) MAIO DE 2016 REGRAS GERAIS UTILIZAÇÃO DA IDENTIDADE VISUAL DOS CURSOS DE LICENCIATURA

Leia mais

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra. Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores

Leia mais

TIPOLOGIAS DE COLISÕES EM ACIDENTES DE TRÁFEGO AUTOMÓVEL NORMA INTERNACIONAL ISO

TIPOLOGIAS DE COLISÕES EM ACIDENTES DE TRÁFEGO AUTOMÓVEL NORMA INTERNACIONAL ISO TIPOLOGIAS DE COLISÕES EM ACIDENTES DE TRÁFEGO AUTOMÓVEL NORMA INTERNACIONAL ISO 6813-1981 Para a investigação de acidentes de tráfego automóvel, devemos ter em conta a Norma Internacional ISO 6813-1981

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

CONJUNTOS EXERCÍCIOS DE CONCURSOS

CONJUNTOS EXERCÍCIOS DE CONCURSOS CONJUNTOS EXERCÍCIOS DE CONCURSOS E0626 (IBEG Merendeira Prefeitura de Uruaçu GO). Sendo os conjuntos A = {2, 4, 6, 8, 10, 12}; B = {1, 3, 5, 7, 9, 11}; C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. I A

Leia mais

Números Irracionais e Reais. Oitavo Ano

Números Irracionais e Reais. Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Números Irracionais e Reais 1 Exercícios Introdutórios Exercício 1. No quadro abaixo, determine quais números são irracionais.

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.).

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.). PEDREIRA, Sinvaldo Martins [1] [2] PEDREIRA, Sinvaldo Martins. O valor dos números. Revista Científica Multidisciplinar Núcleo do Conhecimento. Ano 1, Vol.8. pp.5-16, setembro de 2016. ISSN.2448-0959 RESUMO

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

DS - FE V1 / C11 02

DS - FE V1 / C11 02 DISTRIBUIDORES PARA SENSORES E ATUADORES Totalmente construído em aço inoxidável. Alimentação e sinal através de multicabo ou conector de ou 9 pinos. Modelos com multicabos para m, 6m, 0m ou comprimentos

Leia mais

Licenciatura em Ciências da Computação 2010/2011

Licenciatura em Ciências da Computação 2010/2011 Cálculo Licenciatura em Ciências da Computação 2010/2011 Departamento de Matemática e Aplicações (DMA) Universidade do Minho Carla Ferreira caferrei@math.uminho.pt Gab. EC 3.22 Telef: 253604090 Horário

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Manual de uso da Marca

Manual de uso da Marca Manual de uso da Marca Manual de Uso da Marca Para uma marca se estabelecer ser facilmente reconhecida e distinguida das demais,ela precisa ter consistência e uniformidade em todos os seus momentos de

Leia mais

Elasticidades da demanda. Elasticidades da demanda. Elasticidades da demanda

Elasticidades da demanda. Elasticidades da demanda. Elasticidades da demanda Elasticidade Capítulo III Em geral, a elasticidade é uma medida da sensibilidade de uma variável em relação a outra. Ela nos informa a variação percentual em uma variável em decorrência da variação de

Leia mais

CENTRO DE ESTÁGIO. Curso 1.ª Frequência Reingressos Total. 2º Curso de Estágio de º Curso de Estágio de

CENTRO DE ESTÁGIO. Curso 1.ª Frequência Reingressos Total. 2º Curso de Estágio de º Curso de Estágio de Cursos de Estágio 2º Curso de Estágio de 2007 Fase Inicial Data de início: 16 de Novembro de 2007 Data de fim da formação: 7 de Março de 2008 Data final da fase de formação inicial: 16 de Maio de 2008

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 0 Lista Sequências de Números Reais. Dê o termo geral de cada uma das seguintes sequências: a,, 3, 4,... b, 4, 9, 6,... c,,

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

ANEXO 4 - FORMULÁRIO PARA CADASTRO

ANEXO 4 - FORMULÁRIO PARA CADASTRO I - DADOS DO ESTADO ESTADO GOVERNO DE ESTADO DE ENDEREÇO PLETO DO GOVERNO ESTADUAL: NOME DO GOVERNADOR DO GOVERNADOR DOCUMENTOS NECESSÁRIOS PARA O ESTADO (DEVEM SEGUIR EM ANEXO) 1 - CÓPIA DO 2 - CERTIDÃO

Leia mais

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 =

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 = LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: saldan.mat@gmail.com PARTE - TRABALHO 4º BIMESTRE - (UEPG PR) + Dada a função f () =, assinale o que for correto. 0.

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

Operações Aritméticas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Operações Aritméticas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Operações Aritméticas Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Adição no Sistema Binário: É desenvolvida de forma idêntica ao sistema decimal; Apenas quatro casos podem ocorrer: Adição

Leia mais