(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

Tamanho: px
Começar a partir da página:

Download "(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A"

Transcrição

1 Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat u(x, y) = ax 2 + by( y), (a) Determine para que valores de a e b a função u é harmónica em R 2. A função u é de classe C 2 e é harmónica se e só se 2 u x 2 (x, y) + 2 u (x, y) =. y2 Assim temos 2 u x 2 = 2a, e portanto u é harmónica se e só se 2 u y 2 = 2b 2a 2b = a = b. (b) Para a = b = 3, determine a função inteira f : C C que verifica Re f = u e f () = 3i. Se u e v são funções de classe C em R 2, então para que f = u + iv seja inteira é necessário e suficiente que sejam satisfeitas as equações de Cauchy- Riemann, v y = ( 3x 2 3y( y) ) = 6x x v x = ( 3x 2 3y( y) ) = 3 6y y donde { v(x, y) = 6xy + C(x) 6y + C (x) = 3 6y Da segunda equação conclui-se que C (x) = 3 pelo que C(x) = 3x + C onde C é uma constante real. Como f () = 3i, tem-se v(, ) = 3 C = 3 e, portanto, f (x + iy) = 3( x 2 y( y) + i( 2xy + x + )).

2 (c) Calcule o integral: j z =27 f (z) (z i) 2 dz, onde a curva é percorrida uma vez no sentido inverso. Sendo f inteira e i < 27, a fórmula integral de Cauchy garante que Como resulta j z =27 f (x + iy) = u x + i v x f (z) (z i) 2 dz = 2πi f (i). f (i) = 3i, e concluimos que o valor do integral é 6π. = 6x + i( 6y + 3), 2. (a) Utilize o teorema Fundamental do Cálculo para calcular ˆ z dz, γ onde γ é uma parametrização do segmento de recta com ponto inicial z = i e ponto final z = 2. Justifique cuidadosamente a sua resposta. A função é holomorfa na região simplesmente conexa C\{x }, logo primitivável nessa região, pelo Teorema de Cauchy. Uma primitiva será log(z ) para o argumento principal do logaritmo, cujo domínio de holomorfia é precisamente C\{x }. Como o caminho de integração está contido em U, pelo tfc, o integral será log() log(i ) = log( 2) i 3π 4. [,5 val] (b) Justifique que z =2 z dz = 2πi, onde a curva é percorrida uma vez no sentido direto. 2

3 Imediato por aplicação da primeira fórmula integral de Cauchy à função g(z). [,5 val] (c) A função f (z) = z {z C : z = 2}? é primitivável num aberto U que contenha a curva Não. Se fosse, pelo tfc, o valor do integral da alínea anterior seria zero. 3. Considere a função f (z) = z 2 + z 2. (a) Determine e classifique as singularidades de f. As singularidades são dadas z 2 + z 2 = z = ou z = 2, e tratam-se de pólos simples: por exemplo, lim(z ) f (z) = lim z z z z 2 + z 2 = lim z 2z + = 3 =. (b) Determine os desenvolvimentos de f em série de Laurent em torno de z =, indicando os domínios onde estes desenvolvimentos são válidos. Para < z < 3 temos f (z) = = = (z )(z + 2) = (z ) (z + 3) = (z ) (z ) n (z )n n=( ) 3 n = n (z )n n=( ) 3 n+ + k+ (z )k ( ) k= 3 k+2. ( 3 + z 3 ) = 3

4 Para z > 3 temos f (z) = = (z ) (z + 3) = (z ) 2 ( + 3 (z ) 2 + n= ( 3) n (z ) n = + n= ( 3) n z ) = (z ) n+2 = + k=2 ( 3) k 2 (z ) k. [2, val] 4. Utilzando o teorema dos resíduos, calcule ˆ cos x (x 2 + 4) 2 dx. Considere a função f (z) = e iz /(z 2 + 4) 2 que tem dois polos duplos nos pontos ±i2. Para R > 2 o teorema dos resíduos diz que ˆ 2πi Res f (z) = f (z) dz, () z=i2 γ R onde γ R é o segmento de reta com ponto inicial R e ponto final R e a semicircunferência com ponto inicial R e ponto final R e parte imaginária positiva. O integral no segmento real é R f (x) dx = R ˆ cos x R (x 2 + 4) 2 dx + i sen x R (x 2 dx. (2) + 4) 2 Como cos x/(x 2 + 4) 2 é uma função par e sen x/(x 2 + 4) 2 é uma função ímpar obtém-se que o integral em (2) é cos x 2 (x 2 dx. (3) + 4) 2 Na semicircunferência σ(θ) = Re iθ, θ π e R > 2, tem-se ˆ σ ˆ π f (z) dz e R sen θ (R 2 4) 2 R dθ < π R (R 2 4) 2. 4

5 Segue-se que σ f (z) dz quando R, e portanto ˆ cos x (x 2 + 4) 2 dx = lim = iπ R [ Res z=i2 = 3 32 π e 2. cos x (x 2 + 4) 2 dx e iz ] (z 2 + 4) 2 = iπ [ d dz e iz ] (z + i2) 2 z=i2 5. Seja f uma função holomorfa na região < z z < R, para algum R >. Mostre que se f é limitada nessa região (ou seja, se existe um M > tal que f (z) M para todos os pontos z nessa região) então z é uma singularidade removível de f. Pelo teorema de Laurent, a função f admite um desenvolvimento em série de forma f (z) = a n (z z ) n para < z z < R, (4) n= onde a n = f (z) dz, 2πi z z =ɛ (z z ) n+ para qualquer que seja < ɛ < R. Sendo M o máximo de f (z) na região < z z < R, obtemos a n M 2π ɛ n+ 2πɛ = Mɛ n. Para n < tem-se lim ɛ Mɛ n =, concluímos que a n =, para cada n <. Logo a parte principal da série (4) é nula, e portanto a singularidade no ponto z é removível. 5

6 Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão B. Considere a função definida em R 2 em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat v(x, y) = ay 2 + b( x + x 2 ), (a) Determine para que valores de a e b a função v é harmónica em R 2. (b) Para a = b = 5, determine a função inteira f : C C que verifica Im f = v e f () = 5i. (c) Calcule o integral: j z =27 f (z) (z ) 2 dz, onde a curva é percorrida uma vez no sentido inverso. 2. (a) Utilize o teorema Fundamental do Cálculo para calcular ˆ z + dz, γ onde γ é uma parametrização do segmento de recta com ponto inicial z = e ponto final z = + i. Justifique cuidadosamente a sua resposta. [,5 val] (b) Justifique que z+ =2 z + dz = 2πi, onde a curva é percorrida uma vez no sentido direto. [,5 val] (c) A função f (z) = z+ é primitivável num aberto U que contenha a curva {z C : z + = 2}? [2, val] 3. Considere a função f (z) = z 2 z 2. (a) Determine e classifique as singularidades de f. (b) Determine os desenvolvimentos de f em série de Laurent em torno de z = 2, indicando os domínios onde estes desenvolvimentos são válidos. 4. Utilzando o teorema dos resíduos, calcule ˆ x sen x (x 2 + )(x 2 + 4) dx. 6

7 Considere a função f (z) = ze iz /(z 2 + )(z 2 + 4) que tem quatro polos simples nos pontos ±i2 e ±i. Para R > 2 o teorema dos resíduos diz que [ ] ˆ 2πi Res f (z) + Res f (z) = f (z) dz, (5) z=i2 z=i γ R onde γ R é o segmento de reta com ponto inicial R e ponto final R e a semicircunferência com ponto inicial R e ponto final R e parte imaginária positiva. O integral no segmento real é R f (x) dx = R ˆ x cos x R (x 2 + )(x 2 + 4) dx + i x sen x R (x 2 + )(x 2 dx. (6) + 4) Como x sen x/(x 2 + )(x 2 + 4) é uma função par e x cos x/(x 2 + )(x 2 + 4) é uma função ímpar obtém-se que o integral em (6) é x sen x 2i (x 2 + )(x 2 dx. (7) + 4) Na semicircunferência σ(θ) = Re iθ, θ π e R > 2, tem-se ˆ σ ˆ π f (z) dz Re R sen θ (R 2 )(R 2 4) R dθ < π R 2 (R 2 )(R 2 4). Segue-se que σ f (z) dz quando R, e portanto ˆ x sen x (x 2 + )(x 2 dx = lim + 4) R [ = π Res = π = e e 2 z=i2 x sen x (x 2 + )(x 2 + 4) dx ze iz (z 2 + )(z 2 + 4) + Res z=i ] [ i2e 2 i2 + ie i6 π 6. ze iz ] (z 2 + )(z 2 + 4) 5. Seja f uma função holomorfa na região < z z < R, para algum R >. Mostre que se f é limitada nessa região (ou seja, se existe um M > tal que f (z) M para todos os pontos z nessa região) então z é uma singularidade 7

8 removível de f. Pelo teorema de Laurent, a função f admite um desenvolvimento em série de forma f (z) = a n (z z ) n para < z z < R, (8) n= onde a n = f (z) dz, 2πi z z =ɛ (z z ) n+ para qualquer que seja < ɛ < R. Sendo M o máximo de f (z) na região < z z < R, obtemos a n M 2π ɛ n+ 2πɛ = Mɛ n. Para n < tem-se lim ɛ Mɛ n =, concluímos que a n =, para cada n <. Logo a parte principal da série (8) é nula, e portanto a singularidade no ponto z é removível. 8

9 Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às :3 Teste versão C MEAmbi, MEBiol, MEEC, MEQ, LEIC. Sejam α e β duas constantes reais e u uma função dada em R 2 por u(x, y) = αy 3 βx 2 y. (a) Identifique o conjunto de valores de α e β para os quais u é uma função harmónica. A função u é harmónica sse Assim temos 2 u x 2 (x, y) + 2 u (x, y) =. y2 2 u x 2 = 2βy, 2 u y 2 = 6αy e portanto u é harmónica sse, para todo real y, o que é equivalente a β = 3α. ( 2β + 6α)y =, (b) Considere α = e β = 3. Determine uma função inteira f tal que u(x, y) = Re f (x + iy) e f (i) =. Se u e v são de classe C em R 2, então para que f = u + iv seja inteira é necessário e suficiente que sejam satisfeitas as equações de Cauchy-Riemann { v ( y 3 3x 2 y ) = 6xy donde y = x v x = y ( y 3 3x 2 y ) = 3y 2 + 3x 2, { v(x, y) = 3xy 2 + C(x) 3y 2 + C (x) = 3y 2 + 3x 2. Da segunda equação conclui-se que C (x) = 3x 2 pelo que C(x) = x 3 + C onde C é uma constante real. Logo, v(x, y) = 3xy 2 + x 3 + C. Como f (i) =, tem-se v(, ) = C = e, portanto, f (x + iy) = y 3 3x 2 y + i( 3xy 2 + x 3 ). 9

10 (c) Indique, justificando, o valor do integral j z =3 f (z) (z ) 2 dz, onde a circunferência é percorrida uma vez no sentido horário. Sendo f inteira e < 3, a fórmula integral de Cauchy garante que Como j z =3 f (z) (z ) 2 dz = 2πi f (). f (x + iy) = f x = u x i u y = 6xy i(3y2 3x 2 ), e, logo, f () = 3i. O valor do integral será então 6π. 2. (a) Determine o domínio de holomorfia da função f (z) = log(z 2 ), onde se considera o argumento principal do logaritmo. O domínio de holomorfia será C\{x + iy : (x 2 y 2 ) 2xy = } = C\ ({z = + iy, y R} {z = x + i, x R : x }). (b) Atendendo à alínea anterior, indique, justificando o valor de: z 2 = 2 log(z 2 ) dz, e z 2 = 2 log(z 2 ) (z 2) 2 dz, onde a curva é percorrida uma vez no sentido direto. O primeiro integral é zero, pelo TFC, uma vez que o caminho de integração está contido numa região simplesmente conexa onde a função é holomorfa. d O segundo integral é dado por 2πi dz log(z2 ) = 8πi z=2 3.

11 3. Considere a função f (z) = sen(z) z 4. (a) Determine e classifique as singularidades de f. A função f possui uma única singularidade em z =. Trata-se de um pólo de terceira ordem, já que sen(z) lim z z3 f (z) = lim z z = =. (b) Determine o desenvolvimento de f em série de Laurent em torno de z =, indicando o domínio onde este desenvolvimento é válido. Para z > temos f (z) = z 4 + n= ( ) n + (2n + )! z2n+ = n= ( ) n (2n + )! z2n 3 = + k= 2 ( ) k (2k + 5)! z2k+. [2, val] 4. Utilzando o teorema dos resíduos, calcule ˆ 2π Para z = e iθ, com θ 2π, tem-se cos θ 5 4 cos θ dθ. ˆ 2π cos θ 5 4 cos θ z = dθ = (z + z )/2 iz(5 2(z + z )) z = dz = (z 2 + ) 2iz(2z 2 5z + 2) dz [ (z = 2 + ) 2πi Res z= 2iz(2z 2 5z + 2) + Res (z 2 ] + ) z=/2 2iz(2z 2 5z + 2) [ = 2πi i4 + 5 ] i2 = π 3.

12 5. Seja f (z) uma função holomorfa em todo o plano complexo e suponha que existem M R e n N tais que f (z) M( + z n ) para cada z C. Mostre que f (z) é um polinómio de grau menor ou igual a n. Vamos mostrar que f (n+) (z) é a função nula. Pela fórmula de Cauchy tem-se se z < R, e portanto f (n+) (z) = f (w) dw (9) 2πi w =R (w z) n+2 f (n+) (z) M( + R n ) 2π (R z ) n+2 2πR = M R( + Rn ) (R z ) n+2. Como lim R M R(+Rn ) (R z ) n+2 =, segue-se que f (n+) (z) é a função nula. 2

13 Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às :3 Teste versão D MEAmbi, MEBiol, MEEC, MEQ, LEIC. Sejam α e β duas constantes reais e v uma função dada em R 2 por v(x, y) = αxy 2 βx 3. (a) Identifique o conjunto de valores de α e β para os quais v é uma função harmónica. (b) Considere α = 3 e β =. Determine uma função inteira f tal que v(x, y) = Im f (x + iy) e f (i) =. (c) Indique, justificando, o valor do integral z =3 f (z)) (z i) 2 dz, onde a circunferência é percorrida uma vez no sentido horário. [2, val] 2. (a) Determine o domínio de holomorfia da função f (z) = log(z 2 + ), onde se considera o argumento principal do logaritmo. (b) Atendendo à alínea anterior, indique, justificando o valor de: 3. Considere a função z = 2 log(z 2 + ) dz, e f (z) = ez z 4. z = 2 (a) Determine e classifique as singularidades de f. log(z 2 + ) z 2 (b) Determine o desenvolvimento de f em série de Laurent em torno de z =, indicando o domínio onde este desenvolvimento é válido. 4. Utilzando o teorema dos resíduos, calcule dz. ˆ 2π (5 + 4 cos θ) 2 dθ. 3

14 Para z = e iθ, com θ 2π, tem-se ˆ 2π (5 + 4 cos θ) z = 2 dθ = = z = [ = 2πi = π 2 [ d dz = 27 π. iz(5 + 2(z + z )) 2 dz z i4(z + 2) 2 (z + /2) 2 dz ] z Res i4(z + 2) 2 (z + /2) ] 2 z (z + 2) 2 z= /2 z= /2 5. Seja f (z) uma função holomorfa em todo o plano complexo e suponha que existem M R e n N tais que f (z) M( + z n ) para cada z C. Mostre que f (z) é um polinómio de grau menor ou igual a n. Vamos mostrar que f (n+) (z) é a função nula. Pela fórmula de Cauchy tem-se se z < R, e portanto f (n+) (z) = f (w) dw () 2πi w =R (w z) n+2 f (n+) (z) M( + R n ) 2π (R z ) n+2 2πR = M R( + Rn ) (R z ) n+2. Como lim R M R(+Rn ) (R z ) n+2 =, segue-se que f (n+) (z) é a função nula. 4

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010 Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h, Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015 Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 ) ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de

Leia mais

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

1 a Lista de Exercícios de Métodos Matemáticos II

1 a Lista de Exercícios de Métodos Matemáticos II a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Análise Matemática IV Problemas para as Aulas Práticas 4 de Abril de 5 Semana 3. Determine os valores dos seguintes integrais: a) z dz em que é o semicírculo percorrido em sentido directo unindo i a i.

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matem tica SecÁ o de Álgebra e Análise ANÁLISE MATEMÁTICA IV 1 o Teste Cursos: LCI, LEAmb, LEBL, LEGM, LEIC, LEM, LEMat, LEMG, LEQ, LQ Justifique cuidadosamente

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

3 ā Prova de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

3 ā Prova de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira 3 ā Prova de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009 - /2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : Q 2 3 4 5 E E2 Total N JUSTIFIQUE TODAS AS PASSAGENS BOA SORTE. Para cada

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 2 ANÁLISE COMPLEXA Para cada um dos seguintes conjuntos Z C, esboce o conjunto dos seus logaritmos.

Leia mais

1 o Semestre 2018/2019 MEC

1 o Semestre 2018/2019 MEC ACED Análise Complea e Equações Diferenciais o Semestre 208/209 MEC Conteúdo I. Números compleos, funções compleas........... II. Transformações conformes e diferenciabilidade de funções compleas.............................

Leia mais

Funções analíticas LISTA DE EXERCÍCIOS

Funções analíticas LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013 Análise Complexa e Equações Diferenciais ō Semestre 1/13 ō Teste Versão A (Cursos: LEAN, LEMat, LMAC, MEAer, MEAmbi, MEBiom, MEBiol, MEFT, MEMec, MEQ) 5 de Maio de 13, 11h Duração: 1h 3m 1. Considere o

Leia mais

PROVAS DE ANÁLISE COMPLEXA

PROVAS DE ANÁLISE COMPLEXA PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)

Leia mais

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de

Leia mais

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019 ACED Análise Complexa e Equações Diferenciais MEC Michael Paluch 1 o Semestre 2018/2019 17 a Aula 17.1 Teorema de Cauchy Recordamos que a imagem de um caminho seccionalmente de classe C 1 chamase uma curva

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

1 a Lista de Exercícios de Cálculo VIII

1 a Lista de Exercícios de Cálculo VIII a Lista de Eercícios de Cálculo VIII. Simplifique: [ ] + i a + i i b 4 i c + i 6 i + i d i 4 e eπi f i e πi e +πi. Encontre todos os valores de C tais que: a i 0 b + i c + i d 6 + 64 0 e i 8 f 4/. Seja

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Análise Complexa e Equações Diferenciais Exame - 9 de Janeiro de 8 MEC Resolução. A imagem da região { z C : Rz < e 3 8 < Iz < 8} por z e z é { z C : < z < e 3 } 4 < argz

Leia mais

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira Prova Substitutiva de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009-8/2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : GABARITO Q 2 3 4 5 6 7 8 9 0 2 Total N JUSTIFIQUE TODAS AS PASSAGENS

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem

Leia mais

LEEC Exame de Análise Matemática 3

LEEC Exame de Análise Matemática 3 LEEC Exame de Análise Matemática 3 0 de Janeiro de 005 Justifique cuidadosamente todas as respostas Não é permitida a utilização de máquina de calcular O tempo para a realização desta prova é de horas

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

Lista 1 - Métodos Matemáticos II Respostas

Lista 1 - Métodos Matemáticos II Respostas Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões

Leia mais

Lista 4 - Métodos Matemáticos II

Lista 4 - Métodos Matemáticos II Lista 4 - Métodos Matemáticos II Prof. Jorge Delgado. alcule Res f () da função f () dada. + ; (b) cos cot ; (c) ; (d) senh 4 4 ( ). Solução. ; (b) ; (c) 45 ; (d) 7 6.. Usando o teorema do resíduo verifique

Leia mais

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan GABARITO 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan (Valor 3.) Questão 1: Responda às seguintes questões, usando as equações de Cauchy-Riemann. (1.5) (a) Mostre que a função

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

LOM3253 Física Matemática 2017 S2

LOM3253 Física Matemática 2017 S2 LOM3253 Física Matemática 2017 S2 Parte 2. Funções de variável complexa Prof. Dr. Viktor Pastoukhov EEL-USP Subconjuntos no plano complexo Geometria Analítica no plano complexo Geometria Analítica no plano

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa. UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 cm LISTA7 - DICAS: LISTA DE EXERCÍCIOS 7 - Integração Revisão do Teorema

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Instituto Superior Técnico Departamento de Matemática Análise Complexa e Equações Diferenciais Cursos: MEC,LEGM (24/5, Semestre ) Apontamentos das aulas teóricas. Introdução Este texto consiste numa transcrição

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Instituto Superior Técnico Departamento de Matemática Análise Complexa e Equações Diferenciais Cursos: MEMec,LEAN (25/6, Semestre ) Apontamentos das aulas teóricas. Introdução Este texto consiste numa

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Introdução às superfícies de Riemann

Introdução às superfícies de Riemann Introdução às superfícies de Riemann Sylvain Bonnot Fevereiro 2015 Nessa primeira aula vamos apresentar o conteúdo do curso, os principais resultados e as definições basicas com primeiros examplos de superfícies

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ 2 o semestre 2/22 o TESTE (Época

Leia mais

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT)

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT) LISTA DE EXEÍIOS SOBE TEOEMA DE GEEN, FLUXO (ONT.), DIVEGÊNIA E OTAIONAL DE UM AMPO ESPAÇO, LAPLAIANO, FUNÇÕES HAMÔNIAS (ONT) POFESSO: IADO SÁ EAP () Sejam F (x, y, ) e G(x, y, ) campos vetoriais definidos

Leia mais

17 a Aula AMIV LEAN, LEC Apontamentos

17 a Aula AMIV LEAN, LEC Apontamentos 7 a Aula 004.0. AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 7. Definições de polinómio e fracção racional Comecemos por adoptar uma definição de polinómio de grau n. Definição 7. Uma

Leia mais

ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA

ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA Maria do Rosário de Pinho e Maria Margarida Ferreira Agosto 2004 Faculdade de Engenharia da Universidade do Porto Licenciatura

Leia mais

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas Análise Complexa e Equações Diferenciais Apontamentos das aulas teóricas 2 Índice Introdução 3. Revisões sobre números complexos 3 2. Representação trigonométrica dos números complexos 4 3. Noções topológicas

Leia mais

Variável Complexa 1-6 a Lista de Exercícios Prof. Lineu da Costa Neto

Variável Complexa 1-6 a Lista de Exercícios Prof. Lineu da Costa Neto Fundação Universidade de Brasília Departamento de Matemática - IE Campus Universitário, 79-9 - Brasília - DF Fone: (6) 73-3356 FAX: (6) 74-39 Variável Complexa - 6 a Lista de Exercícios Prof. Lineu da

Leia mais

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro 19 a 28 de Outubro Nestas teóricas, estamos a falar das últimas ideias de análise complexa. Veremos algumas aplicações do teorema dos resíduos e algumas propriedades das funções holomorfas. No livro, falta-vos

Leia mais

p2n 1q p 1q 2n 1 p2n 1q 1 1 o TESTE (2,0 val.) Problema 1 Considere o conjunto A tx P R : arctan x 2 3 π{4u.

p2n 1q p 1q 2n 1 p2n 1q 1 1 o TESTE (2,0 val.) Problema 1 Considere o conjunto A tx P R : arctan x 2 3 π{4u. Instituto Superior Técnico Departamento de Matemática Época de Recurso de Cálculo Diferencial e Integral I Cursos: LMAC, MEBiom, MEFT, LEMat, LEAN, MEQ, MEAmbi, MEBiol o Sem. 04/5 6//05 Duração: h0m +

Leia mais

Exercícios de revisão

Exercícios de revisão Exercícios de revisão Roberto Imbuzeiro Oliveira 7 de Abril de 20 Vários exercícios apresentados aqui vêm do livro David Ullrich, Complex Made Simple, ou dos livros de Ahlfors e Churchill. Em alguns casos,

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30)

ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30) Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA III TETE - VERÃO A 9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (9: - :3

Leia mais

7.3 Diferenciabilidade

7.3 Diferenciabilidade CAPÍTULO 7. INTRODUÇÃO À ANÁLISE EM RN 7.18 Estude quanto a continuidade a função f de R 2 com valores em R definida por: x 2, se x 2 + y 2 < 2y, f(x, y) = x, se x 2 + y 2 = 2y, y 2, se x 2 + y 2 > 2y.

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Análise Complexa e Equações Diferenciais o Semestre de 07/8 MEC Exercícios para as aulas práticas Conteúdo I Números complexos (8-/9/07) II Números complexos, funções complexas (5-9/9/07) 4 III Transformações

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0 Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS I. Continuidade de Funções. 1) Considere a função f :

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu M.A.C. FORMULÁRIO. cos z = eiz + e iz. sinh z = ez e z 2

Departamento de Matemática Escola Superior de Tecnologia de Viseu M.A.C. FORMULÁRIO. cos z = eiz + e iz. sinh z = ez e z 2 Departamento de Matemática Escola Superior de Tecnologia de Viseu M.A.. FORMULÁRIO e x+iy = e x (cos y + i sin y) sin z = eiz e iz i cosh z = ez + e z ln z = w z = e w cos z = eiz + e iz sinh z = ez e

Leia mais

Capítulo Topologia e sucessões. 7.1 Considere o subconjunto de R 2 : D = {(x, y) : xy > 1}.

Capítulo Topologia e sucessões. 7.1 Considere o subconjunto de R 2 : D = {(x, y) : xy > 1}. Capítulo 7 Introdução à Análise em R n 7. Topologia e sucessões 7. Considere o subconjunto de R 2 : D = {(x, y) : > }.. Indique um ponto interior, um ponto fronteiro e um ponto exterior ao conjunto D e

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Resolução do exame Cálculo Diferencial e Integral I Versão B Data: 8/ / 8 Grupo I - (a) x 3 + x x = x(x + x ) = x(x + )(x ) Cálculo auxiliar: x + x = x = ± + 8 = ou x + + x + + + + + x + + + + x(x+)(x

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV o Teste do 1 o semestre de 04/05 cursos: LEAm, LEBl, LEQ, LQ, LEIC, LEM, LEMat, LEGM, LEAN e LEC

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEAmb, LEMat, LQ, MEB, MEEC, MEQ o teste / o eame - 7 de Janeiro de 8 duração: o teste: :3 / o eame: 3: Apresente todos os cálculos e justificações relevantes Para resolver

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEA, LEM, LEAN, MEAer, MEMec o Semestre de 006/007 6 a Aula Prática Soluções e algumas resoluções abreviadas. a) Como e é crescente, com contradomínio ]0, + [, o contradomínio

Leia mais

f ( t) e F( z) dz, t

f ( t) e F( z) dz, t Fórmula Complexa de Inversão Agora possuímos o ferramental matemático necessário para obtermos a inversão efetiva da transformada de aplace. A inversão é obtida através da Fórmula Integral de Bromwich.

Leia mais

Teste de Matemática CURSO: Ciências do Desporto 10/I/12 Duração: 2h Justifique cuidadosamente todas as suas respostas.

Teste de Matemática CURSO: Ciências do Desporto 10/I/12 Duração: 2h Justifique cuidadosamente todas as suas respostas. Faculdade de Motricidade Humana Matemática Aplicada e Estatística Teste de Matemática CURSO: Ciências do Desporto 1/I/12 Duração: 2h Justifique cuidadosamente todas as suas respostas. I (12 valores) (a)

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total 1 a Prova de MAT036 - Geometria Diferencial I IME - 9/09/016 Nome:................................................... Q N Assinatura:............................................... 1 RG:......................................................

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

Teorema da Divergência e Teorema de Stokes

Teorema da Divergência e Teorema de Stokes Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.

Leia mais

3 a Ficha de Exercícios de AMIII

3 a Ficha de Exercícios de AMIII 3 a Ficha de Exercícios de MIII Resolução Sumária. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: O triângulo de vértices,,, e, ; região entre os gráficos

Leia mais

Lista 3 - Métodos Matemáticos II

Lista 3 - Métodos Matemáticos II Lista 3 - Métodos Matemáticos II Prof. Jorge Delgado. Seja a curva poligonal de vértices 2( + i), 2( + i), 2( + i) e 2( i) orientada positivamente. Use a fórmula integral de auchy para verificar que: e

Leia mais

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07 Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações

Leia mais

LEEC Exame de Análise Matemática 3

LEEC Exame de Análise Matemática 3 LEEC Exame de Análise Matemática 3 5 de Fevereiro de 005 Justifique cuidadosamente todas as respostas Não é permitida a utiliação de máquina de calcular O tempo para a realiação desta prova é de horas

Leia mais

3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY

3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY 3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY A teoria de Cauchy-Goursat, desenvolvida na secção 2 (TEORIA DE CAUCHY- GOUR- SAT), permite-nos tirar algumas propriedades importantes sobre as funções f que são diferenciáveis

Leia mais

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro 2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

Probabilidades e Estatística LEE, LEGI, LENO, LETI, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ

Probabilidades e Estatística LEE, LEGI, LENO, LETI, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Duração: 90 minutos Grupo I Probabilidades e Estatística LEE, LEGI, LENO, LETI, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Justifique convenientemente todas as respostas o semestre 08/09

Leia mais

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES

Leia mais

ficha 6 espaços lineares com produto interno

ficha 6 espaços lineares com produto interno Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

Análise Matemática II TESTE/EXAME

Análise Matemática II TESTE/EXAME Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas

Leia mais