Revisão do Teorema de Green
|
|
|
- Gilberto Fonseca Ferretti
- 7 Há anos
- Visualizações:
Transcrição
1 Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem séries numéricas. - Cobrirá o material teórico necessario para a lista 6: derivada complexa, séries de potências complexas, raio de convergência e equação de Cauchy-Riemann e, ainda mais, 3 - Quanto a lista 7: (i) não solicitarei nenhuma questão que requeira aplicar o Teorema de Green (vide questões 3, 4, 5, 6 e 7 da lista 7)mas recomendo para um melhor entendimento da matéria relembra-lo e faer alguns exercícios. (ii) no mínimo 5 questões (totaliando de pontos na prova) cobrirão o material pedido na lista 6 e o material necessário para resolver as questões 7 até apresentadas na lista 7. (iii) haverão duas questões extras que, dependendo até onde avançarmos com a exposição teórica, versarão sobre singularidades (séries de Laurent, polos e resíduos; vide os exercícios sobre singularidades na lista 7, desde o até o 8). (iv) O Teorema de Rouché (contagem de eros de uma função analítica) não será cobrado nesta prova (vide questões 9 e 30 da lista 7) 4 - Quase todos os exercícios da lista 7 foram retirados do livro já indicado na bibliografia: Cálculo em Uma Variável Complexa, Marcio G. Soares, IMPA.; cuja leitura dos capítulos 5 (que estou apresentando em aula) e 6 (que espero ainda iniciar) fortemente recomendo. Oswaldo Rio Branco de Oliveira, São Paulo, 9 de novembro de 009. Segue a lista 7 de exercícios nas próximas páginas.
2 LISTA DE EXERCÍCIOS 7 - Integração Revisão do Teorema de Green () Leia a demonstração da versão simplificada do Teorema de Green nas páginas 7 a 3 do livro texto Cálculo em Uma Variável Complexa, Marcio G. Soares. () Para cada um dos conjunto abaixo, sua fronteira é descrita por uma curva suave por partes. Esboce o conjunto, sua fronteira e dê uma aplicação que a descreva. (a) V={ C,Re(). (b) V={ C, Re() Im() 0}. (c) V={ C, Re() Im() 0}. 3 (3) Calcule V f, com V cada um dos conjuntos do exer. (V e V positiva/e orientados) e y f(x,y)=( x + y, x x + y ), f(x,y)=( x x + y, y x + y ). 4) Seja V como no enunciado do Teorema de Green. Mostre que a área de V é dada por V xdy. (5) Use (4) para calcular a área de V={(x,y) x y a+ b } e V={(x,y) x y 9, xy 4}. (6) Calcule (V e V positiva/e orientados) onde V é V (x y )dx+xydy e xydx+(y x )dy, (i) O retângulo delimitado pelas retas y= x, y= x+4, y= x+ e y= x. (ii) V={(x,y) x y 9, xy 4}. Holomorfia Se f Ω C, Ω C é derivável em 0 e se f=(u(x,y),v(x,y)) é a identificação usual com f através do isomorfismo natural entre C e R mostramos J( f) = y (x 0,y 0 ) y (x 0,y 0 ) = x (x 0,y 0 ), a forma matricial das equações C-R. EM L, Exerc. 4, vimos = a+bi a b b a.
3 (7) Dada f Ω C, Ω aberto em C, seja f(x,y)=(u(x,y),v(x,y)) com a notação acima e suponhamos f diferenciável [logo, existem x, y, x, y ]. (a) Escrevendo, x= + f= u(x,y)+iv(x,y)=u( +, y= i, ) + iv( + i,, ), i desenvolva, utiliando a regra da cadeia, as fórmulas (memorie-as) para f e f, em termos das derivadas parciais de u e v, em relação às variáveis x e y. (b) Mostre que f = 0 se e só se valem as equações de C-R: x = y e = y x (c) Mostre que valem as equações de C-R se e somente se f = 0. (d) Interprete o resultado em (c). (8) Verifique se se cumprem as condições C R para as seguinte funções (i) f()=x 3 3xy + i(3x y y 3 ) (ii) f()=e y (cosx+isinx). (iii) f()=e x (cosy isiny) (iv) f()=e y (cosx+isinx). (9) Seja f() uma função inteira (holomorfa em todo o plano complexo). Mostre que a função g()=f() também é inteira. Mostre, ainda, que a função h()=f() é derivável em 0 = 0 se e somente se f (0)=0. (0) Mostre que (a) cos= (ei + e i ), sin= i (ei e i ). (b) cos= cos e sin= sin. (c) cos + sin = se e só se é real () Compute as derivadas e expresse na forma u+iv o seno e o co-seno hiperbólicos: cosh= (e + e ), sinh= (e e ). () Identifique o erro no Paradoxo de Bernoulli: ( ) = log( )=log log( )=log. (3) Usando o ramo principal de λ calcule,(5i) +i e i e i. (4) Determine o ramo principal da função. 3
4 (5) Compute γ f()d onde f e γ são dados. (a) f()= e γ(t)=e it, 0 t π. (b) f()= + (c) f()= + e γ(t)=3e it, 0 t π. e γ(t)=5i+e it, 0 t π. (d) f()= e γ(t)=+eit, 0 t π. (e) f()= e γ(t)=eit, 0 t π. (f) f()=πe π e γ é o quadrado de vértices 0,, +i e i, positivamente orientado. (g) f()= 0 e γ(t)= 0 + re it, 0 t π, r> 0. (h) f()= ( 0) n e γ(t)= 0 + re it, 0 t π, r> 0, n. (i) f()= ei e γ(t)=e it, 0 t π. (j) f()= sin 4 (k) f()= log n (l) f()= e e n e γ(t)=e it, 0 t π. e γ(t)=+ 4 eit, 0 t π. e γ(t)=e it, 0 t π, n. (m) f()= + e γ(t)=eit, 0 t π. e (6) Mostre que k γ d= πi, onde k é uma constante real e γ(t)=eit, 0 t π. Use esse resultado para mostrar que 0 π e kcost cos(k sint)dt=π. (7) Se f é uma função inteira e existem M 0, R>0 e n tais que f() M n para R, mostre que f é um polinômio de grau menor ou igual a n. (8) Seja f Ω C uma função holomorfa, Ω um domínio. Suponha que exista a Ω tal que f(a) f(), Ω. Mostre que ou f(a) = 0 ou f é uma função constante. (9) Seja f holomorfa num domínio Ω contendo a região fechada e limitada determinada por uma curva de Jordan suave por partes γ e um ponto intrior a esta região. Se K é o máximo de f ao longo de γ e δ é a distância mínima de a γ então, f() K( L(γ) πδ ) n, L(γ) o comprimento de γ, n. Aplique tal desigualdade para dar uma outra prova do Princípio do Módulo Máximo. (0) Igualdade de Parsevall: Se f()= + a n ( 0 ) n, D ρ ( 0 ), e se r< ρ, então n=0 π π f( 0 + re iθ dθ= a n r n. 0 Aplique tal identidade para dar uma outra prova do Princípio do Módulo Máximo. 4
5 () Princípio da Identidade para Funções Holomorfas Sejam f e g holomorfas num domínio Ω. Se X ={ Ω f() = g()} tem ponto de acumulação em Ω, então f g. () Determine a expansão de Laurent da função dada em torno de cada uma de suas singularidades, especificando o anel no qual ela é válida. (i) f()= (ii) f()= (+i) (iii) f()= 3 e ( )(+i) (iv) f()=cos (v) f()= 5 ( ). (3) Uma função holomorfa num disco em torno de um polo é a soma de duas funções, uma racional e outra holomorfa. (4) Dê uma função com um polo de ordem em = e um polo de ordem 7 em = i. (5) Seja f C C holomorfa e tal que existe lim f(). Então, f é constante. (6) Classifique a singularidade 0 de cada uma das funções: (i) f()=sin( ) cos (ii) f()= (iv) f()=exp(+ ) (v) f()= 8 (iii) f()= sin 3 (vi) f()= cos 4. (7) Determine a ordem do polo de f em a e calcule res(f;a). (i) f()= sin 4, a=0. (ii) f()= e n+, a=0. (iii) f()= cos 3 ( ), a=0. (iv) f()= 4 5, a=. (v) f()= sin(/) 4 5, a=. (vi) f()= cos, a=0. (vii) f()= e3, a=0. 4 (viii) f()= e 4 5, a=. (8) Seja f holomorfa em Ω 0 e ainda:f(0)=0 e 0 é o único ero de f em Ω. Seja g também holomorfa em Ω. Então, f divide g [i.e., g= hf, com h holomorfa] se e somente se: res(k g f 0)=0 para toda função holomorfa k em Ω. (9) Ache o número de eros satisfaendo < dos seguintes polinômios: (i) ; (ii) (30) Se a >e, a equação e = a n tem n raíes no disco <. 5
1 a Lista de Exercícios de Métodos Matemáticos II
a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i
ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS
Lista 4 - Métodos Matemáticos II
Lista 4 - Métodos Matemáticos II Prof. Jorge Delgado. alcule Res f () da função f () dada. + ; (b) cos cot ; (c) ; (d) senh 4 4 ( ). Solução. ; (b) ; (c) 45 ; (d) 7 6.. Usando o teorema do resíduo verifique
Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,
Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:
Lista 2 - Métodos Matemáticos II Respostas
Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer
Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014
Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função
ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.
Lista 3 - Métodos Matemáticos II
Lista 3 - Métodos Matemáticos II Prof. Jorge Delgado. Seja a curva poligonal de vértices 2( + i), 2( + i), 2( + i) e 2( i) orientada positivamente. Use a fórmula integral de auchy para verificar que: e
Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013
Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função
Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015
Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy
Funções analíticas LISTA DE EXERCÍCIOS
LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?
(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A
Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,
1 a Lista de Exercícios de Cálculo VIII
a Lista de Eercícios de Cálculo VIII. Simplifique: [ ] + i a + i i b 4 i c + i 6 i + i d i 4 e eπi f i e πi e +πi. Encontre todos os valores de C tais que: a i 0 b + i c + i d 6 + 64 0 e i 8 f 4/. Seja
4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c)
VAIÁVEL COMPLEXA 4. INTEGAÇÃO COMPLEXA 4. Função Complexa de uma Variável eal. Calcule as seguintes integrais: =4 e it dt e wt dt; (e w > ) (c) 2 e imt e int dt; m; n 2 : 2. Calcule as integrais trigonométricas:
Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014
Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função
RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )
ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de
ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique
Fichas de Análise Matemática III
Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas
Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010
Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe
Total Escolha 5 (cinco) questões. Justifique todas as passagens. Boa Sorte!
ā Prova de MAT 147 - Cálculo II - FEA-USP 15/10/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 3 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens.
Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013
Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função
MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15.
MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o Semestre de - a Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. 7 5. 6. 9. tg. e. tg sec 7..
MAT Cálculo II - POLI
MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)
ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019
ACED Análise Complexa e Equações Diferenciais MEC Michael Paluch 1 o Semestre 2018/2019 17 a Aula 17.1 Teorema de Cauchy Recordamos que a imagem de um caminho seccionalmente de classe C 1 chamase uma curva
21 de Junho de 2010, 9h00
Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de
Cálculo de Resíduos AULA 12
AULA 2 META: Apresentar cálculo de resíduos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir resíduo de uma função de variáveis complexas em um ponto dado e calcular o resíduo de uma
SUMÁRIO CAPÍTULO 1 CAPÍTULO 2
SUMÁRIO CAPÍTULO 1 NÚMEROS COMPLEXOS 1 Somas e produtos 1 Propriedades algébricas básicas 3 Mais propriedades algébricas 5 Vetores e módulo 8 Desigualdade triangular 11 Complexos conjugados 14 Forma exponencial
PROVAS DE ANÁLISE COMPLEXA
PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)
MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)
1 Números Complexos e Plano Complexo
UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matem tica SecÁ o de Álgebra e Análise ANÁLISE MATEMÁTICA IV 1 o Teste Cursos: LCI, LEAmb, LEBL, LEGM, LEIC, LEM, LEMat, LEMG, LEQ, LQ Justifique cuidadosamente
MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15.
MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o. Semestre de - a. Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. e. cos 7 4. tg 7 sen 5. 6.
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno
Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro
19 a 28 de Outubro Nestas teóricas, estamos a falar das últimas ideias de análise complexa. Veremos algumas aplicações do teorema dos resíduos e algumas propriedades das funções holomorfas. No livro, falta-vos
I. Derivadas Parciais, Diferenciabilidade e Plano Tangente
1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das
Análise Matemática IV
. Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas
Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e
Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,
Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec
Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva
Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio
CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 1 a FICHA DE EXERCÍCIOS 1 [
Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. 04/5 a FICHA DE EXERCÍCIOS 0. Desigualdades e Módulos. Mostre que:.. R : + < =, 7, +.. R
ANÁLISE MATEMÁTICA IV
ANÁLISE MATEMÁTICA IV (2 ō semestre 2006/07) LEC e LEGM Professor Responsvel: Maria João Borges http://www.math.ist.utl.pt/ mborges/amiv Sumários das Aulas Teóricas Aula 37: (05/06) Aula 36: (04/06) Continuação
Cálculo I - Curso de Matemática - Matutino - 6MAT005
Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA
Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula Matéria Dada Exercícios Recomendados Obs 1 06/08 Sequências, definição, exemplos, convergência e divergência, propriedades,
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)
MAT111 - Cálculo I - IO
II - Integrais Indefinidas MAT - Cálculo I - IO - 0 a Lista de Eercícios Calcule as integrais indefinidas abaio: 7 + +. d.. tg d. 7. 0.. 6. 9... 8... 7. 0. sen cos d 8. d. + d. +d 7. d (arcsen) 0. e d.
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no
Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123
Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123 Número da Data da Matéria Dada Exercícios Recomendados Obs Aula Aula 1 11/03 Sequências Numéricas, definição, exemplos,
Séries de Laurent e Teoremas de Cauchy
Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries
1 Primeira lista de exercícios
1 Primeira lista de exercícios Números complexos, derivadas e integrais. 1. Ache todos os valores das seguintes raízes: (a) (2i) 1=2 (b) ( i) 1=3 (c) 8 1=6 2. Descreva geometricamente cada uma das regiões
Lista 1 - Métodos Matemáticos II Respostas
Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele
Análise Matemática IV Problemas para as Aulas Práticas
Análise Matemática IV Problemas para as Aulas Práticas 4 de Abril de 5 Semana 3. Determine os valores dos seguintes integrais: a) z dz em que é o semicírculo percorrido em sentido directo unindo i a i.
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C
MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB C Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale
MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D
MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale
ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões
MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA D
MAT 103 Turma 011118 Complementos de matemática para contabilidade e administração Prof. Paolo Piccione 9 de Junho de 011 PROVA D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora
Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro
2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas
Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ
Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de
MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla
MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem
MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica
MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção
1.2. Curvas, Funções e Superfícies de Nível. EXERCÍCIOS 1. Desenhe as imagens das seguintes curvas, indicando o sentido de percurso:
. MAT - 047 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA a LISTA DE EXERCÍCIOS - 07.. Retas e Planos. Faça alguns exercícios das seções.3 e.5 do livro Cáculo (vol.) de James Stewart... Curvas, Funções
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
2 ā Prova de MAT0220 Cálculo IV - IFUSP 2 ō semestre de /11/09 Prof. Oswaldo Rio Branco de Oliveira
Nome : N ō USP : ā Prova de MAT00 Cálculo IV - IFUSP ō semestre de 009-3//09 Prof. Oswaldo Rio Branco de Oliveira GABARIT O Q 3 4 5 6 Total N JUSTIFIQUE TODAS AS PASSAGENS BOA SORTE. Determine os valores
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado
MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)
MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: [email protected] Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para
Justifique todas as passagens. f v (0,0) = f(0,0) v.
2 ā Prova de Cálculo II para Oceanográfico - MAT145 27/10/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Q 1 2 3 4 5 6 7 Total N 1. Dê exemplos
1. Determine o domínio de F e esboce a sua imagem: 5. Determine a equação da reta tangente à trajetória da função dada no ponto dado:.
1 MAT 121-2 a Lista de Exercícios 1. Determine o domínio de F e esboce a sua imagem: (a) F(t) = (t 2, t 2 ) (b) F(t) = (5 t 2, ln(5 t 2 ), t) (c) F(t) = ( 1 t, 4 2 t 2, 2) 2. Calcule as expressões de F
Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,
1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7
Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais
Resumo: Regra da cadeia, caso geral
Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t
1 Distância entre dois pontos do plano
Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano
Cálculo 3. Integrais de Linha Resumo e Exercícios P2
Cálculo 3 Integrais de Linha Resumo e Exercícios P2 Integrais de Linhas de Campos Vetoriais Calculo pelo produto escalar Dado um campo vetorial F e uma curva γ e sua orientação com parametrização γ t a
12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.
1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.
MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)
denomina-se norma do vetor (x 1,..., x n ). (Desigualdade de Schwarz) Quaisquer que sejam os vetores u e v de R n, tem-se
Teoria FUNÇÕES VETORIAIS Geometria do Espaço R n : O espaço R n é um espaço vetorial sobre R com as operações de soma e multiplicação por escalar definidas coordenada a coordenada. O número (x 1,..., x
MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy
LISTA 5 DE GEOMETRIA RIEMANNIANA 2007
LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 RICARDO SA EARP (1) Considere S 3 = {(z 1, z 2 ) C 2 ; z 1 2 + z 2 2 = 1}. seja q um inteiro q > 1. Seja Γ = {1, e 2π1/q,..., e 2π(q 1)/q }, o grupo finito agindo
Transformada Z. A transformada Z de uma sequência x n é definida como:
Transformada Z Vimos que as DTFTs de algumas sequências não convergem uniformemente para funções contínuas de ω, porque as sequências não são absolutamente somáveis. A transformada Z permitirá a análise
MAT Lista de exercícios
1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))
! " # $ % & ' # % ( # " # ) * # +
a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n
