Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Tamanho: px
Começar a partir da página:

Download "Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013"

Transcrição

1 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função ux,y) = α 3 x 3 3αxy +e y senx, onde α R. a) Determine todos os valores de α para os quais u é harmónica em R. b) Considerandoα = 1, determineafunçãoanaĺıticaf: C CtalqueRef) = uefi) = i. c) Sendo f a função determinada na aĺınea anterior, calcule fz)+f z) z i) dz, onde γ é o caminho parametrizado por γt) = i e it, com 0 t π. a) A função u é harmónica se é de classe C R ) e satisfaz u = 0. Mas u é obviamente C R ) e γ u = u x + u y = 6xα3 α), donde u = 0 em todo o R se e só se α 3 α = 0. As soluções são, portanto, α = 0,1, 1. b) Sendo R um domínio simplesmente conexo e u harmónica, temos condições suficientes para a existência de conjugados harmónicos de u em todo o R. Existe, portanto, uma função harmónica v : R R, tal que fx+iy) = ux,y)+ivx,y) é holomorfa em C e satisfaz a condição imposta em z = i. Escrevendo então as equações de Cauchy-Riemann, que necessariamente tais funções u e v têm que satisfazer em todo o R, obtém-se { v x = u y = 6xy ey senx, v y = u x = 3x 3y +e y cosx. Integrando agora a primeira destas, parcialmente, em ordem à variável x obtém-se vx,y) = 3x y +e y cosx+βy), onde βy) é uma função exclusivamente da variável y. Só nos resta determinar esta função β, pelo que de seguida substitui-se este v, agora obtido, na segunda equação de Cauchy- Riemann atrás. E derivando então v em ordem a y ficamos com a equação 3x +e y cosx+β y) = 3x 3y +e y cosx,

2 donde β y) = 3y βy) = y 3 +C, C R. A função f genérica, holomorfa em C, que satisfaz Ref) = u é então dada por fx+iy) = x 3 3xy +e y senx)+i3x y y 3 +e y cosx+c), pelo que para satisfazer a condição fi) = i, ou seja, u = 0 e v = em x,y) = 0,1), obriga a que se tenha C = 3 e. c) Observe-se que a parametrização dada, γt) = i e it = i+e iπ+t), 0 t π, percorre a circunferência de raio 1, centrada em i, no sentido directo embora o faça com início e fim no ponto 1) e que a funçã o gz) = fz)+f z) é holomorfa em C. Portanto, pela fórmula integral de Cauchy para a primeira derivada, este integral é igual a πi d dz fz)+f z)) z=i = πif i)+f i)). Resta calcular a primeira e segunda derivadas de fx+iy) = ux, y)+ivx, y), determinado na aĺınea anterior. Sabemos que uma das quatro poss??veis) maneiras de obter f z) a partir das componentes u e v, real e imaginária, de f?? e, portanto, por repetição desta fórmula f z) = u x +i v x, f z) = u x +i v x. Note-se que, no entanto, pela equação de Cauchy-Riemann v x = u y seria poss??vel calcular qualquer destas duas f??rmulas sem recurso ao conhecimento de v. Por outras palavras, a resolução da aĺınea anterior é, na realidade, totalmente irrelevante para a actual. Assim, tem-se e f x+iy) = 3x 3y +e y cosx)+i6xy e y senx), donde, calculando em z = i, se obtém e daqui o resultado do integral f x+iy) = 6x e y senx)+i6y e y cosx), f i) = e 3 e f i) = 6 e)i, πie 3+i6 e)) = πie 3)6 e).. Considere a função f definida em C\{0, 1/,i,5} por: fz) = a) Determine e classifique as singularidades de f. e iz zz +1) +e 1 iz z i + z 5) 4. b) Calcule: fz)dz, onde a curva?? percorrida uma vez no sentido directo.

3 a) Escrevemosfz) = f 1 z)+f z)+f 3 z), ondeseconsiderouf 1 z) = eiz zz+1), f z) = e 1 z i e f 3 z) = iz z 5) 4. As singularidades de f 1 s??o todas as solu????es da equação zz+1) = 0, ou seja, z = 0 e z = 1/. Note que f +f 3 é anaĺıtica em qualquer uma das singularidades de f 1, sendo que por isso f +f 3 não contribui para a parte principal da série de Laurent de f v??lida junto a cada uma das suas singularidades de f 1. A singularidade z = 0 é um polo simples de f 1 e de f, pois Como lim zf e iz 1z) = 1. 1) z 0 z 0 z +1) lim z +1/) z +1/) e iz f 1 z) z 1 z 1 4zz +1/) e iz e i/ z 1 4z =, então z = 1/?? um polo de ordem. No que diz respeito?? funçã??o f z) = e 1 z i, ela tem apenas a singularidade z = i. Desenvolvendo f em série de Laurent em torno de i basta usar a série de Taylor da funçã??o exponencial em pot??ncias de 1 z i ), obtém-se: f z) = + 1 n!z i) n = 1+ 1 z i + 1!z i) )!z i) 3 válida para z C \ {i}). Como a parte principal da série anterior tem uma infinidade de termos, conclui-se então que z = i é singularidade essencial de f. Como f 1 + f 3 é anal??tica em z = i, então este ponto é singularidade essencial de f. Quanto à função f 3 z) = iz, ela tem apenas a singularidade z = 5. Trata-se de um z 5) 4 polo de ordem 4 de f 3, pois: lim z z 5 5)4 f 3 z) iz = 5i. z 5 Como f 1 +f é anaĺıtica em z = 5, conclui-se que z = 5 é um polo de ordem 4 de f. b) As singularidades de f contidas no interior da curva z = 3 são z = 0, z = 1/ e z = i. Note que a singularidade z = 5 está no exterior da curva. Assim, pelo teorema dos resís: ) fz)dz = πi Resf,0)+Resf, 1/)+Resf,i) 3) Utilizando o valor do limite 1), calculado na aĺınea a), concluímos que: Res f,0) = 1 = Res f 1,0) = 1. Vimos na al??nea a) que z = 1/?? um polo de ordem de f 1. Como z = 1/ não é singularidade de f +f 3, então: ) e Resf, 1/) = Resf 1, 1/) z +1/) iz f 1 z)) z 1 z 1 4z 4ize iz 4e iz z 1 16z iz 1)e iz z 1 4z = 1 i+) cos 1 )+isen 1 ) ) = i/+1)e i/ = 1 sen 1 ) cos 1 ) i cos 1 )+sen 1 ) ) )

4 Por outro lado, recorrendo à série de Laurent de f z) equação )) e à definição de resíduo: Resf,i) = Resf 1,i) = a 1 = 1. Substituindo os valores dos resíduos acima calculados na equação 3), obtém-se: fz)dz = πi + 1 )) sen 1 ) cos 1 cos ) ) i 1 )+sen 1 ) )) = π cos 1 )+sen 1 4+sen )+i 1 ) cos 1 ) 3. Determine o valor de e aproveite para deduzir o valor de a = 1 π Dado que θ R, tem-se e assim z =1 e 4iθ 5+4cosθ dθ. cos4θ) 5+4cosθ dθ, b = 1 π 5+4 e 4iθ e iθ +e iθ cosθ = eiθ +e iθ ) dθ = sen4θ) 5+4cosθ dθ. e iθ ) 4 ) dθ 5+ e iθ +e iθ Fazendo z = e iθ, para θ [,π] tem-se z = 1 percorrida uma vez em sentido directo. Assim dz 5+z +z 1 ) iz = 1 i z +5z + dz z =1 Note-se que estamos nas condições do Teorema dos Resíduos z C : z = 1 é uma curva de Jordan, regular, percorrida em sentido directo; fz) = z +5z+ é uma função anaĺıtica em C\{z : z +5z+ = 0} = C\{, 1 }. Assim, f é anaĺıtica em D \{ 1 } para por exemplo) D = {z : z 3 }. Então por aplicação do teorema Escrevendo é fácil de perceber que 1 pelo que π 4. 1 i πires f, 1 fz) = é um polo simples e Finalmente, e sabendo que θ um número real e assim ) z +)z + 1 ) Resf, 1 ) z 1 z + 1 )fz) = 1 48 a = 1 π ReI) = 1 4 cos4θ) + i sen4θ) 5+4cosθ dθ, b = 1 π ImI) = 0.

5 4. Considere a função fz) = z +i z i a) Determine o desenvolvimento em série de Taylor de f em torno de z = 0 indicando a região de converg??ncia da série. b) Seja g : C C uma função inteira tal que giz) = gz), para qualquer z C. Calcule a derivada de ordem 4001 da função f +g no ponto 0. a) Temos z +i z i z i)+i = = 1+ i z i z i = 1 z n 1 z = 1 i i n para z < 1 i = 1 i nzn para z < 1. n=1 b) Recorde-se que se hz) = a nz n é o desenvolvimento de Taylor da função anaĺıtica h em z = 0, a fórmula de Taylor diz que h n) 0) = n!a n. Tendo em conta o desenvolvimento achado na aĺınea anterior, conclui-se que f 4001) 0) = 4001)! ) i 4001 = 4001)!i. Por outro lado se gz) = a nz n é o desenvolvimento de Taylor de gz) então giz) = a n iz) n = a n i n z n. Se gz) = giz), conclui-se da unicidade dos coeficientes no desenvolvimento em série de Taylor que a n = a n i n. Em particular para n = 4001 temos a 4001 = a 4001 i 4001 = a 4001 i donde se conclui que a 4001 = 0 e portanto g 4001) 0) = 0. Finalmente f +g) 4001) 0) = f 4001) 0)+g 4001) 0) = 4001)!i. [1,0 val.] 5. Seja C R = {z C: z = R e Imz) 0 e Rez) 0}. Mostre que e ˆCR iz z 3 dz π R. Se z C R, z pertence ao primeiro quadrante e portanto z tem parte imaginária maior ou igual a zero. Escrevendo z = a+ib tem-se b 0 e portanto e iz e = ia+ib) = e b+ia = e b 1. Pela desigualdade triangular tem-se então e ˆCR iz z 3 dz conforme pretendido. ˆ ˆ C R e iz z 3 ds C R 1 R 3ds = π R 1 R 3 = π R

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015 Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função

Leia mais

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010 Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h, Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 ) ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

1 a Lista de Exercícios de Métodos Matemáticos II

1 a Lista de Exercícios de Métodos Matemáticos II a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matem tica SecÁ o de Álgebra e Análise ANÁLISE MATEMÁTICA IV 1 o Teste Cursos: LCI, LEAmb, LEBL, LEGM, LEIC, LEM, LEMat, LEMG, LEQ, LQ Justifique cuidadosamente

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Análise Matemática IV Problemas para as Aulas Práticas 4 de Abril de 5 Semana 3. Determine os valores dos seguintes integrais: a) z dz em que é o semicírculo percorrido em sentido directo unindo i a i.

Leia mais

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira Prova Substitutiva de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009-8/2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : GABARITO Q 2 3 4 5 6 7 8 9 0 2 Total N JUSTIFIQUE TODAS AS PASSAGENS

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

LEEC Exame de Análise Matemática 3

LEEC Exame de Análise Matemática 3 LEEC Exame de Análise Matemática 3 0 de Janeiro de 005 Justifique cuidadosamente todas as respostas Não é permitida a utilização de máquina de calcular O tempo para a realização desta prova é de horas

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 2 ANÁLISE COMPLEXA Para cada um dos seguintes conjuntos Z C, esboce o conjunto dos seus logaritmos.

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Análise Complexa e Equações Diferenciais Exame - 9 de Janeiro de 8 MEC Resolução. A imagem da região { z C : Rz < e 3 8 < Iz < 8} por z e z é { z C : < z < e 3 } 4 < argz

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Lista 1 - Métodos Matemáticos II Respostas

Lista 1 - Métodos Matemáticos II Respostas Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele

Leia mais

Funções analíticas LISTA DE EXERCÍCIOS

Funções analíticas LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?

Leia mais

PROVAS DE ANÁLISE COMPLEXA

PROVAS DE ANÁLISE COMPLEXA PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)

Leia mais

1 o Semestre 2018/2019 MEC

1 o Semestre 2018/2019 MEC ACED Análise Complea e Equações Diferenciais o Semestre 208/209 MEC Conteúdo I. Números compleos, funções compleas........... II. Transformações conformes e diferenciabilidade de funções compleas.............................

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan GABARITO 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan (Valor 3.) Questão 1: Responda às seguintes questões, usando as equações de Cauchy-Riemann. (1.5) (a) Mostre que a função

Leia mais

Cálculo de Resíduos AULA 12

Cálculo de Resíduos AULA 12 AULA 2 META: Apresentar cálculo de resíduos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir resíduo de uma função de variáveis complexas em um ponto dado e calcular o resíduo de uma

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu M.A.C. FORMULÁRIO. cos z = eiz + e iz. sinh z = ez e z 2

Departamento de Matemática Escola Superior de Tecnologia de Viseu M.A.C. FORMULÁRIO. cos z = eiz + e iz. sinh z = ez e z 2 Departamento de Matemática Escola Superior de Tecnologia de Viseu M.A.. FORMULÁRIO e x+iy = e x (cos y + i sin y) sin z = eiz e iz i cosh z = ez + e z ln z = w z = e w cos z = eiz + e iz sinh z = ez e

Leia mais

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de

Leia mais

1 a Lista de Exercícios de Cálculo VIII

1 a Lista de Exercícios de Cálculo VIII a Lista de Eercícios de Cálculo VIII. Simplifique: [ ] + i a + i i b 4 i c + i 6 i + i d i 4 e eπi f i e πi e +πi. Encontre todos os valores de C tais que: a i 0 b + i c + i d 6 + 64 0 e i 8 f 4/. Seja

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões

Leia mais

3 ā Prova de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

3 ā Prova de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira 3 ā Prova de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009 - /2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : Q 2 3 4 5 E E2 Total N JUSTIFIQUE TODAS AS PASSAGENS BOA SORTE. Para cada

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem

Leia mais

LOM3253 Física Matemática 2017 S2

LOM3253 Física Matemática 2017 S2 LOM3253 Física Matemática 2017 S2 Parte 2. Funções de variável complexa Prof. Dr. Viktor Pastoukhov EEL-USP Subconjuntos no plano complexo Geometria Analítica no plano complexo Geometria Analítica no plano

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Análise Complexa e Equações Diferenciais o Semestre de 07/8 MEC Exercícios para as aulas práticas Conteúdo I Números complexos (8-/9/07) II Números complexos, funções complexas (5-9/9/07) 4 III Transformações

Leia mais

Lista 3 - Métodos Matemáticos II

Lista 3 - Métodos Matemáticos II Lista 3 - Métodos Matemáticos II Prof. Jorge Delgado. Seja a curva poligonal de vértices 2( + i), 2( + i), 2( + i) e 2( i) orientada positivamente. Use a fórmula integral de auchy para verificar que: e

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Instituto Superior Técnico Departamento de Matemática Análise Complexa e Equações Diferenciais Cursos: MEC,LEGM (24/5, Semestre ) Apontamentos das aulas teóricas. Introdução Este texto consiste numa transcrição

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa. UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Leia mais

Exercícios de revisão

Exercícios de revisão Exercícios de revisão Roberto Imbuzeiro Oliveira 7 de Abril de 20 Vários exercícios apresentados aqui vêm do livro David Ullrich, Complex Made Simple, ou dos livros de Ahlfors e Churchill. Em alguns casos,

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Exercícios Resolvidos Teorema da Divêrgencia. Teorema de tokes Exercício 1 Considere a superfície definida por e o campo

Leia mais

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas Análise Complexa e Equações Diferenciais Apontamentos das aulas teóricas 2 Índice Introdução 3. Revisões sobre números complexos 3 2. Representação trigonométrica dos números complexos 4 3. Noções topológicas

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Aplicações da Teoria dos Resíduos no Cálculo de Integrais Reais

Aplicações da Teoria dos Resíduos no Cálculo de Integrais Reais 1 Aplicações da Teoria dos Resíduos no Cálculo de Integrais Reais GUSTAVO S. OLIVEIRA 1, ELISA R. SANTOS 2 Resumo. Este artigo apresenta um estudo sobre aplicações do Teorema dos Resíduos no cálculo de

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Instituto Superior Técnico Departamento de Matemática Análise Complexa e Equações Diferenciais Cursos: MEMec,LEAN (25/6, Semestre ) Apontamentos das aulas teóricas. Introdução Este texto consiste numa

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

Teorema da Divergência e Teorema de Stokes

Teorema da Divergência e Teorema de Stokes Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 cm LISTA7 - DICAS: LISTA DE EXERCÍCIOS 7 - Integração Revisão do Teorema

Leia mais

(b) a quantidade de cloro no tanque no instante t;

(b) a quantidade de cloro no tanque no instante t; NOME: Universidade Federal do Rio de Janeiro Instituto de Matemtica Departamento de Mtodos Matemticos Gabarito da a Prova de Cálculo II - 06//0 a QUESTÃO : Um tanque possui 0 litros de solução com cloro

Leia mais

Transformações Conformes: 15 Aplicações

Transformações Conformes: 15 Aplicações AULA Transformações Conformes: 15 Aplicações META: Aplicar transformações conformes. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar transformações conformes na determinação da distribuição

Leia mais

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná Ministério da Educação Universidade Tecnológica Federal do Paraná ampus ampo Mourão Números omplexos álculo Diferencial e Integral III WELLINGTON JOSÉ ORRÊA ampo Mourão, Paraná Brasil Sumário Wellington

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013 Análise Complexa e Equações Diferenciais ō Semestre 1/13 ō Teste Versão A (Cursos: LEAN, LEMat, LMAC, MEAer, MEAmbi, MEBiom, MEBiol, MEFT, MEMec, MEQ) 5 de Maio de 13, 11h Duração: 1h 3m 1. Considere o

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019 ACED Análise Complexa e Equações Diferenciais MEC Michael Paluch 1 o Semestre 2018/2019 17 a Aula 17.1 Teorema de Cauchy Recordamos que a imagem de um caminho seccionalmente de classe C 1 chamase uma curva

Leia mais

Mais Alguns Aspectos da Derivação Complexa

Mais Alguns Aspectos da Derivação Complexa Mais Alguns Aspectos da Derivação Complexa META: Introduzir o conceito de funções holomorfas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir funções holomorfas e determinar se uma

Leia mais

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro 19 a 28 de Outubro Nestas teóricas, estamos a falar das últimas ideias de análise complexa. Veremos algumas aplicações do teorema dos resíduos e algumas propriedades das funções holomorfas. No livro, falta-vos

Leia mais

Lista 4 - Métodos Matemáticos II

Lista 4 - Métodos Matemáticos II Lista 4 - Métodos Matemáticos II Prof. Jorge Delgado. alcule Res f () da função f () dada. + ; (b) cos cot ; (c) ; (d) senh 4 4 ( ). Solução. ; (b) ; (c) 45 ; (d) 7 6.. Usando o teorema do resíduo verifique

Leia mais

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT)

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT) LISTA DE EXEÍIOS SOBE TEOEMA DE GEEN, FLUXO (ONT.), DIVEGÊNIA E OTAIONAL DE UM AMPO ESPAÇO, LAPLAIANO, FUNÇÕES HAMÔNIAS (ONT) POFESSO: IADO SÁ EAP () Sejam F (x, y, ) e G(x, y, ) campos vetoriais definidos

Leia mais

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas Capítulo 2 Funções de uma variável complexa A origem dos números complexos repousa na solução de equações algébricas para. A solução da equação de 1º. grau:, remonta ao Egito antigo. Note que com os coeficientes

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

LEEC Exame de Análise Matemática 3

LEEC Exame de Análise Matemática 3 LEEC Exame de Análise Matemática 3 5 de Fevereiro de 005 Justifique cuidadosamente todas as respostas Não é permitida a utiliação de máquina de calcular O tempo para a realiação desta prova é de horas

Leia mais

Variável Complexa 1-6 a Lista de Exercícios Prof. Lineu da Costa Neto

Variável Complexa 1-6 a Lista de Exercícios Prof. Lineu da Costa Neto Fundação Universidade de Brasília Departamento de Matemática - IE Campus Universitário, 79-9 - Brasília - DF Fone: (6) 73-3356 FAX: (6) 74-39 Variável Complexa - 6 a Lista de Exercícios Prof. Lineu da

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2017.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde

Leia mais

Variáveis Complexas em Eletrostática Prof. Ricardo Luiz Viana

Variáveis Complexas em Eletrostática Prof. Ricardo Luiz Viana Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Variáveis Complexas em Eletrostática Prof. Ricardo Luiz Viana Alguns problemas bidimensionais de eletrostática podem ser resolvidos

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2015.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

Aplicações do Teorema do Resíduo

Aplicações do Teorema do Resíduo Universidade Federal de Santa atarina entro de iências Físicas e Matemáticas Departamento de Matemática urso de Matemática Aplicações do Teorema do Resíduo Daynitti Ventura de Jesus Orientadora: Silvia

Leia mais

ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA

ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA Maria do Rosário de Pinho e Maria Margarida Ferreira Agosto 2004 Faculdade de Engenharia da Universidade do Porto Licenciatura

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30)

ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30) Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA III TETE - VERÃO A 9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (9: - :3

Leia mais

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas Análise Complexa e Equações Diferenciais Apontamentos das aulas teóricas o Semestre 07/08 Índice Introdução 3. Revisões sobre números complexos 3. Representação trigonométrica dos números complexos 4 3.

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY

3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY 3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY A teoria de Cauchy-Goursat, desenvolvida na secção 2 (TEORIA DE CAUCHY- GOUR- SAT), permite-nos tirar algumas propriedades importantes sobre as funções f que são diferenciáveis

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 01-1 a Fase Proposta de resolução GRUPO I 1. Sabemos que P B A P B A P A P B A P B A P A Como P A 0,, temos que P A 1 P A 1 0, 0,6 Como P B A 0,8 e P A 0,6, temos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se

Leia mais

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2 SUMÁRIO CAPÍTULO 1 NÚMEROS COMPLEXOS 1 Somas e produtos 1 Propriedades algébricas básicas 3 Mais propriedades algébricas 5 Vetores e módulo 8 Desigualdade triangular 11 Complexos conjugados 14 Forma exponencial

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV ANÁLISE MATEMÁTICA IV (2 ō semestre 2006/07) LEC e LEGM Professor Responsvel: Maria João Borges http://www.math.ist.utl.pt/ mborges/amiv Sumários das Aulas Teóricas Aula 37: (05/06) Aula 36: (04/06) Continuação

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

2 Funções exponencial e logarítmica complexas

2 Funções exponencial e logarítmica complexas Equações reais, Soluções imaginárias. 1 Introdução Carlos A. Gomes UFRN Na última edição da RPM número 77) há um artigo Por que e iθ = cosθ + i.senθ?, do professor José Paulo Carneiro, onde é exibida uma

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma

Leia mais