Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro

Tamanho: px
Começar a partir da página:

Download "Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro"

Transcrição

1 19 a 28 de Outubro Nestas teóricas, estamos a falar das últimas ideias de análise complexa. Veremos algumas aplicações do teorema dos resíduos e algumas propriedades das funções holomorfas. No livro, falta-vos apenas ver a secção 4.5. EXERCÍCIOS PARA A PRÁTICA: AS PERGUNTAS DO DIA 19 podem/podiam ser resolvidas até terça dia 25, às 17:00. AS PERGUNTAS DO DIA 21 podem ser resolvidas até quinta dia 27, às 17:00. AS PERGUNTAS DO DIA 26 podem ser resolvidas até quinta dia 3, às 17:00. (As perguntas seguintes já serão após o teste.) OS INQUÉRITOS em curso permitem-me ajustar às aulas de acordo com os tópicos mais confusos. Participem. AS INSCRIÇÕES PARA O TESTE 1 terminam na quinta dia 3, às 11:00. Classificação de singularidades Recordemos o que vimos até aqui sobre séries de potências. Se a função f é holomorfa no ponto z = a, mostrámos que pode ser expressa como série de potências f(z) = c n (z a) n, n=0 em qualquer disco centrado em z = a que não contenha singularidades. Pelo princípio da identidade, a série é a mesma independentemente do raio do disco, e portanto o maior disco possível é aquele cuja fronteira contém a(s) singularidade(s) mais próxima(s). (Não havendo singularidades, a série converge em todo o plano complexo.) Também vimos que, se a singularidade mais próxima estiver à distância r e a seguinte estiver à distância R > r, então é possível escrever uma série de potências f(z) = + n= c n (z a) n, convergente em r < z a < R. De facto, o argumento que nos permite construir essa série (ou os métodos que usámos em exemplos concretos) continua válido quando r = 0. 1/5

2 Para classificar singularidades, vamos estar interessados na série de potências definida na proximidade de a (ou seja, numa região da forma 0 < z a < R ou da forma z a > 0). É fácil ver que há três casos mutuamente exclusivos: ou a série tem apenas expoentes não-negativos (i.e., apenas expoentes n 0 ocorrem), ou há um expoente negativo menor que todos os outros (i.e., apenas expoentes n k ocorrem, onde k < 0 e c k 0), ou há expoentes negativos arbitrariamente baixos. A singularidade é dita, respectivamente, removível, um pólo (de ordem k), ou essencial. Nos primeiros dois casos, há um primeiro expoente que ocorre, e podemos pô-lo em evidência. Por exemplo, se a série fosse f(z) = 5(z a) 4 + 3(z a) 2 + 7(z a) (z a) + 8(z a) 2 +, poderíamos pôr o (z a) 4 em evidência, obtendo ( ) f(z) = (z a) (z a) 2 + 7(z a) 3 6(z a) 4 + (z a) 5 + 8(z a) 6 +, } {{ } g(z) o que nos permitiria escrever f(z) = g(z)/(z a) 4. Quando tal coisa acontece, é nítido que lim z a f(z) =. Mais: se multiplicarmos f(z) por (z a) 3, a série fica (z a) 3 f(z) = 5(z a) 1 +3(z a)+7(z a) 2 6(z a) 3 +(z a) 4 +8(z a) 5 + = (z a) 1 g(z), cujo limite (quando z a) continua a ser infinito e o mesmo se passaria multiplicando por outra potência de expoente menor que 4. Se multiplicarmos por (z a) 5, a série fica (z a) 5 f(z) = 5(z a)+3(z a) 3 +7(z a) 4 6(z a) 5 +(z a) 6 +8(z a) 7 + = (z a)g(z), cujo limite (quando z a) é 0 e o mesmo se passaria multiplicando por outra potência de expoente maior que 4. De facto, a única potência que permite cancelar exactamente o pólo é a que garante que a multiplicidade do zero em numerador cancela exactamente a do denominador, pois nesse caso ficamos com (z a) 4 f(z) = g(z) = 5 + 3(z a) 2 + 7(z a) 3 6(z a) 4 + (z a) 5 + 8(z a) 6 +, cujo limite (quando z a) é de facto g(a) = 5 (ou seja, o coeficiente do termo inicial da série original para f). O resíduo de f em z = a é o coeficiente de (z a) 1 na série de potências convergente na proximidade de a. No exemplo acima, o resíduo é 7. Também é possível determiná-lo usando limites; vejamos como. O primeiro passo é eliminar o pólo (para podermos avaliar as séries em z = a sem obter resultados envolvendo ). O que obtivemos foi g(z) = (z a) 4 f(z) = 5 + 3(z a) 2 + 7(z a) 3 6(z a) 4 + (z a) 5 + 8(z a) 6 +. Mas não basta calcular o limite desta expressão quando z a, pois isso dá-nos o primeiro coeficiente (5). Para obter o coeficiente que desejamos, vamos fazendo derivadas, até que o coeficiente desejado seja o primeiro. 2/5

3 Temos então g(z) = 5 + 0(z a) + 3(z a) 2 + 7(z a) 3 +, g (z) = (z a) + 7 3(z a) 2 +, g (z) = (z a) +, g (z) = 7 3! +, mostrando que a posição do resíduo é encontrada à terceira derivada, mas vem multiplicada por 3! (o mesmo 3!, na verdade, que aparece na fórmula de Cauchy para derivadas). No caso mais geral, o resíduo de um pólo de ordem k +1 pode obter-se fazendo a derivada de ordem k (comparem com a fórmula de Cauchy!): Res a f = lim z a g(z) ({}}{ (z a) k+1 f(z) k! ) (k) g (k) (a) = lim. z a k! (Infelizmente, não existe qualquer fórmula deste género para os resíduos das singularidades essenciais, pois o limite nunca fica definido. Temos mesmo que usar directamente a série.) Mas como podemos mostrar que só há três tipos de singularidade? Dissemos há pouco que os três tipos correspondem a três situações distintas para o termo inicial da série de potências. Vejamos que correspondem a três situações distintas para o limite quando z a. Se a função é limitada na vizinhança de z = a, já vimos (em guias anteriores) que o teorema de Cauchy continua válido. Por isso, a fórmula de Cauchy continua válida para os pontos 0 < z a < R: f(z) = 1 2πi w a =R ε w z dw. Esta mesma fórmula foi usado para provar que existe uma série de potências de (z a) com expoentes n 0, e a prova não assumiu que o valor f(a) estivesse definido. Por isso, permite- -nos encontrar uma função (a que vou chamar F(z)) idêntica a f(z) em 0 < z a < R. A única diferença é que F(a) está definido, pois corresponde ao valor da fórmula de Cauchy: F(a) = 1 2πi w a =R ε w a dw. Ou seja, a fórmula permite-nos remover a singularidade. Mostra-nos também que lim z a f(z) existe e é um número (F(a)). Os próximos casos mostram que realmente a análise complexa é muito diferente da análise real. Senão, vejamos. Imaginem que lim z a f(z) =. Isto exige, em particular, que nos pontos do domínio (isto é, z a) suficientemente próximos de z = a (por exemplo, 0 < z a < ε) tenhamos f(z) > 0. Ora, isso significa que a função g(z) = 1/f(z) é limitada em 0 < z a < ε, e por isso z = a é uma singularidade removível de g(z). Chamemos G(z) à função obtida de g(z) após remover a singularidade. Essa função tem um zero em z = a (porquê?), possivelmente com multiplicidade. Por exemplo, digamos que seja um zero triplo. Então G(z) = (z a) 3 H(z) 3/5

4 para alguma função H(z) que não se anula em z = a (porquê?). Conclusão: poderíamos dizer que f(z) = 1 g(z) = 1 G(z) = 1 (z a) 3 H(z). Como temos um zero triplo no denominador (pois H(z) não tem zero), vemos que f(z) tem um pólo triplo. O argumento análogo funcionaria se G(z) tivesse um zero com multiplicidade k. Neste momento já sabemos que a singularidade ser removível é equivalente a lim z a f(z) ser um número, e que ser um pólo é equivalente a lim z a f(z) = (conseguem preencher os detalhes que faltam?). Tudo o resto tem que corresponder às singularidades essenciais. Mas podemos ir mais longe: podemos mostrar que próximo de uma singularidade essencial é possível aproximarmo-nos de qualquer valor. Imaginem que não é possível aproximarmo-nos do valor. Isso significaria que f(z) é limitada, logo a singularidade seria removível (e o limite seria um número). Imaginem então que não é possível aproximarmo-nos do valor λ. Então f(z) λ não se anularia na vizinhança de z = a e portanto g(z) = 1/(f(z) λ) seria limitada. Logo, teria uma singularidade removível. Mas então, f(z) = λ + (1/g(z)) teria um pólo ou uma singularidade removível (porquê?). Propriedades das funções holomorfas Se poder calcular integrais fazendo derivadas não vos convence que as funções holomorfas são algo estranhas, talvez as próximas propriedades vos convençam... Suponham que a função f é holomorfa em todo o plano complexo C. Então a fórmula de Cauchy aplica-se para qualquer z (contido no interior do caminho): f (z) = 1 2πi w =R (w z) 2 dw. Fazendo a estimativa do módulo, obtemos f (z) 1 2π w =R w z 2 dw max w =R 2πR 2π (R z ) 2. (No denominador, usamos o menor valor possível porquê?) Se a função for limitada (digamos, M), então ficamos com f (z) MR (R z ) 2. Fazendo o limite R, vemos que f = 0. Ou seja, obtemos o teorema de Liouville: se f é limitada e holomorfa em C, então f é constante. Na aula vamos ver que o teorema de Liouville nos permite provar o teorema fundamental da álgebra todos os polinómios não-constantes têm um ou mais zeros. A fórmula de Cauchy também permite provar outra propriedade inesperada das funções holomorfas. Se parametrizarmos a circunferência z a = R como z = a + Re it, com 0 t 2π, temos (porquê?) f(a) = 1 2π f(a + Re it ) dt. 2π 0 4/5

5 Usando a estimativa de integrais, obtemos f(a) 1 2π f(a + Re i t) dt. 2π 0 Ou seja, o módulo de f(a) é menor ou igual à média dos módulos ao longo de z a = R. A única forma de o módulo ter o valor máximo em a e continuar compatível com a desigualdade, é se tiver o mesmo valor em todos os pontos de z a = R. Mais dramaticamente, podemos obter o princípio do módulo máximo: se f é holomorfa e f(z) tem valor máximo no interior de um aberto Ω conexo por arcos, então f é constante! Vejamos porquê: digamos que o módulo toma o valor máximo no ponto a, contido no interior de Ω. Então o módulo tem o mesmo valor em todos os pontos de qualquer circunferência centrada em a (e contida em Ω). Mas então é possível propagar esse valor máximo a qualquer ponto no interior de Ω (conseguem ver porquê?), mostrando que f(z) é constante. Mas já vimos que uma função holomorfa com módulo constante é ela própria constante. Teste 1 Como sabem, o nosso primeiro teste será no sábado dia 5 de Novembro, às 9:00 (notem a hora!). Neste momento, ainda não decidi todos os detalhes do teste. Assim, a informação nos próximos parágrafos é sujeita a alterações (mas poucas). A nota do teste é um inteiro entre 0 e 50. As perguntas de escolha múltipla (2 ou 3 pontos cada) corresponderão a uns 10 pontos do teste, enquanto as perguntas de verdadeiro/falso (3 pontos cada) corresponderão a uns 15 pontos. As perguntas de escolha múltipla serão semelhantes às perguntas do dia (incluindo a classificação: pontuação máxima se a resposta estiver totalmente correcta, 0 caso contrário). Nas perguntas de preencher espaços em branco (poderá haver uma ou duas), todo o trabalho é tido em conta mas basta escrever a resposta. Nas restantes perguntas, é preciso mostrar os passos intermédios. Quanto a assuntos, os detalhes podem variar de versão para versão (ou entre este teste e o teste de recuperação, que também estará de acordo com esta descrição). Porém, podem contar com uns 10 pontos sobre propriedades elementares de funções holomorfas, uns 10 pontos sobre séries, e uns 15 pontos de cálculo de integrais. Podem também contar com perguntas sobre classificação de singularidades ou determinação de resíduos, e podem precisar de resolver equações ou usar coordenadas polares em passos intermédios de outras perguntas. (Resumindo, pode vir quase tudo.) Estou a contar que toda a gente consiga fazer pelo menos os primeiros 25 a 30 pontos, pois têm contas mais fáceis que as que já fizeram nas perguntas do dia (ou seja, tentem estar mesmo à-vontade com as perguntas do dia). Porém, haverá algumas perguntas mais avançadas (à volta de 10 pontos) envolvendo, por exemplo, fazer demonstrações curtas durante o teste (usando ideias que foram exploradas nas aulas ou nos guias). 5/5

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro 2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 2 ANÁLISE COMPLEXA Para cada um dos seguintes conjuntos Z C, esboce o conjunto dos seus logaritmos.

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h, Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:

Leia mais

Análise Complexa e Equações Diferenciais Guia 9 João Pedro Boavida. 23 a 30 de Novembro

Análise Complexa e Equações Diferenciais Guia 9 João Pedro Boavida. 23 a 30 de Novembro Análise Complexa e Equações Diferenciais Guia 9 24 de Novembro de 2 Este guia explica vários exemplos de determinação de formas de Jordan e cálculo de exponenciais de matrizes, bem como alguns outros exemplos

Leia mais

17 a Aula AMIV LEAN, LEC Apontamentos

17 a Aula AMIV LEAN, LEC Apontamentos 7 a Aula 004.0. AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 7. Definições de polinómio e fracção racional Comecemos por adoptar uma definição de polinómio de grau n. Definição 7. Uma

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015 Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010 Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe

Leia mais

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 ) ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de

Leia mais

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Roberto Imbuzeiro Oliveira 6 de Abril de 20 Preliminares Nestas notas, U C sempre será um aberto e f : U C é contínua. Duas curvas

Leia mais

3 ā Prova de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

3 ā Prova de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira 3 ā Prova de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009 - /2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : Q 2 3 4 5 E E2 Total N JUSTIFIQUE TODAS AS PASSAGENS BOA SORTE. Para cada

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

Cálculo de Resíduos AULA 12

Cálculo de Resíduos AULA 12 AULA 2 META: Apresentar cálculo de resíduos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir resíduo de uma função de variáveis complexas em um ponto dado e calcular o resíduo de uma

Leia mais

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R . Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)

Leia mais

Exercícios de revisão

Exercícios de revisão Exercícios de revisão Roberto Imbuzeiro Oliveira 7 de Abril de 20 Vários exercícios apresentados aqui vêm do livro David Ullrich, Complex Made Simple, ou dos livros de Ahlfors e Churchill. Em alguns casos,

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019 ACED Análise Complexa e Equações Diferenciais MEC Michael Paluch 1 o Semestre 2018/2019 17 a Aula 17.1 Teorema de Cauchy Recordamos que a imagem de um caminho seccionalmente de classe C 1 chamase uma curva

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

LEEC Exame de Análise Matemática 3

LEEC Exame de Análise Matemática 3 LEEC Exame de Análise Matemática 3 0 de Janeiro de 005 Justifique cuidadosamente todas as respostas Não é permitida a utilização de máquina de calcular O tempo para a realização desta prova é de horas

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Provas de Análise Real - Noturno - 3MAT003

Provas de Análise Real - Noturno - 3MAT003 Provas de 2006 - Análise Real - Noturno - 3MAT003 Matemática - Prof. Ulysses Sodré - Londrina-PR - provas2006.tex 1. Definir a operação ϕ entre os conjuntos A e B por ϕ(a, B) = (A B) (A B). (a) Demonstrar

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Copyright c 2014, João Pedro Boavida. Versão atual disponível em JOÃO PEDRO BOAVIDA

Copyright c 2014, João Pedro Boavida. Versão atual disponível em   JOÃO PEDRO BOAVIDA 0 0 EPISÓDIOS DE ANÁLISE COMPLEXA, 04 JOÃO PEDRO BOAVIDA EPISÓDIOS DE ANÁLISE COMPLEXA, 04 Copyright c 04, João Pedro Boavida Este trabalho (tanto esta versão como a versão atual) pode ser encontrado em

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular

Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular Consideremos uma EDO linear de segunda ordem com a forma

Leia mais

Aula 10 Regiões e inequações no plano

Aula 10 Regiões e inequações no plano MÓDULO 1 - AULA 10 Aula 10 Regiões e inequações no plano Objetivos Resolver inequações do segundo grau. Analisar sistemas envolvendo inequações do primeiro e segundo graus. Resolver inequações modulares

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

EPISÓDIOS DE ANÁLISE COMPLEXA, 2015

EPISÓDIOS DE ANÁLISE COMPLEXA, 2015 Copyright c 05, João Pedro Boavida. Versão atual disponível em http://web.tecnico.ulisboa.pt/joao.boavida/05/aced/. 0 0 EPISÓDIOS DE ANÁLISE COMPLEXA, 05 JOÃO PEDRO BOAVIDA y = π y = 0 y = π EPISÓDIOS

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 cm LISTA7 - DICAS: LISTA DE EXERCÍCIOS 7 - Integração Revisão do Teorema

Leia mais

Transformada Z. A transformada Z de uma sequência x n é definida como:

Transformada Z. A transformada Z de uma sequência x n é definida como: Transformada Z Vimos que as DTFTs de algumas sequências não convergem uniformemente para funções contínuas de ω, porque as sequências não são absolutamente somáveis. A transformada Z permitirá a análise

Leia mais

24 a Aula AMIV LEAN, LEC Apontamentos

24 a Aula AMIV LEAN, LEC Apontamentos 24 a Aula 2004.11.10 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 24.1 Método de Euler na aproximação de EDO s Métodos numéricos para a determinação de soluções de EDO s podem ser analisados

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função

Leia mais

Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.

Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de Função Exponencial Gráfico da Função Exponencial Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 0 de dezembro de 018 1 Funções convexas

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira Prova Substitutiva de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009-8/2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : GABARITO Q 2 3 4 5 6 7 8 9 0 2 Total N JUSTIFIQUE TODAS AS PASSAGENS

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Transformações Conformes: 15 Aplicações

Transformações Conformes: 15 Aplicações AULA Transformações Conformes: 15 Aplicações META: Aplicar transformações conformes. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar transformações conformes na determinação da distribuição

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material

Leia mais

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas Capítulo 2 Funções de uma variável complexa A origem dos números complexos repousa na solução de equações algébricas para. A solução da equação de 1º. grau:, remonta ao Egito antigo. Note que com os coeficientes

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Análise Matemática IV Problemas para as Aulas Práticas 4 de Abril de 5 Semana 3. Determine os valores dos seguintes integrais: a) z dz em que é o semicírculo percorrido em sentido directo unindo i a i.

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

PROVAS DE ANÁLISE COMPLEXA

PROVAS DE ANÁLISE COMPLEXA PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)

Leia mais

META: Introduzir o conceito de derivada de funções de variáveis complexas.

META: Introduzir o conceito de derivada de funções de variáveis complexas. AULA 3 META: Introduzir o conceito de derivada de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir derivada de funções de variáveis complexas e determinar

Leia mais

Parte II. Análise funcional II

Parte II. Análise funcional II Parte II Análise funcional II 12 Capítulo 5 Produto de Operadores. Operadores inversos Neste capítulo vamos introduzir a noção de produto de operadores assim como a de operador invertível. Para tal precisamos

Leia mais

3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY

3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY 3 CONSEQUÊNCIAS DA TEORIA DE CAUCHY A teoria de Cauchy-Goursat, desenvolvida na secção 2 (TEORIA DE CAUCHY- GOUR- SAT), permite-nos tirar algumas propriedades importantes sobre as funções f que são diferenciáveis

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

Convergência de Séries de Números Complexos

Convergência de Séries de Números Complexos Convergência de Séries de Números Complexos META: Apresentar o conceito de convergência de séries de números complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir convergência

Leia mais

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário Renan de Oliveira Pereira, Ouro Preto, MG, Brasil Wenderson Marques Ferreira, Ouro Preto, MG, Brasil Eder Marinho

Leia mais

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste)

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste) Exame/Teste () de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de, 8h-h (º Teste) ) [] Seja f(x) = e x a) Determine um p n polinómio interpolador de f nos nós {, }, tal que

Leia mais

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x).

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x). E Eercício 1 Considere a função f que para valores de é denida pela relação f() = (sin /). 1.1 Mostre que a função f é contínua em R\{}. 1.2 Sabendo que f é contínua no ponto = determine o valor de f().

Leia mais

Um espaço métrico incompleto 1

Um espaço métrico incompleto 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Um espaço métrico incompleto

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2017.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que.

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que. FORMAS INDETERMINADAS E A REGRA DE L HÔPITAL RICARDO MAMEDE Consideremos o ite. Se tanto o numerador como o denominador tendem para valores initos quando a, digamos α e β, e β, então pela álgebra dos ites

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

O Teorema do Valor Médio

O Teorema do Valor Médio Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Médio Começamos este texto enunciando um importante resultado sobre derivadas: Teorema do Valor Médio. Suponha que f é uma

Leia mais

1 Limites e Conjuntos Abertos

1 Limites e Conjuntos Abertos 1 Limites e Conjuntos Abertos 1.1 Sequências de números reais Definição. Uma sequência de números reais é uma associação de um número real a cada número natural. Exemplos: 1. {1,2,3,4,...} 2. {1,1/2,1/3,1/4,...}

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,

Leia mais

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c)

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c) VAIÁVEL COMPLEXA 4. INTEGAÇÃO COMPLEXA 4. Função Complexa de uma Variável eal. Calcule as seguintes integrais: =4 e it dt e wt dt; (e w > ) (c) 2 e imt e int dt; m; n 2 : 2. Calcule as integrais trigonométricas:

Leia mais

Os números reais. Capítulo O conjunto I

Os números reais. Capítulo O conjunto I Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

Capítulo Topologia e sucessões. 7.1 Considere o subconjunto de R 2 : D = {(x, y) : xy > 1}.

Capítulo Topologia e sucessões. 7.1 Considere o subconjunto de R 2 : D = {(x, y) : xy > 1}. Capítulo 7 Introdução à Análise em R n 7. Topologia e sucessões 7. Considere o subconjunto de R 2 : D = {(x, y) : > }.. Indique um ponto interior, um ponto fronteiro e um ponto exterior ao conjunto D e

Leia mais

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor Equação da recta tangente e da recta normal Como já vimos este ano a equação de uma recta na forma reduzida édadapor y y 0 = m(x x 0 ) Também sabemos que o declive da recta tangente ao gráfico de f no

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Funções analíticas LISTA DE EXERCÍCIOS

Funções analíticas LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2015.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

1 n s = s s s p s. ζ(s) = p

1 n s = s s s p s. ζ(s) = p Introdução A chamada série harmónica, n= n = + 2 + 3 + +... desde cedo suscitou interesse entre os 4 matemáticos. Infelizmente esta série diverge, o que se verifica por os termos termo n, apesar de tenderem

Leia mais

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina

Leia mais