Cálculo de Resíduos AULA 12

Tamanho: px
Começar a partir da página:

Download "Cálculo de Resíduos AULA 12"

Transcrição

1 AULA 2 META: Apresentar cálculo de resíduos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir resíduo de uma função de variáveis complexas em um ponto dado e calcular o resíduo de uma função de variáveis complexas em um ponto dado. PRÉ-REQUISITOS Aula de Variáveis Complexas.

2 2. Introdução Caros alunos nessa nossa aula veremos Cálculo de Resíduos. O teorema da integral de Cauchy-Goursat assegura que a integral de uma função holomorfa ao longo de uma curva fechada simples C é zero. O cálculo de resíduos permite estender o teorema de Cauchy-Goursat para funções que possuam singularidades isoladas tipo polo no interior da curva C. 2.2 Resíduos Lembrem-se que z 0 é dito um ponto singular de uma função f( ) se f( ) falha em ser holomorfa em z 0 mais é holomorfa em algum ponto de toda vizinhança de z 0. Ademais z 0 é dita singularidade isolada se existe uma vizinhança de z 0 onde f( ) é holomorfa a exceção de z 0. Definição 2.. Seja D C um aberto e f : D C C holomorfa em D {z 0 }. Definimos o resíduo de f( ) no ponto z 0, denotado res(f, z 0 ), como coeficiente do termo da série de z z 0 Laurent de f( ) centrada em z 0. Vejamos um exemplo de resíduo. Exemplo 2.. Na aula0 vimos que a série de Laurent para a função f(z) = eaz (z ) 4 em torno do ponto z 0 = era: e a f(z) = (z ) 4 + aea (z ) 3 + a2 e a (z ) 2 + a3 e a z a k+4 e a (z ) k +. (k + 4)! k=0 Por simples inspeção vemos que: res(f, ) = a 3 e a. 74

3 Variáveis Complexas Γ AULA 2 γ 2 γ a 2 γ n a a n Figura 2.: Teorema dos Resíduos Vejamos agora como adaptar o teorema de Cauchy-Goursat para o caso de funções não-holomorfas com um número finito de pólos. Teorema 2. (Teorema dos resíduos). Seja D C um aberto e f : D C C holomorfa em D {z, z 2,..., z n }. Suponha Γ D {z, z 2,..., z n } uma curva suave por partes, orientada no sentido positivo, tal que em seu interior contenha todos os pontos z, z 2,..., z n então: PROVA: f(z)dz = 2πı Γ n res(f, z k ) k= Para cada ponto z k, k =, 2,..., n tomemos um círculo γ k de centro em z k tais que: γ k não tem ponto em comum com γ n, n k nem com Γ e está orientado positivamente (sentido anti-horário) (ver figura 2.) seja γ k o círculo γ k orientado negativamente (sentido horário). Seja C = Γ γ γ 2 γ n. Do teorema de Cauchy temos: C f(z)dz = 0 (2.7) Levando em conta a construção de C podemos reescrever eqn 75

4 2.7 como: Γ f(z)dz = Do teorema de Laurent temos: onde: Em particular: Daí, tiramos: f(z) = m= b m n k= (z z k ) m + γ k f(z)dz (2.72) a n (z z k ) n b m = f(z)(z z k ) m dz, m =, 2, 3,... 2πı γ k res(f, z k ) = b = f(z)dz 2πı γ k γ k f(z)dz = 2πıres(f, z k ) (2.73) Daí, substituindo eqn 2.73 em eqn 2.72 temos: n f(z)dz = res(f, z k ). (2.74) 2πı Γ Veremos agora um teorema que relaciona em uma mesma integral k= o número de zeros e o número de pólos de uma função. Teorema 2.2. Seja D C um aberto e f : D C C holomorfa em D {z, z 2,..., z n }. Suponha Γ D {z, z 2,..., z n } uma curva suave por partes, orientada no sentido positivo, tal que em seu interior contenha todos os pontos z, z 2,..., z n e que esses pontos sejam pólos de f( ) e que Γ não contenha nenhum zero de f( ) então: f (z) 2πı Γ f(z) dz = Z P onde Z é o número de zeros de f( ) no interior de Γ, contado tantas vezes quantas forem sua multiplicidade e P o número de 76

5 Variáveis Complexas pólos de f( ) no interior de Γ contado tantas vezes quantas forem sua ordem. AULA 2 PROVA: Consideremos a integral: f (z) dz (2.75) 2πı f(z) Γ Pelo teorema dos resíduos a integral em eqn 2.75 é a soma dos resíduos do integrando. Porém, dado um ponto a no interior de Γ temos três possibilidades: i) f(a) 0 ii) f(0) = 0 e a é um zero de multiplicidade m de f( ) iii) lim z a f(z) = ±, a é um polo de ordem k de f( ) Parte : no caso i) f (z) é holomorfa o resíduo é zero e o ponto f(z) nada contribui para a integração em eqn Parte 2 no caso ii) para este caso existe uma bola aberta B r (a) de raio r e centro em a tal que f(z) = (z a) m g(z), z B r (a) onde g(z) é holomorfa em B r (a). Daí, calculando a razão f (z) f(z) temos: f (z) f(z) = m(z a)m g(z) + (z a) m g (z) (z a) m = m g(z) z a + g (z) g(z) (2.76) g (z) Como g(z) é holomorfa em B r (a), também é holomorfa e g(z) portanto tem representação por série de Taylor en torno do ponto z = a. Daí, temos: g (z) g(z) = c n (z a) n (2.77) Daí, substituindo eqn 2.77 em eqn 2.76 temos: f (z) f(z) = m z a + c n (z a) n (2.78) 77

6 Logo eqn 2.78 é a série de Laurent de f (z), z = a é um polo ( f(z) f ) (z) de primeira ordem cujo resíduo é res f(z), a = m, que é a contribuição do ponto z = a à integral eqn Parte 3: no caso iii) para este caso existe uma bola aberta B r (a) de raio r e centro em a tal que f(z) = (z a) k g(z), z B r (a) onde g(z) é holomorfa em B r (a). Daí, calculando a razão f (z) f(z) temos: f (z) f(z) = k(z a) k g(z) + (z a) k g (z) (z a) k g(z) = k z a + g (z) g(z) (2.79) g (z) Como g(z) é holomorfa em B r (a), também é holomorfa e g(z) portanto tem representação por série de Taylor en torno do ponto z = a. Daí, temos: g (z) g(z) = c n (z a) n (2.80) Daí, substituindo eqn 2.80 em eqn 2.79 temos: f (z) f(z) = k z a + c n (z a) n (2.8) Logo eqn 2.8 é a série de Laurent de f (z), z = a é um polo ( f(z) f ) (z) de primeira ordem cujo resíduo é res f(z), a = k, que é a contribuição do ponto z = a à integral eqn Juntando as contribuições dos casos ii) e iii) temos: f (z) 2πı f(z) dz = Z P Γ onde Z é o número de zeros de f( ) no interior de Γ, contado tantas vezes quantas forem sua multiplicidade e P o número de 78

7 Variáveis Complexas pólos de f( ) no interior de Γ contado tantas vezes quantas forem sua ordem. A seguir, veremos alguns teoremas que auxiliaram na determinação dos resíduos de uma função não-holomorfa. AULA 2 Teorema 2.3. Seja D C um aberto e f : D C C holomorfa em D {z 0 }. E suponhamos que z 0 é um polo de ordem de f( ). Então res(f, z 0 ) = lim z z0 (z z 0 )f(z). PROVA: da forma: Da hipótese do teorema a série de Laurent de f(z) é f(z) = res(f, z 0) z z 0 + c n (z z 0 ) n (2.82) Fazendo o produto de eqn 2.82 por z z 0 temos: (z z 0 )f(z) = res(f, z 0 ) + c n (z z 0 ) n+ (2.83) Passando o limite z z 0 em eqn 2.83 e levando em conta que lim c n (z z 0 ) n+ = 0 temos: z z 0 res(f, z 0 ) = lim z z0 (z z 0 )f(z). Teorema 2.4. Seja D C um aberto e f : D C C holomorfa em D {z 0 }. E suponhamos que z 0 é um polo de ordem k > de f( ) e g : D C C dada por g(z) = (z z 0 ) k f(z). Então res(f, z 0 ) = g(k ) (z 0 ). (k )! PROVA: da forma: Da hipótese do teorema a série de Laurent de f(z) é f(z) = b k (z z 0 ) k + + res(f, z 0) + z z 0 c n (z z 0 ) n (2.84) 79

8 Fazendo o produto de eqn 2.84 por (z z 0 ) k temos: (z z 0 ) k f(z) = b k + + res(f, z 0 )(z z 0 ) k + c n (z z 0 ) n+k (2.85) Como g(z) = (z z 0 ) k f(z) e é holomorfa da eqn 2.85 temos: g(z) = b k + +res(f, z 0 )(z z 0 ) k + c n (z z 0 ) n+k (2.86) Logo eqn 2.84 é a expansão em série de Taylor de g(z) en torno do ponto z 0 e res(f, z 0 ) o coeficiente de (z z 0 ) k nessa expansão e portanto: res(f, z 0 ) = g(k ) (z 0 ). (k )! OBS 2.. Se f(z) é holomorfa em z 0 então res(f, z 0 ) = 0 que não contribui em nada. Porém, se z 0 é uma singularidade essencial não tem uma fórmula para simplificar a obtenção do resíduo e o caminho é determinar a série de Laurent de f(z). 2.3 Conclusão Na aula de hoje, vimos que é possível estender o teorema de Cauchy para funções não-holomorfas no interior de uma curva fechada simples em cujo interior o integrando possua singularidades isoladas. RESUMO No nosso resumo da Aula 2 constam os seguintes tópicos: 80

9 Resíduos Definição Variáveis Complexas Seja D C um aberto e f : D C C holomorfa em D {z 0 }. Definimos o resíduo de f( ) no ponto z 0, denotado res(f, z 0 ), como coeficiente do termo da série de Laurent de f( ) centrada z z 0 em z 0. Teorema Seja D C um aberto e f : D C C holomorfa em D {z, z 2,..., z n }. Suponha Γ D {z, z 2,..., z n } uma curva suave por partes, orientada no sentido positivo, tal que em seu interior contenha todos os pontos z, z 2,..., z n então: f(z)dz = 2πı Γ n res(f, z k ) k= AULA 2 Teorema 2 Seja D C um aberto e f : D C C holomorfa em D {z, z 2,..., z n }. Suponha Γ D {z, z 2,..., z n } uma curva suave por partes, orientada no sentido positivo, tal que em seu interior contenha todos os pontos z, z 2,..., z n e que esses pontos sejam pólos de f( ) e que Γ não contenha nenhum zero de f( )então: f (z) 2πı Γ f(z) dz = Z P onde Z é o número de zeros de f( ) no interior de Γ, contado tantas vezes quantas forem sua multiplicidade e P o número de pólos de f( ) no interior de Γ contado tantas vezes quantas forem sua ordem. 8

10 PRÓXIMA AULA Em nossa próxima aula veremos algumas aplicações do cálculo de resíduos (teorema dos resíduos). algumas integrais definidas. Em especial no cálculo de ATIVIDADES Deixamos como atividades as seguintes questões: ATIV. 2.. Seja f(z) = e z csc(z). Determine todos os pólos de f( ) e calcule o resíduo em cada polo. Comentário: use a fórmula lim z z k (z z k )f(z). Verifique que todos os pólos de f( ) são simples e ATIV Determine a integral: o círculo unitário z =. Comentário: Aplique o teorema do resíduos e o problema anterior. e z csc(z)dz onde C é 2πı C LEITURA COMPLEMENTAR SPIEGEL, Murray R., Variáveis Complexas, Coleção Schaum, Editora McGraw-Hill do Brasil, 973. SOARES, Márcio G., Cálculo em uma Variável Complexa, Coleção Matemática Universitária, Editora SBM, BROWN, James W. and CHURCHILL, Ruel R., Complex Variables and Applications Editora McGraw Hill, FERNANDEZ, Cecília S. e BERNARDES Jr, Nilson C. Introdução às Funções de uma Variável Complexa. Editora SBM,

Convergência de Séries de Números Complexos

Convergência de Séries de Números Complexos Convergência de Séries de Números Complexos META: Apresentar o conceito de convergência de séries de números complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir convergência

Leia mais

META: Introduzir o conceito de derivada de funções de variáveis complexas.

META: Introduzir o conceito de derivada de funções de variáveis complexas. AULA 3 META: Introduzir o conceito de derivada de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir derivada de funções de variáveis complexas e determinar

Leia mais

Transformações Conformes: 15 Aplicações

Transformações Conformes: 15 Aplicações AULA Transformações Conformes: 15 Aplicações META: Aplicar transformações conformes. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar transformações conformes na determinação da distribuição

Leia mais

Mais Alguns Aspectos da Derivação Complexa

Mais Alguns Aspectos da Derivação Complexa Mais Alguns Aspectos da Derivação Complexa META: Introduzir o conceito de funções holomorfas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir funções holomorfas e determinar se uma

Leia mais

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

Funções Elementares do Cálculo Complexos 1

Funções Elementares do Cálculo Complexos 1 Funções Elementares do Cálculo Complexos 1 META: Definir algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir algumas funções elementares

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

Funções Elementares do Cálculo Complexos 2

Funções Elementares do Cálculo Complexos 2 Funções Elementares do Cálculo Complexos AULA 6 META: Definir mais algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir mais algumas funções

Leia mais

Teoremas de Cauchy AULA 8

Teoremas de Cauchy AULA 8 Teoremas de auchy META: Introduzir os principais teoremas de auchy sobre integração de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Enunciar os principais

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015 Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010 Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função

Leia mais

Lista 4 - Métodos Matemáticos II

Lista 4 - Métodos Matemáticos II Lista 4 - Métodos Matemáticos II Prof. Jorge Delgado. alcule Res f () da função f () dada. + ; (b) cos cot ; (c) ; (d) senh 4 4 ( ). Solução. ; (b) ; (c) 45 ; (d) 7 6.. Usando o teorema do resíduo verifique

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem

Leia mais

Lista 3 - Métodos Matemáticos II

Lista 3 - Métodos Matemáticos II Lista 3 - Métodos Matemáticos II Prof. Jorge Delgado. Seja a curva poligonal de vértices 2( + i), 2( + i), 2( + i) e 2( i) orientada positivamente. Use a fórmula integral de auchy para verificar que: e

Leia mais

LOM3253 Física Matemática 2017 S2

LOM3253 Física Matemática 2017 S2 LOM3253 Física Matemática 2017 S2 Parte 2. Funções de variável complexa Prof. Dr. Viktor Pastoukhov EEL-USP Subconjuntos no plano complexo Geometria Analítica no plano complexo Geometria Analítica no plano

Leia mais

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Roberto Imbuzeiro Oliveira 6 de Abril de 20 Preliminares Nestas notas, U C sempre será um aberto e f : U C é contínua. Duas curvas

Leia mais

Transformações Conformes

Transformações Conformes META: Introduzir o conceito de transformações conforme. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir transformações conformes e exemplificar transformações conformes. PRÉ-REQUISITOS

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

META: Introduzir o conceito de integração de funções de variáveis complexas.

META: Introduzir o conceito de integração de funções de variáveis complexas. Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl

Leia mais

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

PROVAS DE ANÁLISE COMPLEXA

PROVAS DE ANÁLISE COMPLEXA PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Introdução às superfícies de Riemann

Introdução às superfícies de Riemann LISTA DE EXERCÍCIOS Introdução às superfícies de Riemann 1. Mostre que toda curva plana é uma superfície de Riemann não-compacta. 2. Seja F : C 3 C um polinômio homogêneo de grau d, isto é, cada monômio

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

Aplicações da Teoria dos Resíduos no Cálculo de Integrais Reais

Aplicações da Teoria dos Resíduos no Cálculo de Integrais Reais 1 Aplicações da Teoria dos Resíduos no Cálculo de Integrais Reais GUSTAVO S. OLIVEIRA 1, ELISA R. SANTOS 2 Resumo. Este artigo apresenta um estudo sobre aplicações do Teorema dos Resíduos no cálculo de

Leia mais

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Funções analíticas LISTA DE EXERCÍCIOS

Funções analíticas LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?

Leia mais

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,

Leia mais

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2015.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 7 Operadores Normais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 7: Operadores Normais Meta

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan GABARITO 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan (Valor 3.) Questão 1: Responda às seguintes questões, usando as equações de Cauchy-Riemann. (1.5) (a) Mostre que a função

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matem tica SecÁ o de Álgebra e Análise ANÁLISE MATEMÁTICA IV 1 o Teste Cursos: LCI, LEAmb, LEBL, LEGM, LEIC, LEM, LEMat, LEMG, LEQ, LQ Justifique cuidadosamente

Leia mais

Variáveis Complexas. José Carlos Leite

Variáveis Complexas. José Carlos Leite Variáveis Complexas José Carlos Leite São Cristóvão/SE 2011 Variaveis Complexas Elaboração de Conteúdo José Carlos Leite Projeto Gráfico Neverton Correia da Silva Nycolas Menezes Melo Capa Hermeson Alves

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

Curso: MAT CÁLCULO DIFERENCIAL E INTEGRAL IV Unidade: IFUSP - Instituto de FÍsica da USP Professor Oswaldo Rio Branco de Oliveira Período:

Curso: MAT CÁLCULO DIFERENCIAL E INTEGRAL IV Unidade: IFUSP - Instituto de FÍsica da USP Professor Oswaldo Rio Branco de Oliveira Período: Curso: MAT 22 - CÁLCULO DIFERENCIAL E INTEGRAL IV Unidade: IFUSP - Instituto de FÍsica da USP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 211 Capítulo 1 NÚMEROS COMPLEXOS Capítulo

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

Transformada Z. A transformada Z de uma sequência x n é definida como:

Transformada Z. A transformada Z de uma sequência x n é definida como: Transformada Z Vimos que as DTFTs de algumas sequências não convergem uniformemente para funções contínuas de ω, porque as sequências não são absolutamente somáveis. A transformada Z permitirá a análise

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2017.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento [email protected]

Leia mais

COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z.

COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z. Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z. 2014/1 Introdução ao Domínio Discreto

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage [email protected] Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Teorema de Divergência

Teorema de Divergência Teorema de ivergência META: Apresentar o teorema de Gauss e algumas de suas aplicações. OBJETIVO: Ao fim da aula os alunos deverão ser capazes de: Enunciar o teorema de Gauss. eterminar o divergente de

Leia mais

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas Capítulo 2 Funções de uma variável complexa A origem dos números complexos repousa na solução de equações algébricas para. A solução da equação de 1º. grau:, remonta ao Egito antigo. Note que com os coeficientes

Leia mais

Algumas Aplicações das Integrais tríplas

Algumas Aplicações das Integrais tríplas Algumas Aplicações das Integrais tríplas META: Apresentar algumas aplicações das integrais triplas de funções de valores reais e domínio em R 3. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes

Leia mais

e i $ p = K1, a teoria de funções de variáveis

e i $ p = K1, a teoria de funções de variáveis TEOREMA DA UNIFORMIZAÇÃO DE RIEMANN Aluno: Ricardo Lomba de Araujo Junior Orientador: Flávio Erthal Abdenur Introdução O Teorema de Riemann é um dos mais importantes resultados obtidos em Análise Complexa,

Leia mais

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas Capítulo 2 Funções de uma variável complexa A origem dos números complexos repousa na solução de equações algébricas para. A solução da equação de 1º. grau:, remonta ao Egito antigo. Note que com os coeficientes

Leia mais

SMA 5878 Análise Funcional II

SMA 5878 Análise Funcional II SMA 5878 Análise Funcional II Alexandre Nolasco de Carvalho Departamento de Matemática Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo 16 de Março de 2017 Objetivos da Disciplina

Leia mais

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro 2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas

Leia mais

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV ANÁLISE MATEMÁTICA IV (2 ō semestre 2006/07) LEC e LEGM Professor Responsvel: Maria João Borges http://www.math.ist.utl.pt/ mborges/amiv Sumários das Aulas Teóricas Aula 37: (05/06) Aula 36: (04/06) Continuação

Leia mais

Um espaço métrico incompleto 1

Um espaço métrico incompleto 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Um espaço métrico incompleto

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Teorema de Green Curvas Simples Fechadas e Integral de

Teorema de Green Curvas Simples Fechadas e Integral de Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

Transformada z. Carlos Alberto Ynoguti. September 14, / 53

Transformada z. Carlos Alberto Ynoguti. September 14, / 53 Carlos Alberto Ynoguti September 14, 2007 1 / 53 Introdução Relação entre a DTFT e a convergência Exemplo 3.22 Observação Exemplo 3.23 Alguns pares de transformadas z 2 / 53 Introdução Introdução Relação

Leia mais

Polinômio Mínimo e Operadores Nilpotentes

Polinômio Mínimo e Operadores Nilpotentes Capítulo 9 Polinômio Mínimo e Operadores Nilpotentes Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora [email protected] Conteúdo Introdução Definição

Leia mais

Cálculo III-A Módulo 9

Cálculo III-A Módulo 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Aula 17 Teorema de Green Objetivo Estudar um teorema que estabelece uma ligação

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

CENTRO DE MASSA E MOMENTO LINEAR

CENTRO DE MASSA E MOMENTO LINEAR CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I CENTRO DE MASSA E MOMENTO LINEAR Prof. Bruno Farias Introdução Neste módulo vamos discutir

Leia mais

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

Aula 7 Os teoremas de Weierstrass e do valor intermediário.

Aula 7 Os teoremas de Weierstrass e do valor intermediário. Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais