Convergência de Séries de Números Complexos

Tamanho: px
Começar a partir da página:

Download "Convergência de Séries de Números Complexos"

Transcrição

1 Convergência de Séries de Números Complexos META: Apresentar o conceito de convergência de séries de números complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir convergência de séries de números complexos e calcular o limite de algumas séries de números complexos. PRÉ-REQUISITOS Aula01 de Variáveis Complexas e os conhecimentos básicos, da disciplina Cálculo II.

2 Convergência de Séries de Números Complexos.1 Introdução Caros alunos veremos aqui um pouco de seqüências e séries de números complexos. Seqüências pois são essenciais ao estudo das séries e séries pois são essenciais ao estudo das funções holomorfas visto que essas podem ser expressas como série de potências..2 Seqüências de Números Complexos Começaremos pela definição de seqüências de números complexos. A saber: Definição.1. Uma seqüência de números complexos é uma função cujo domínio é o conjunto do números naturais N e o contradomínio o conjunto dos números complexos C, z : N C. O n-ésimo termo da seqüência será denotado z(n) ou alternativamente z n (que utilizaremos daqui para a frente). Uma seqüência pode ser denotada alternativamente por {z n, n N} ou {z n } (que utilizaremos daqui para a frente). Exemplo.1. Como exemplos de seqüências temos: 1. {z n } onde z 0 = 2 e z n = 2 + z n 1, n = 1, 2, 3, {z n } onde z n = n 2 + 1, n = 0, 1, 2,... Definição.2. Seja {z n } uma seqüência de números complexos. Dizemos que {z n } é uma seqüência limitada se, somente se existe K > 0 tal que z n B K (0), n N. OBS.1. Uma seqüência é limitada se todos os seus elementos pertencem a alguma bola aberta. 134

3 Variáveis Complexas Definição.3. Seja {z n } uma seqüência de números complexos. Dizemos que z C é o limite de {z n }, denotado z = lim z n, se, somente se para todo ε > 0 existe n 0 N tal que n n 0, z n B ε (z). OBS.2. Se uma seqüência {z n } tem limite dizemos alternativamente que ela converge. Por outro lado se {z n } não possui limite dizemos que a seqüência diverge..3 Alguns Teoremas Veremos agora alguns teoremas sobre seqüências de Números Complexos. Teorema.1. Seja {z n } uma seqüências de números complexos. Se {z n } é convergente então {z n } é limitada. PROVA: Como {z n } é convergente existe z C tal que z = lim z n. Daí, tomando ε = 1 existe n 0 N tal que n n 0, z n B 1 (z). Daí, usando a desigualdade triangular, temos: z n z < 1 z n < 1 + z. De outra forma: n n 0, z n B 1+ z (0). Teorema.2. Seja {z n } uma seqüências de números complexos tal que z n = x n + y n ı onde {x n } e {y n } são seqüências de números reais então z = x + yı = lim z n se, somente se x = lim x n e y = lim y n. PROVA: A prova será dividida em duas partes: Parte 1: Se z = x + yı = lim z n então para todo ε > 0, existe 135

4 Convergência de Séries de Números Complexos n 0 N tal que: n n 0, z n B ε (z), de outra forma: n n 0, z n z < ε. por outro lado, como x n x (x n x) 2 + (y n y) 2 = z n z < ε. Daí, temos: ε > 0, n 0 N n n 0, x n x < ε. logo x = lim x n. Do mesmo modo: y = lim y n. Parte 2: se x = lim x n e y = lim y n então para todo ε > 0 existe n 1, n 2 N tal que: n n 1, x n x < ε 2 e n n 2, y n y < ε 2. Tomando n 0 = max{n 1, n 2 } as desigualdades acima valem simultaneamente se n n 0 i.e. n n 0, x n x < ε 2 y n y < ε 2. Daí, temos: z n z x n x + y n y < ε 2 + ε 2 = ε Logo z n B ε (z). Daí, temos: ε > 0, n 0 N n n 0, z n B ε (z). logo z = lim z n. Teorema.3. Sejam {z n } e {w n } duas seqüências de números complexos tais que z = lim z n e w = lim w n então: i) lim az n = az, para todo a C ii) iii) lim (z n + w n ) = z + w lim (z n w n ) = z w iv) lim n.w n ) = z.w v) z n lim = z w n w, se w 0 136

5 Variáveis Complexas PROVA: Provaremos apenas a iii) o restante ficará à cargo dos alunos. Para todo ε > 0, existem n 1, n 2, n 3 N e K > 0 tais que, da definição de limite de seqüências e do teorema.1 : n n 1, z n B ε/2 w (z), n n 1, w n B ε/2k (z) e n n 1, z n B K (z). De outra forma: n n 1, z n z < n 1, z n < K. ε 2 w, n n 1, w n z < ε 2K e n Daí, tomando n 0 = max{n 1, n 2, n 3 } teremos as três desigualdades acima simultaneamente satisfeitas e: z n w n zw = z n w n z n w + z n w zw z n w n z n w + z n w zw z n. w n w + w. z n z < K. w n w + w. z n z ε < K. 2K + w. ε 2 w < ε Daí, temos: n n 0, z n w n B ε (zw). Portanto: lim (z nw n ) = zw. O próximo teorema constitui-se um importante critério de convergência de seqüências pois, com ele é possível decidir sobre a convergência de uma seqüência sem a necessidade do conhecimento prévio de seu limite. É conhecido como Critério de Cauchy ou Princípio de Cauchy. Teorema.4 (Critério de Cauchy). Seja {z n } uma seqüência de 137

6 Convergência de Séries de Números Complexos número complexos então {z n } é convergente se, somente se, para todo ε > 0, existe n 0 N tal que: m, n n 0 z m z n < ε.4 Séries de Números Complexos Como de modo geral, começaremos pela definição. Definição.4. Dada uma seqüência {z n } de números complexos, definimos a série associada {s n } com a seqüência de somas parciais n s n = z k. k=0 OBS.3. Séries são seqüências especiais definidas a partir de outras seqüências. Se a seqüência de somas parciais converge dizemos que a série converge. Denotaremos z n à série numérica gerada por {z n }. Definição.5. Seja r > 0 um número real positivo e {x n = r n } a seqüência de potências de r. Definimos a série geométrica r n como a série associada a {x n } de somas parciais s n = r k = 1 + r + r r n. k=0 OBS.4. podemos simplificar a expressão da soma parcial s n = n r k = 1 + r + r r n. do seguinte modo: k=0 fazendo o produto de s n por r temos: n rs n = r r k = r + 2 +r r n+1. Subtraindo de s n temos: k=0 rs n s n = r n+1 1. Daí, temos: s n = 1 rn+1 1 r. 138

7 Variáveis Complexas Se r < 1 como lim rn = 0 temos: lim s 1 r n+1 n = lim 1 r 1 lim rn+1 = 1 r = 1 1 r e a série geométrica é convergente. Por outro lado se r > 1 como lim rn = temos: lim s 1 r n+1 n = lim 1 r 1 lim rn+1 = 1 r = e a série geométrica é divergente. As séries numéricas são mais ricas, em comparação com as seqüências, no que tange aos critérios de convergências. Veremos alguns deles, na forma de teoremas dos quais provaremos alguns, começando pelo critério da comparação de séries de números reais. Teorema.5 (Critério da Comparação). Sejam x n e séries numéricas onde: x n, y n R. tais que x n, y n > 0. Supondo que para todo n, x n < y n valem: 1. Se y n converge então x n converge. 2. Se x n diverge então Teorema.6. Seja y n diverge. z n uma série de números complexos. Se z n converge então lim z n = 0. y n 13

8 Convergência de Séries de Números Complexos PROVA: Pelo critério de Cauchy temos: s n 1 = 0. Logo da continuidade da função módulo temos: lim z n = 0. lim z n = lim s n OBS.5. O teorema acima nos dá uma condição necessária para convergência de uma série numérica. Definição.6. Seja z n uma série de números complexos. Dizemos que z n converge absolutamente se, somente se, a série z n associada à seqüência { z n } converge. OBS.6. Na próxima seção, estudo das séries de potências ficará clara a importância deste conceito. Teorema.7. Seja z n uma série de números complexos. Se z n é absolutamente convergente então PROVA: Sejam s n = s n = z n é convergente. n z k a n-ésima soma parcial de {z n } e k=0 n z k a n-ésima soma parcial de { z n }. Da desigualdade k=0 triangular, fazendo m = n + k temos: s m s n = s n+k s n = z n+k + z n+k z n+1 z n+k + z n+k z n+1 s n+k s n s m s n 140

9 Variáveis Complexas Como z n do critério de Cauchy, para todo ε > 0 existe n o N tal que m, n n 0, s m s n < ε. Da desigualdade acima temos: m, n n 0, s m s n < ε. Logo z n satisfaz o critério de Cauchy e é convergente. Teorema.8. Sejam z n e w n duas séries de números complexos convergentes tais que então: z n = z e w n = w e a C i) (az n ) = az ii) (z n + w n ) = z + w.5 Séries de Potência Esta seção será o ponto alto de nossa aula. Nela veremos séries de potência, culminando com um teorema de representação de funções holomorfas. Definição.7. Seja {a n } uma seqüência de números complexos. Definimos a série de potências associada a {a n } de centro em 0 por: a n z n. OBS.7. As primeiras somas parciais da série de potências asso- 141

10 Convergência de Séries de Números Complexos ciada a {a n } de centro em 0 são: s 0 = a 0 s 1 = a 0 + a 1 z s 2 = a 0 + a 1 z + a 2 z 2. s n = a 0 + a 1 z + a 2 z a n z n. Dada uma série de potência duas perguntas aparecem de forma natural. Na primeira desejamos saber para quais valores de z a série é convergente. A segunda é se fizermos f(z) = lim s n sob quais condições teríamos uma função e onde estaria definida. O caso trivial z = 0 é nos dá uma resposta óbvia pois, teríamos uma seqüência constante. A verdadeira questão é para que outros valores de z teríamos uma resposta positiva? Teorema.. Seja a n z n uma série numérica: i) Se existe z 1 C, z 1 0 tal que a n z1 n a n z n converge para todo z C tal que z < z 1 ii) Se existe z 2 C, z 2 0 tal que a n z2 n diverge então diverge para todo z C tal que z 2 < z converge então a n z n PROVA: Dividiremos a prova em duas partes: Parte 1: Como a n z1 n converge do teorema.6 temos: lim a nz n 1 = 0 e a seqüência {a n z1 n } é limitada. Logo existe K > 0 142

11 Variáveis Complexas tal que para todo n N, a n z n 1 < K. Daí, como z < z 1 pondo r = z z 1 < 1 temos: Como r < 1 a série a n z n = a n. z n = a n. z 1 n. = a n z n 1.r n < Kr n ( ) z n z 1 Kr n converge para comparação teorema.5 a série a n z n e portanto do teorema.7 a série K 1 r pelo critério da a n z n é convergente. Parte 2: Suponha, por absurdo, que exista um número z C tal que z > z 2 e a série a n z n seja convergente. repetindo a demonstração da Parte 1 trocando z por z 2 e z 1 por z teríamos que a série a n z2 n seria convergente o que é um absurdo. Logo, para todo z C tal que z > z 2 a série a n z n é divergente. OBS.8. O teorema acima nos diz de se uma série a n z n é convergente em um ponto z 1 0 então é convergente em todos os pontos da bola aberta B z1 (0) e portanto podemos definir uma n função f : B z1 (0) C dada por f(z) = lim a n z n. Teorema.10. Seja k=0 a n z n uma série de potências então existe uma bola fechada B r (0) tal que a série converge absolutamente em todos os pontos do interior da bola e diverge para todos os pontos do exterior da bola. 143

12 Convergência de Séries de Números Complexos Definição.8. Seja a n z n uma série de potências denominamos raio de convergência ao raio r da bola definida pelo teorema acima. O seguinte teorema oferece um modo prático de determinar o raio de convergência de uma série de potências. Teorema.11. Seja a n z n uma série de potências tal que para todo n N, a n 0. Então o raio de convergência da série de potências pode ser dado por: r = lim a n ou r = lim a n+1 1 a n 1/n Vejamos um exemplo de determinação do raio de convergência de uma série de potências. Exemplo.2. Seja a série de potências dada por 1 n! zn. Determine seu raio de convergência. SOLUÇÃO: Tomando a n = 1 n! 1 (n + 1).n!. Logo: a n a n+1 = Daí, temos: lim a n 1 n! 1 (n + 1).n! = lim n + 1 =. Logo: a n+1 r = lim a n = a n lim =. a n+1 a n+1 temos: a n+1 = = (n + 1).n! n! 1 (n + 1)! = = n + 1. Para concluir enunciaremos sem demonstração o seguinte teorema. Teorema.12. Sejam D C um aberto e f : D C C um função holomorfa em uma bola aberta B r (z 0 ) D então para cada z B r (z 0 ) temos: f(z) = f (n) (z 0 ) (z z 0 ) n n! 144

13 .6 Conclusão Variáveis Complexas Na aula de hoje, tanto as seqüências de números complexos quanto as séries de números complexos têm paralelo com seqüências e séries de números reais exceto por alguns critérios de convergência. RESUMO No nosso resumo da Aula 0 constam os seguintes tópicos: Seqüências de Números Complexos Definição de seqüência de Números complexos Uma seqüência de números complexos é uma função cujo domínio é o conjunto do números naturais N e o contra-domínio o conjunto dos números complexos C, z : N C. Convergência de Seqüência de Números Complexos Se uma seqüência {z n } tem limite dizemos alternativamente que ela converge. Por outro lado se {z n } não possui limite dizemos que a seqüência diverge. Teorema 1 Seja {z n } uma seqüências de números complexos. Se {z n } é convergente então {z n } é limitada. Teorema 2 Sejam {z n } e {w n } duas seqüências de números complexos tais que z = lim z n e w = lim w n então: i) lim az n = az, para todo a C ii) lim (z n + w n ) = z + w 145

14 Convergência de Séries de Números Complexos iii) iv) lim (z n w n ) = z w lim (z n.w n ) = z.w z n v) lim = z w n w, se w 0 Teorema 3: Critério de Cauchy Seja {z n } uma seqüência de número complexos então {z n } é convergente se, somente se, para todo ε > 0, existe n 0 N tal que: m, n n 0 z m z n < ε Séries de Números Complexos Definição Dada uma seqüência {z n } de números complexos, definimos a série n associada {s n } com a seqüência de somas parciais s n = z k. k=0 Definição Seja z n uma série de números complexos. Dizemos que converge absolutamente se, somente se, a série seqüência { z n } converge. z n z n associada à Teorema 1 Seja z n uma série de números complexos. Se z n é absolutamente convergente então Teorema 2 Sejam z n e w n duas séries de números complexos convergentes tais que z n é convergente. i) (az n ) = az z n = z e w n = w e a C então: 146

15 ii) Variáveis Complexas (z n + w n ) = z + w Séries de Potência Definição Seja {a n } uma seqüência de números complexos. Definimos a série de potências associada a {a n } de centro em 0 por: a n z n. Teorema 1 Seja a n z n uma série numérica: i) Se existe z 1 C, z 1 0 tal que a n z1 n converge então a n z n converge para todo z C tal que z < z 1 ii) Se existe z 2 C, z 2 0 tal que a n z2 n diverge então a n z n diverge para todo z C tal que z 2 < z Teorema 2 Seja a n z n uma série de potências então existe uma bola fechada B r (0) tal que a série converge absolutamente em todos os pontos do interior da bola e diverge para todos os pontos do exterior da bola. Definição Seja a n z n uma série de potências denominamos raio de convergência ao raio r da bola definida pelo teorema acima. Teorema 3 Seja a n z n uma série de potências tal que para todo n N, a n 0. Então o raio de convergência da série de potências pode 147

16 Convergência de Séries de Números Complexos ser dado por: r = lim a n a n+1 ou r = lim 1 a n 1/n Teorema 4 Sejam D C um aberto e f : D C C um função holomorfa em uma bola aberta B r (z 0 ) D então para cada z B r (z 0 ) temos: f(z) = f (n) (z 0 ) (z z 0 ) n n! PRÓXIMA Em nossa próxima aula veremos séries de Laurent uma forma de representação de funções não holomorfas. ATIVIDADES Deixamos como atividades as seguintes questões: ATIV..1. Sejam {z n } e {w n } duas seqüências de números complexos tais que z = definição, que: lim z n e w = lim w n. Mostre, usando a Comentário: lim (z n + w n ) = z + w. Volte ao texto e reveja com calma e atenção as demonstrações dos teoremas sobre seqüências de números complexos, elas lhe servirão de guia. 148

17 Variáveis Complexas ATIV..2. Seja a série de potências dada por 2 n n! zn. Determine seu raio de convergência. Comentário: Volte ao texto e reveja com calma e atenção o exemplo de determinação do raio de convergência de uma série de potências, ele lhe servirá de guia. LEITURA COMPLEMENTAR SPIEGEL, Murray R., Variáveis Complexas, Coleção Schaum, Editora McGraw-Hill do Brasil, 173. SOARES, Márcio G., Cálculo em uma Variável Complexa, Coleção Matemática Universitária, Editora SBM, 200. BROWN, James W. and CHURCHILL, Ruel R., Complex Variables and Applications Editora McGraw Hill, FERNANDEZ, Cecília S. e BERNARDES Jr, Nilson C. Introdução às Funções de uma Variável Complexa. Editora SBM,

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

META: Introduzir o conceito de derivada de funções de variáveis complexas.

META: Introduzir o conceito de derivada de funções de variáveis complexas. AULA 3 META: Introduzir o conceito de derivada de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir derivada de funções de variáveis complexas e determinar

Leia mais

Cálculo de Resíduos AULA 12

Cálculo de Resíduos AULA 12 AULA 2 META: Apresentar cálculo de resíduos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir resíduo de uma função de variáveis complexas em um ponto dado e calcular o resíduo de uma

Leia mais

Mais Alguns Aspectos da Derivação Complexa

Mais Alguns Aspectos da Derivação Complexa Mais Alguns Aspectos da Derivação Complexa META: Introduzir o conceito de funções holomorfas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir funções holomorfas e determinar se uma

Leia mais

Transformações Conformes: 15 Aplicações

Transformações Conformes: 15 Aplicações AULA Transformações Conformes: 15 Aplicações META: Aplicar transformações conformes. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar transformações conformes na determinação da distribuição

Leia mais

Funções Elementares do Cálculo Complexos 1

Funções Elementares do Cálculo Complexos 1 Funções Elementares do Cálculo Complexos 1 META: Definir algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir algumas funções elementares

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

Funções Elementares do Cálculo Complexos 2

Funções Elementares do Cálculo Complexos 2 Funções Elementares do Cálculo Complexos AULA 6 META: Definir mais algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir mais algumas funções

Leia mais

Teoremas de Cauchy AULA 8

Teoremas de Cauchy AULA 8 Teoremas de auchy META: Introduzir os principais teoremas de auchy sobre integração de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Enunciar os principais

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Séries Numéricas Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Séries Numéricas A soma dos termos de uma sequência a n é denominada de série de termo geral e é denotada por S n = a

Leia mais

Capítulo 3. Séries Numéricas

Capítulo 3. Séries Numéricas Capítulo 3 Séries Numéricas Neste capítulo faremos uma abordagem sucinta sobre séries numéricas Apresentaremos a definição de uma série, condições para que elas sejam ou não convergentes, alguns exemplos

Leia mais

3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais.

3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. LIVRO Séries de Números Reais META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. PRÉ-REQUISITOS Seqüências (Aula 02). Séries de Números Reais.

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais

Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k =

Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = Séries Alternadas São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = 1 1 2 + 1 3 1 4 + 1 5 Em geral escrevemos, para uma série alternada, ou ( 1) k+1 a k =

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a Sequencias e Series Autor: Dr. Cristian Novoa MAF- PUC- Go cristiancalculoii@gmail.com Este texto tem como objetivo principal, introduzir alguns conceitos de Sequencias e Series,para os cursos de Engenharia,

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

12 AULA. Relações de Ordem LIVRO. META: Apresentar o conceito de relações de ordem e suas propriedades.

12 AULA. Relações de Ordem LIVRO. META: Apresentar o conceito de relações de ordem e suas propriedades. 2 LIVRO Relações de Ordem META: Apresentar o conceito de relações de ordem e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Determinar se uma dada relação é uma relação

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2015.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34 Sumário Aula 11: Relações Binárias 9 11.1 Introdução... 10 11.2 Relações Binárias... 10 11.2.1 Propriedades das Relações Binárias... 13 11.3 Algumas Demonstrações... 16 11.4 CONCLUSÃO... 18 11.5 RESUMO....

Leia mais

10 AULA. Operações com Conjuntos: Produto Cartesiano LIVRO. META: Introduzir propriedades para o produto cartesiano de conjuntos.

10 AULA. Operações com Conjuntos: Produto Cartesiano LIVRO. META: Introduzir propriedades para o produto cartesiano de conjuntos. 1 LIVRO Operações com Conjuntos: Produto Cartesiano META: Introduzir propriedades para o produto cartesiano de conjuntos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Demonstrar propriedades

Leia mais

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série Séries Numéricas Nosso maior objetivo agora é dar um sentido a uma soma de infinitas parcelas, isto é, estudar a convergência das chamadas séries numéricas. Inicialmente, seja (a n ) uma sequência e formemos

Leia mais

14 AULA. Funções LIVRO. META: Apresentar o conceitos de funções.

14 AULA. Funções LIVRO. META: Apresentar o conceitos de funções. 2 LIVRO Funções META: Apresentar o conceitos de funções. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relção é uma função. Determinar a imagem direta e a imagem inversa

Leia mais

Notas do Curso de SMA-333 Cálculo III. Prof. Wagner Vieira Leite Nunes. São Carlos 1.o semestre de 2007

Notas do Curso de SMA-333 Cálculo III. Prof. Wagner Vieira Leite Nunes. São Carlos 1.o semestre de 2007 Notas do Curso de SMA-333 Cálculo III Prof. Wagner Vieira Leite Nunes São Carlos.o semestre de 7 Sumário Introdução 5 Seqüências Numéricas 7. Definições.................................... 7. Operações

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

Critérios de Avaliação A avaliação ao longo das actividades lectivas será periódica, sendo efectuados dois testes. Os testes serão nos dias 7 de Abril

Critérios de Avaliação A avaliação ao longo das actividades lectivas será periódica, sendo efectuados dois testes. Os testes serão nos dias 7 de Abril Cálculo II Mestrado Integrado em Engenharia Aeronáutica Mestrado Integrado em Engenharia Civil António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2014/2015 António Bento

Leia mais

9 AULA. Operações com Conjuntos: Diferença e Complementar LIVRO. META: Apresentar algumas propriedades da diferença e do complementar de conjuntos.

9 AULA. Operações com Conjuntos: Diferença e Complementar LIVRO. META: Apresentar algumas propriedades da diferença e do complementar de conjuntos. 1 LIVRO Operações com Conjuntos: Diferença e Complementar META: Apresentar algumas propriedades da diferença e do complementar de conjuntos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

Testes de Convergência

Testes de Convergência Testes de Convergência Luciana Borges Goecking Universidade Federal de Alfenas - Instituto de Ciências Exatas outubro - 203 Teste da Divergência Teorema Se a série a n for convergente, então lim a n =

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Um espaço métrico incompleto 1

Um espaço métrico incompleto 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Um espaço métrico incompleto

Leia mais

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Roberto Imbuzeiro Oliveira 6 de Abril de 20 Preliminares Nestas notas, U C sempre será um aberto e f : U C é contínua. Duas curvas

Leia mais

1 Espaço Euclideano e sua Topologia

1 Espaço Euclideano e sua Topologia 1 Espaço Euclideano e sua Topologia Topologia é a estrutura básica para a de nição dos conceitos de limite e continuidade de aplicações. O Espaço Euclideano é caracterizado por uma topologia especial,

Leia mais

Exercícios de revisão

Exercícios de revisão Exercícios de revisão Roberto Imbuzeiro Oliveira 7 de Abril de 20 Vários exercícios apresentados aqui vêm do livro David Ullrich, Complex Made Simple, ou dos livros de Ahlfors e Churchill. Em alguns casos,

Leia mais

Provas de Análise Real - Noturno - 3MAT003

Provas de Análise Real - Noturno - 3MAT003 Provas de 2006 - Análise Real - Noturno - 3MAT003 Matemática - Prof. Ulysses Sodré - Londrina-PR - provas2006.tex 1. Definir a operação ϕ entre os conjuntos A e B por ϕ(a, B) = (A B) (A B). (a) Demonstrar

Leia mais

Números e Funções Reais, E. L. Lima, Coleção PROFMAT.

Números e Funções Reais, E. L. Lima, Coleção PROFMAT. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 8 - Seção 8.2 do livro texto da disciplina: Números e Funções Reais,

Leia mais

Universidade Federal de Goiás. Plano de Ensino

Universidade Federal de Goiás. Plano de Ensino 01: Dados de Identificação da Disciplina: Plano de Ensino Disciplina: Funções de uma Variável Complexa Cod. da Disciplina: 2733 Curso: Matematica Licenciatura Cod. do Curso: Turma: Matemática: Licenciatura

Leia mais

Transformações Conformes

Transformações Conformes META: Introduzir o conceito de transformações conforme. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir transformações conformes e exemplificar transformações conformes. PRÉ-REQUISITOS

Leia mais

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro

Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro 19 a 28 de Outubro Nestas teóricas, estamos a falar das últimas ideias de análise complexa. Veremos algumas aplicações do teorema dos resíduos e algumas propriedades das funções holomorfas. No livro, falta-vos

Leia mais

Teoremas de uma, duas e três séries de Kolmogorov

Teoremas de uma, duas e três séries de Kolmogorov Teoremas de uma, duas e três séries de Kolmogorov 13 de Maio de 013 1 Introdução Nestas notas Z 1, Z, Z 3,... é uma sequência de variáveis aleatórias independentes. Buscaremos determinar condições sob

Leia mais

1 Limites e Conjuntos Abertos

1 Limites e Conjuntos Abertos 1 Limites e Conjuntos Abertos 1.1 Sequências de números reais Definição. Uma sequência de números reais é uma associação de um número real a cada número natural. Exemplos: 1. {1,2,3,4,...} 2. {1,1/2,1/3,1/4,...}

Leia mais

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright.

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Métodos de regiões de confiança Marina Andretta ICMC-USP 17 de setembro de 2014 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear

Leia mais

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de.

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de. MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES DE POTÊNCIAS Definição: Séries de Potências é uma série infinita de termos variáveis. Elas podem ser usadas em várias aplicações, como por exemplo,

Leia mais

2.1 Sucessões. Convergência de sucessões

2.1 Sucessões. Convergência de sucessões Capítulo 2 Sucessões reais Inicia-se o capítulo introduzindo os conceitos de sucessão limitada, sucessão monótona, sucessão convergente e relacionando estes conceitos entre si. A análise da convergência

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

O TEOREMA DE ARZELÁ ASCOLI. Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza².

O TEOREMA DE ARZELÁ ASCOLI. Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza². Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 51 O TEOREMA DE ARZELÁ ASCOLI Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza² ¹Acadêmico do Curso de matemática

Leia mais

Variáveis Complexas. José Carlos Leite

Variáveis Complexas. José Carlos Leite Variáveis Complexas José Carlos Leite São Cristóvão/SE 2011 Variaveis Complexas Elaboração de Conteúdo José Carlos Leite Projeto Gráfico Neverton Correia da Silva Nycolas Menezes Melo Capa Hermeson Alves

Leia mais

Capítulo 5. séries de potências

Capítulo 5. séries de potências Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da

Leia mais

Instituto de Matemática e Estatística da USP. Ano Professor Oswaldo R. B. de Oliveira

Instituto de Matemática e Estatística da USP. Ano Professor Oswaldo R. B. de Oliveira MAT 225 - FUNÇÕES ANALÍTICAS Instituto de Matemática e Estatística da USP Ano 2015 Professor Oswaldo R. B. de Oliveira http://www.ime.usp.br/~oliveira oliveira@ime.usp.br A introdução ao Capítulo 4 se

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

Teorema de Divergência

Teorema de Divergência Teorema de ivergência META: Apresentar o teorema de Gauss e algumas de suas aplicações. OBJETIVO: Ao fim da aula os alunos deverão ser capazes de: Enunciar o teorema de Gauss. eterminar o divergente de

Leia mais

s Gabarito da 1. a Prova de PMA Fundamentos de Cálculo Prof. Wagner - 3 de maio de a PARTE

s Gabarito da 1. a Prova de PMA Fundamentos de Cálculo Prof. Wagner - 3 de maio de a PARTE 1 s Gabarito da 1. a Prova de PMA56 - Fundamentos de Cálculo Prof. Wagner - 3 de maio de 019 1.a PARTE 1. a Questão: Sejam f : X Y e g : Y Z funções dadas. Mostre que: (a) se a função f é injetora, então

Leia mais

Lista 8 de Análise Funcional - Doutorado 2018

Lista 8 de Análise Funcional - Doutorado 2018 Lista 8 de Análise Funcional - Doutorado 2018 Professor Marcos Leandro 17 de Junho de 2018 1. Sejam M um subespaço de um espaço de Hilbert H e f M. Mostre que f admite uma única extensão para H preservando

Leia mais

Teoremas fundamentais dos espaços normados

Teoremas fundamentais dos espaços normados Capítulo 9 Teoremas fundamentais dos espaços normados 9.1 Teorema de Hahn-Banach O próximo teorema, conhecido como teorema de Hahn-Banach, é uma generalização do Teorema 4.12, o qual, recordamos para conveniência

Leia mais

Cálculo Diferencial e Integral III

Cálculo Diferencial e Integral III Cálculo Diferencial e Integral III Profª Ma. Polyanna Possani da Costa Petry Sequências e Séries Breve contextualização Para x R, podemos em geral, obter sen x, e x, ln x, arctg x e valores de outras funções

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2014.2 1 / 20 Sumário 1 Apresentação

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Definição: Uma sucessão de números reais é uma aplicação u do conjunto dos números inteiros positivos,, no conjunto dos números reais,. A expressão u n que associa a cada n a sua imagem designa-se

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

15 AULA. Tipos de Funções LIVRO. META: Introduzir os diversos tipos de funções.

15 AULA. Tipos de Funções LIVRO. META: Introduzir os diversos tipos de funções. 2 LIVRO Tipos de Funções META: Introduzir os diversos tipos de funções. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Determinar se uma dada função é injetora, sobrejetora ou bijetora. PRÉ-REQUISITOS

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries Numéricas DMAT Séries Numéricas Definições básicas Chama-se série numérica a uma expressão do tipo a a 2, em geral representada por, ou, onde é uma sucessão

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Modos de convergência V. Araújo Mestrado em Matemática, UFBA, 2014 1 Modos de convergência Modos de convergência Neste ponto já conhecemos quatro modos de convergência

Leia mais

Teorema Do Ponto Fixo Para Contrações 1

Teorema Do Ponto Fixo Para Contrações 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Teorema Do Ponto Fixo

Leia mais

Convergência das Séries de Fourier

Convergência das Séries de Fourier Convergência das Séries de Fourier Elton Gastardelli Kleis 6 de outubro de 010 1 1 Palavras-Chave Séries de Fourier, convergência de séries e convergência Resumo O objetivo do presente artigo é estudar

Leia mais

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 18 de setembro de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma:

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma: MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES INFINITAS A importância de sequências infinitas e séries em cálculo surge da ideia de Newton de representar funções como somas de séries infinitas.

Leia mais

O teorema do ponto fixo de Banach e algumas aplicações

O teorema do ponto fixo de Banach e algumas aplicações O teorema do ponto fixo de Banach e algumas aplicações Andressa Fernanda Ost 1, André Vicente 2 1 Acadêmica do Curso de Matemática - Centro de Ciências Exatas e Tecnológicas - Universidade Estadual do

Leia mais

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI)

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Análise Matemática I o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Campus da Alameda 5 de Janeiro de 2003 LEC, LET, LEN, LEM, LEMat, LEGM Apresente todos os cálculos e justificações

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Novembro de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Novembro de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 22 de Novembro de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Notas de aula 1. Título: Subgrupos finitos de. 2. Breve descrição da aula A aula

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

17 AULA. Números Naturais: Axiomas de Peano LIVRO. META: Introduzir o conceito de números naturais através dos axiomas de Peano.

17 AULA. Números Naturais: Axiomas de Peano LIVRO. META: Introduzir o conceito de números naturais através dos axiomas de Peano. 2 LIVRO Números Naturais: Axiomas de Peano 17 AULA META: Introduzir o conceito de números naturais através dos axiomas de Peano. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de Definir o conjunto

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Cálculo II Sucessões de números reais revisões Mestrado Integrado em Engenharia Aeronáutica António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2012/2013 António Bento

Leia mais

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro 2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Modos de convergência Teoria da Medida e Integração (MAT505) Modos de convergência. V. Araújo Instituto de Matemática, Universidade Federal da Bahia Mestrado em Matemática, UFBA, 2014 Modos de convergência

Leia mais

Notas do Curso de SMA333 - Cálculo III ou SMA356 - Cálculo IV. Prof. Wagner Vieira Leite Nunes. S~ao Carlos - junho de 2015

Notas do Curso de SMA333 - Cálculo III ou SMA356 - Cálculo IV. Prof. Wagner Vieira Leite Nunes. S~ao Carlos - junho de 2015 Notas do Curso de SMA333 - Cálculo III ou SMA356 - Cálculo IV Prof. Wagner Vieira Leite Nunes S~ao Carlos - junho de 05 Sumário Introdução 7 Sequências Numéricas 9. Denic~oes......................................

Leia mais

Séries de potências: Definição

Séries de potências: Definição A série da forma C n (x a) n Séries de potências: Definição = C o + C 1 (x a) 1 +C 2 (x a) 2 + C 3 (x a) 3 + é uma série de potências centrada em a (ou ainda ao redor de a). Em que x é uma variável e c

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

Cálculo Numérico Prof. Guilherme Amorim 26/11/2013. Aula 11 Sistemas de Equações Lineares / Parte 4 Convergência e Sistemas mal-condicionados

Cálculo Numérico Prof. Guilherme Amorim 26/11/2013. Aula 11 Sistemas de Equações Lineares / Parte 4 Convergência e Sistemas mal-condicionados Cálculo Numérico Prof. Guilherme Amorim 26/11/2013 Aula 11 Sistemas de Equações Lineares / Parte 4 Convergência e Sistemas mal-condicionados Aula passada... Métodos Iterativos Jacobi Gauss-Seidel Pergunta...

Leia mais

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico.

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico. s Laterais CÁLCULO I Aula 05: s Laterais.... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará s Laterais 1 s Laterais 2 3 4 s Laterais Considere a função de Heaviside, denida

Leia mais