ANÁLISE MATEMÁTICA II

Tamanho: px
Começar a partir da página:

Download "ANÁLISE MATEMÁTICA II"

Transcrição

1 ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries Numéricas DMAT

2 Séries Numéricas Definições básicas Chama-se série numérica a uma expressão do tipo a a 2, em geral representada por, ou, onde é uma sucessão de números reais. a, a 2, termos da série termo geral da série. Designam-se por somas parciais da série S a, S 2 a a 2, S 3 a a 2 a 3, Chama-se soma parcial de ordem n da série S n n i a i a ou seja a S n a a 2. A S n chama-se sucessão das somas parciais da série. Ana Matos - AMII 3/4 Séries Num. -

3 Definição: Diz-se que é uma série convergente se a sucessão das suas somas parciais, S n, for convergente. Neste caso, ao número real chama-se soma da série. S lims n Por abuso de notação, escreve-se também S. Uma série que não é convergente diz-se divergente. Diz-se que duas séries têm a mesmatureza se forem ambas convergentes ou ambas divergentes. Observação: Associadas à série temos duas sucessões:, a sucessão a partir da qual definimos a série; S n, a sucessão das suas somas parciais. A natureza da série é determinada pela convergência ou não da sucessão das suas somas parciais. O facto de ser convergente não garante que a série seja convergente. Questão: Diga qual é atureza da série de termo geral, isto é, de. Ana Matos - AMII 3/4 Séries Num. - 2

4 . A série n é divergente, pois S n 2n n. n 2, pelo que lims n. 2. A série n é divergente, pois S n se n é ímpar 0 se n é par, pelo que S n não tem limite. 3. Para a série tem-se 2 2, pelo que S n a 2 2 n 2 2 n 2. Portanto a série é convergente e a sua soma é 2. Nota: Podemos considerar séries indexadas em 0 ou p, com p. As definições e propriedades são análogas às das séries indexadas em. Ana Matos - AMII 3/4 Séries Num. - 3

5 Séries Geométricas Séries Importantes Definição: Chama-se série geométrica de razão r e primeiro termo a à série ar aarar 2 ar, em que r e a são números reais não nulos. Tem-se que S n a. rn r, se r a.n, se r, pelo que se r, a série é convergente e a sua soma é S a r ; se r, a série é divergente. Então, a série geométrica é convergente sse r ; neste caso, a sua soma é S a r. Ana Matos - AMII 3/4 Séries Num. - 4

6 Séries Redutíveis ou de Mengoli Chamam-se séries redutíveis, séries de Mengoli ou séries telescópicas às séries que se podem escrever na forma u n u nk, onde k é um número natural (fixo) e u n é uma sucessão real. Exemplos:. A série nn pode escrever-se na forma n, pelo que é uma série de Mengoli, com k e u n n. 2. A série n n2 é uma série de Mengoli, com k 2 e u n n. Ana Matos - AMII 3/4 Séries Num. - 5

7 Convergência duma série de Mengoli: º Caso: se k, a série escreve-se na forma pelo que u n u, S n u u 2 u 2 u 3 u n u u u. Portanto: a) se u n é convergente, a série é convergente e a sua soma é S u limu n ; b) se u n é divergente, a série é divergente. 2º Caso: se k, então Portanto: S n u u 2 u k u u n2 u nk. a) se u n é convergente, a série u n u nk é convergente e a sua soma é S u u 2 u k k limu n (note-se que limu limu nk limu n ; b) se u n é divergente, nada se pode concluir sem estudar directamente a sucessão S n. Ana Matos - AMII 3/4 Séries Num. - 6

8 Séries de Dirichlet Chama-se série de Dirichlet a qualquer série da forma n p, onde p é um número real (fixo). Chama-se série harmónica à série de Dirichlet para p, ou seja à série n. A série harmónica é divergente. De facto, como será provado mais adiante: Convergência duma série de Dirichlet: Sendo p um número real, então: se p, se p, n p n p é convergente; é divergente. Ana Matos - AMII 3/4 Séries Num. - 7

9 Propriedades gerais das Séries Comecemos por observar que atureza de uma série não é alterada se modificarmos ou suprimirmos um número finito dos seus termos. No entanto a sua soma é, em geral, alterada. Proposição: Se, a partir de certa ordem, u n v n, então u n v n têm a mesmatureza. e Proposição: Se existe p N tal que, a partir de certa ordem, u n v np, então as séries têm a mesmatureza. (Ou seja, duas séries cujos termos gerais estejam apenas desfasados um certo número de termos, têm a mesmatureza.) Proposição: Sejam e b n duas séries convergentes, de somas S e T, respectivamente, e c. Então:. b n é convergente, com soma ST; 2. b n é convergente, com soma ST; 3. c é convergente, com soma cs. Observação: Da alínea 3. resulta que não se altera atureza de uma série multiplicando o seu termo geral por uma constante diferente de zero. Ana Matos - AMII 3/4 Séries Num. - 8

10 Questão: Considere os seguintes casos:. a série é a soma de uma série converge e uma série divergente; 2. a série é a soma de duas séries divergentes. Em cada caso, o que pode dizer quanto à natureza da série? Proposição (condição necessária de convergência): Se é uma série convergente, então 0. Ou seja, na sua forma contra-recíproca: se não tende para zero, então é divergente. Nota: A afirmação recíproca é falsa: se 0, nada se pode concluir sobre atureza da série. Ana Matos - AMII 3/4 Séries Num. - 9

11 Resto de uma série Definição: Seja uma série convergente, com soma S. Sendo N, chama-se resto de ordem N da série, e representa-se por R N, à soma da série nn a N a N2 (a série que resulta da anterior suprimindo os termos de ordem menor ou igual a N). Observação: Note-se que, pelo que R N SS N, R N S S N é o erro que se comete quando se toma como valor da soma da série o valor da sua soma parcial S N. Ana Matos - AMII 3/4 Séries Num. - 0

12 Critérios de convergência Séries de Termos Não Negativos Definição: Diz-se que é uma série de termos não negativos se 0, para qualquer n. A sucessão das somas parciais de uma série de termos não negativos é crescente, donde se conclui: Proposição (cond. necessária e suficiente de convergência): Uma série de termos não negativos é convergente se e só se a sucessão das suas somas parciais é majorada. Proposição (º critério de comparação): Sejam n, Então: e b n duas séries tais que, para qualquer 0 b n. se b n é convergente, é convergente; se é divergente, b n é divergente. Observação: Da demonstração do primeiro caso resulta que, se S e T são as somas das séries e b n, respectivamente, então S T. Ana Matos - AMII 3/4 Séries Num. -

13 Proposição (2º critério de comparação): Sejam uma série de termos não negativos e b n uma série de termos positivos tais que, para todo n, b n L. Então: se L 0,, as séries são da mesmatureza; se L 0 e b n é convergente, também é convergente; se L e b n é divergente, também é divergente. Ana Matos - AMII 3/4 Séries Num. - 2

14 Proposição: (Critério de Cauchy) Seja uma série de termos não negativos tal que lim n n L (finito ou infinito). Então: se L, é convergente; se L, é divergente; se L, nada se pode concluir. Recorde-se o Corolário do Teorema da Média Geométrica: Se u u n a (com a finito ou infinito) então n u n a. Proposição (Critério de D Alembert): Seja (finito ou infinito). uma série de termos positivos tal que lim n a L Então: se L, é convergente; se L, é divergente; se L, nada se pode concluir. Ana Matos - AMII 3/4 Séries Num. - 3

15 Recordemos o seguinte: Definição (integral impróprio de ª espécie): Seja f uma função contínuo intervalo a,. Chama-se integral impróprio da função f em a, a fxdx lim a fxdx. a O integral impróprio a fxdx diz-se convergente, este limite existe e é finito e diz-se divergente, caso contrário. Proposição (critério do integral): Sejam f :, uma função positiva, contínua e decrescente e Então fn. a série sse é convergente o integral impróprio fxdx é convergente. Corolário: A série de Dirichlet, com p, é n p convergente se p e divergente se p. Ana Matos - AMII 3/4 Séries Num. - 4

16 Séries de Termos sem Sinal Fixo Definição: Uma série diz-se de termos sem sinal fixo se possui infinitos termos positivos e infinitos termos negativos. Em particular, sendo 0, para qualquer p, as séries dizem-se séries alternadas. e n Exemplo: n série harmónica alternada. Proposição: (Critério de Dirichlet) Se a sucessão das somas parciais da série b n é limitada e se é uma sucessão decrescente com limite nulo, então a série b n é convergente. Proposição: (Critério de Leibniz) Se é uma sucessão decrescente e com limite nulo (portanto 0), então a série é convergente. Exemplo: A série harmónica alternada, n, é convergente. Ana Matos - AMII 3/4 Séries Num. - 5

17 Observação: Pode-se provar que, nas condições do critério de Leibniz, o valor absoluto do resto de ordem N é menor ou igual ao valor absoluto do primeiro termo desprezado. Isto é: Se é uma série alternadas condições do critério de Leibniz, então R p a p. Tem-se, assim, uma majoração para o valor absoluto do resto uma certa ordem da série. Séries Absolutamente Convergentes Proposição: Se a série é convergente, então a série também é convergente. Definição: Uma série diz-se: absolutamente convergente, se a série é convergente; simplesmente convergente (ou condicionalmente convergente), se é convergente mas não é absolutamente convergente. Exemplo:. A série n 2 2. A série n é absolutamente convergente; é simplesmente convergente. Ana Matos - AMII 3/4 Séries Num. - 6

18 Reordenação dos termos de uma série Uma série absolutamente convergente verifica propriedades que não são válidas para séries simplesmente convergentes. É o caso da reordenação dos seus termos. Qualquer soma finita pode ser reordenada sem que o seu valor seja alterado. Esta propriedade não é válida para somas infinitas (séries). Reordenando os termos de uma séries simplesmente convergente podemos alterar a sua soma. Exemplo: Pode-se provar que n ln2. Consideremos a seguinte reordenação desta série: ln 2. 2 Obtivemos uma série cuja soma é metade da soma da série original. Pode mesmo provar-se que, dada uma série simplesmente convergente e um valor real qualquer, esta pode ser reordenada de modo a ter como soma esse valor! No entanto: Proposição: A soma de uma série absolutamente convergente não é alterada por reordenações dos seus termos. Ana Matos - AMII 3/4 Séries Num. - 7

19 Estratégias para testar séries Segue-se um apanhado dos testes apresentados. Procedimentos para testar atureza de uma série: O termo geral da série converge para zero? Se não, é divergente; se sim, nada se pode concluir. A série é de tipo particular - geométrica, de Dirichlet, de Mengoli? Se sim, aplicar o teste de convergência específico. A série é de termos não negativos e pode ser comparada com alguma série de tipo especial? A série é de termos positivos e pode ser aplicado o Critério do integral? Pode ser aplicado o Critério de D Alembert ou o Critério de Cauchy? Se L, nada se pode concluir. Se a série é de termos sem sinal fixo, será absolutamente convergente? Se sim, é convergente; se não, nada se pode concluir. A série é alternada e está nas condições do Critério de Leibniz? Se sim, é convergente; se não, nada se pode concluir. Ana Matos - AMII 3/4 Séries Num. - 8

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Definição: Uma sucessão de números reais é uma aplicação u do conjunto dos números inteiros positivos,, no conjunto dos números reais,. A expressão u n que associa a cada n a sua imagem designa-se

Leia mais

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807

Leia mais

Séries Numéricas. S Chama-se série numérica a uma expressão do tipo. S Designam-se por somas parciais da série. S Chama-se a soma parcial de ordem n a

Séries Numéricas. S Chama-se série numérica a uma expressão do tipo. S Designam-se por somas parciais da série. S Chama-se a soma parcial de ordem n a Séries Numéricas Definições básicas S Chama-se série numérica a uma expressão do tipo representada em geral por u 1 u 2 C u n C u n, nu1 onde Ÿu n é uma sucessão de reais u 1, u 2, C v termos da série

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se

Leia mais

Capítulo 5. séries de potências

Capítulo 5. séries de potências Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Cálculo II Sucessões de números reais revisões Mestrado Integrado em Engenharia Aeronáutica António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2012/2013 António Bento

Leia mais

3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais.

3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. LIVRO Séries de Números Reais META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. PRÉ-REQUISITOS Seqüências (Aula 02). Séries de Números Reais.

Leia mais

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série Séries Numéricas Nosso maior objetivo agora é dar um sentido a uma soma de infinitas parcelas, isto é, estudar a convergência das chamadas séries numéricas. Inicialmente, seja (a n ) uma sequência e formemos

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Séries Numéricas Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Séries Numéricas A soma dos termos de uma sequência a n é denominada de série de termo geral e é denotada por S n = a

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k =

Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = Séries Alternadas São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = 1 1 2 + 1 3 1 4 + 1 5 Em geral escrevemos, para uma série alternada, ou ( 1) k+1 a k =

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

Critérios de Avaliação A avaliação ao longo das actividades lectivas será periódica, sendo efectuados dois testes. Os testes serão nos dias 7 de Abril

Critérios de Avaliação A avaliação ao longo das actividades lectivas será periódica, sendo efectuados dois testes. Os testes serão nos dias 7 de Abril Cálculo II Mestrado Integrado em Engenharia Aeronáutica Mestrado Integrado em Engenharia Civil António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2014/2015 António Bento

Leia mais

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2015.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2015.2 1 / 60 Sumário 1 Apresentação

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Capítulo 3. Séries Numéricas

Capítulo 3. Séries Numéricas Capítulo 3 Séries Numéricas Neste capítulo faremos uma abordagem sucinta sobre séries numéricas Apresentaremos a definição de uma série, condições para que elas sejam ou não convergentes, alguns exemplos

Leia mais

Séries de Termos Não-Negativos

Séries de Termos Não-Negativos Séries de Termos Não-Negativos Em geral não é possível calcular explicitamente a soma duma série. O que podemos fazer é perceber se ela converge ou diverge e neste último caso, calcular aproximadamente

Leia mais

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2015.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2015.2 1 / 49 Sumário 1 Apresentação

Leia mais

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma:

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma: MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES INFINITAS A importância de sequências infinitas e séries em cálculo surge da ideia de Newton de representar funções como somas de séries infinitas.

Leia mais

2.1 Sucessões. Convergência de sucessões

2.1 Sucessões. Convergência de sucessões Capítulo 2 Sucessões reais Inicia-se o capítulo introduzindo os conceitos de sucessão limitada, sucessão monótona, sucessão convergente e relacionando estes conceitos entre si. A análise da convergência

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais

Integral Impróprio de 1ª Espécie

Integral Impróprio de 1ª Espécie Parte IV I. Impróprios [ELL] O cálculo de integrais definidos anteriormente realizado assenta na aplicação do 1º Teorema Fundamental do Cálculo. Se é uma função contínua em, então é um integral definido.

Leia mais

Testes de Convergência

Testes de Convergência Testes de Convergência Luciana Borges Goecking Universidade Federal de Alfenas - Instituto de Ciências Exatas outubro - 203 Teste da Divergência Teorema Se a série a n for convergente, então lim a n =

Leia mais

Sequências numéricas:

Sequências numéricas: Sequências numéricas: Sequências de número com uma lógica entre elas. Exemplos: P.A. P.G. Sequência Fibonacci (1;1;2;3;5;8;13;...) Uma sequência pode ser Convergente : tem um limite bem definido. Divergente

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Área de Publicação: A MAGIA DAS SÉRIES CONDICIONALMENTE CONVERGENTES ANDRADE, Caio A. G. de M. 1 ; FILHO, Daniel C. de M. 2 ; 1 UFCG/CCT/UAMAT/Bolsista PET-Matemática UFCG/FNDE e-mail: caioagma@gmail.com

Leia mais

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R.

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof José Carlos Eidam Lista 4 INSTRUÇÕES Esta lista, de entrega facultativa, tem três partes e seus exercícios versam

Leia mais

Notas de. Análise Complexa

Notas de. Análise Complexa Notas de Análise Complexa Ricardo Mamede Departamento de Matemática, Faculdade de Ciências e Tecnologia Universidade de Coimbra 205 Índice Números Complexos. O corpo dos números complexos..........................2

Leia mais

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb) Cálculo Diferencial e Integral I o Exame - MEMec; MEEC; MEAmb) 7 de Julho de - 9 horas I val.). i) Sendo u n n do teorema das sucessões enquadradas, dado que n, tem-se u n. Como a sucessão u n é convergente,

Leia mais

Sucessões. Limites de sucessões O essencial

Sucessões. Limites de sucessões O essencial Sucessões Limites de sucessões O essencial Limite de uma sucessão Dada uma sucessão (u n ), um número real l designa-se por limite da sucessão (u n ) ou limite de u n quando n tende para + quando, para

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI)

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Análise Matemática I o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Campus da Alameda 5 de Janeiro de 2003 LEC, LET, LEN, LEM, LEMat, LEGM Apresente todos os cálculos e justificações

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT o Teste (VA) - 8 de Janeiro de 8-8: às : Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão

Leia mais

Limites e continuidade

Limites e continuidade Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 0 Lista Sequências de Números Reais. Dê o termo geral de cada uma das seguintes sequências: a,, 3, 4,... b, 4, 9, 6,... c,,

Leia mais

Exercício 18. Demonstre a proposição anterior. (Dica: use as definições de continuidade e mensurabilidade)

Exercício 18. Demonstre a proposição anterior. (Dica: use as definições de continuidade e mensurabilidade) Proposição 2.7. Sejam Y e Z espaços métricos e X um espaço mensurável. Se f : X Y é uma função mensurável e g : Y Z é uma função contínua então g f : X Z é uma função mensurável. Exercício 18. Demonstre

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

Notas de Análise Matemática III

Notas de Análise Matemática III Ricardo Mamede Notas de Análise Matemática III (Mestrado integrado em Engenharia Electrotécnica e de Computadores) Departamento de Matemática - Universidade de Coimbra 2008/2009 2 Conteúdo. Sucessões Numéricas

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material

Leia mais

Convergência de séries de Fourier

Convergência de séries de Fourier Recorde-se que: Convergência de séries de Fourier Sendo f uma função definida num intervalo a,b, excepto, eventualmente, num número finito de pontos, diz-se que f é seccionalmente contínua em a, b se:

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.6 Convergência Absoluta e os Testes da Razão e da Raiz Copyright Cengage Learning. Todos os direitos reservados.

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 27-8 - o Semestre Exame Final em 24 de Janeiro de 28 Versão B Duração: 2 horas e 3 minutos Não é

Leia mais

Por menor que seja a quantidade δ > 0, há uma ordem p N tal que. x n a δ,

Por menor que seja a quantidade δ > 0, há uma ordem p N tal que. x n a δ, DEFINIÇÃO DE CONVERGÊNCIA E LIMITE Seja (x n ) uma sucessão de números em R ou pontos em R 2. Dizemos que (x n ) converge para a, ou que a é o limite de x n, e escrevemos x n a quando n ou lim x n = a

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

CÁLCULO 3-1 ō Semestre de 2009 Notas de curso: Séries Numéricas e Séries de Taylor

CÁLCULO 3-1 ō Semestre de 2009 Notas de curso: Séries Numéricas e Séries de Taylor UFPE CCEN DEPARTAMENTO DE MATEMÁTICA ÁREA II CÁLCULO 3 - ō Semestre de 29 Notas de curso: Séries Numéricas e Séries de Taylor Professor: Sérgio Santa Cruz Estas notas têm o objetivo de auxiliar o aluno

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

Cálculo Diferencial e Integral III

Cálculo Diferencial e Integral III Cálculo Diferencial e Integral III Profª Ma. Polyanna Possani da Costa Petry Sequências e Séries Breve contextualização Para x R, podemos em geral, obter sen x, e x, ln x, arctg x e valores de outras funções

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Seqüências Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Abril de 2013 Primeiro Semestre de 2013 Turma 2013104 - Engenharia de Computação Seqüências Consideraremos

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011 Eercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes Introdução Neste teto apresentam-se os enunciados de conjuntos de eercícios para as aulas de problemas do curso

Leia mais

Cálculo II. Bioengenharia. César Silva. Departamento de Matemática Universidade da Beira Interior 2009/2010

Cálculo II. Bioengenharia. César Silva. Departamento de Matemática Universidade da Beira Interior 2009/2010 Cálculo II Bioengenharia César Silva Departamento de Matemática Universidade da Beira Interior 2009/2010 César Silva (UBI) Cálculo II 2009/2010 1 / 460 Bibliografia Apostol, T.M., Cálculo, Vol. 1 e 2,

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a Sequencias e Series Autor: Dr. Cristian Novoa MAF- PUC- Go cristiancalculoii@gmail.com Este texto tem como objetivo principal, introduzir alguns conceitos de Sequencias e Series,para os cursos de Engenharia,

Leia mais

Notas do Curso de SMA-333 Cálculo III. Prof. Wagner Vieira Leite Nunes. São Carlos 1.o semestre de 2007

Notas do Curso de SMA-333 Cálculo III. Prof. Wagner Vieira Leite Nunes. São Carlos 1.o semestre de 2007 Notas do Curso de SMA-333 Cálculo III Prof. Wagner Vieira Leite Nunes São Carlos.o semestre de 7 Sumário Introdução 5 Seqüências Numéricas 7. Definições.................................... 7. Operações

Leia mais

Cálculo II. Bioengenharia. César Silva. Departamento de Matemática Universidade da Beira Interior 2009/2010

Cálculo II. Bioengenharia. César Silva. Departamento de Matemática Universidade da Beira Interior 2009/2010 Cálculo II Bioengenharia César Silva Departamento de Matemática Universidade da Beira Interior 2009/2010 César Silva (UBI) Cálculo II 2009/2010 1 / 460 Bibliografia Apostol, T.M., Cálculo, Vol. 1 e 2,

Leia mais

Apostila de Cálculo Diferencial e Integral 3 Sequências e Séries

Apostila de Cálculo Diferencial e Integral 3 Sequências e Séries UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 Sequências e Séries Apucarana

Leia mais

Vamos ver a demonstração deste teorema, através de um vídeo da ESCOLA VIRTUAL.

Vamos ver a demonstração deste teorema, através de um vídeo da ESCOLA VIRTUAL. FICHA DE TRABALHO N.º 7 (GUIA DE ESTUDO SUCESSÕES 4) TURMAS:11.ºA/11.ºB 2017/2018 Começamos por recordar o conceito de Vizinhança r de x 0 «Dados um número real x 0 e um número real positivo r, designa-se

Leia mais

Instituto de Matemática e Estatística da USP. Ano Professor Oswaldo R. B. de Oliveira

Instituto de Matemática e Estatística da USP. Ano Professor Oswaldo R. B. de Oliveira MAT 225 - FUNÇÕES ANALÍTICAS Instituto de Matemática e Estatística da USP Ano 2015 Professor Oswaldo R. B. de Oliveira http://www.ime.usp.br/~oliveira oliveira@ime.usp.br A introdução ao Capítulo 4 se

Leia mais

s Gabarito da 1. a Prova de PMA Fundamentos de Cálculo Prof. Wagner - 3 de maio de a PARTE

s Gabarito da 1. a Prova de PMA Fundamentos de Cálculo Prof. Wagner - 3 de maio de a PARTE 1 s Gabarito da 1. a Prova de PMA56 - Fundamentos de Cálculo Prof. Wagner - 3 de maio de 019 1.a PARTE 1. a Questão: Sejam f : X Y e g : Y Z funções dadas. Mostre que: (a) se a função f é injetora, então

Leia mais

3 Funções reais de variável real (Soluções)

3 Funções reais de variável real (Soluções) 3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y

Leia mais

Departamento de Matemática do Instituto Superior Técnico

Departamento de Matemática do Instituto Superior Técnico Exercícios de Análise Matemática I/II Departamento de Matemática do Instituto Superior Técnico 8 de Março de 3 Índice Números Reais. Sucessões. 5 Séries 7. Séries numéricas elementares..............................

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste.

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste. . [.5] (a) Calcule a soma da série Resolução: A série INSTITUTO POLITÉCNICO DE SETÚBAL Resolução do o Teste n (n + ) ; n (n + ) + + 4 +... rapidamente se verifica que não é uma série aritmética ou geométrica.

Leia mais

1 n s = s s s p s. ζ(s) = p

1 n s = s s s p s. ζ(s) = p Introdução A chamada série harmónica, n= n = + 2 + 3 + +... desde cedo suscitou interesse entre os 4 matemáticos. Infelizmente esta série diverge, o que se verifica por os termos termo n, apesar de tenderem

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2014.2 1 / 20 Sumário 1 Apresentação

Leia mais

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n.

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n. Sucessões Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. Notações: Ÿu n nn, Ÿu n n ou Ÿu n. u n v termo geral da sucessão Exemplos importantes:

Leia mais

Integrais Impróprias

Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integrais Impróprias

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

Notas de curso: Séries Numéricas e Séries de Taylor

Notas de curso: Séries Numéricas e Séries de Taylor UFPE CCEN DEPARTAMENTO DE MATEMÁTICA ÁREA II CÁLCULO 3 - ō Semestre de 23 Notas de curso: Séries Numéricas e Séries de Taylor Professor: Sérgio Santa Cruz Objetivo. Estas notas têm o objetivo de auxiliar

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

1 kp. k=1. + Na série. 1 temos p = 2 p >1 converge. k=1 + Na série k=1. temos p = 1/7 p <1 diverge. ⁷ k. se lim u k. k +

1 kp. k=1. + Na série. 1 temos p = 2 p >1 converge. k=1 + Na série k=1. temos p = 1/7 p <1 diverge. ⁷ k. se lim u k. k + TESTES DE CONVERGÊNCIA Existem diversos testes de convergência e que são cobrados em provas, mas não fique preocupado, pois fizemos esse resumão pra te ajudar a lembrar de todos! Lembre-se que esses testes

Leia mais

Análise Real. IF Sudeste de Minas Gerais. Primeiro semestre de Prof: Marcos Pavani de Carvalho. Marcos Pavani de Carvalho

Análise Real. IF Sudeste de Minas Gerais. Primeiro semestre de Prof: Marcos Pavani de Carvalho. Marcos Pavani de Carvalho IF Sudeste de Minas Gerais Prof: Primeiro semestre de 2014 Proposição: É uma afirmação que pode ser classificada em verdadeira ou falsa, mas que faça sentido. Exemplo: Sejam as proposições: A: A soma dos

Leia mais

Parte II. Análise funcional II

Parte II. Análise funcional II Parte II Análise funcional II 12 Capítulo 5 Produto de Operadores. Operadores inversos Neste capítulo vamos introduzir a noção de produto de operadores assim como a de operador invertível. Para tal precisamos

Leia mais

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas. 1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

UNIVERSIDADE PARANAENSE - UNIPAR: 2004 Disciplina: Cálculo Diferencial e Integral

UNIVERSIDADE PARANAENSE - UNIPAR: 2004 Disciplina: Cálculo Diferencial e Integral UNIVERSIDADE PARANAENSE - UNIPAR: 2004 Disciplina: Cálculo Diferencial e Integral Professor ADILANDRI MÉRCIO LOBEIRO Departamento de Matemática - UNIPAR Umuarama, fevereiro de 2004 Capítulo 1 SEQÜÊNCIAS

Leia mais

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários Análise Matemática I a data de eame 7 de Janeiro de 00 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial Resolução e alguns comentários I.. a) Para n N temos a n = log (cos(/n) + ) log

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

EQUAÇÕES DIFERENCIAIS: MÉTODOS DE SÉRIES I

EQUAÇÕES DIFERENCIAIS: MÉTODOS DE SÉRIES I EQUAÇÕES DIFERENCIAIS: MÉTODOS DE SÉRIES I MAURICIO A. VILCHES Departamento de Análise - IME UERJ Copyright by Mauricio A. Vilches c Todos os direitos reservados Proibida a reprodução parcial ou total

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof. Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

Análise Matemática I 1 o Semestre de 2002/03 LEBM, LEFT, LMAC Exercícios para as aulas práticas

Análise Matemática I 1 o Semestre de 2002/03 LEBM, LEFT, LMAC Exercícios para as aulas práticas Análise Matemática I o Semestre de 2002/03 LEBM LEFT LMAC Eercícios para as aulas práticas I Elementos de Lógica e Teoria dos Conjuntos (30/9/2002-4/0/2002) (Eercício 2 de [3]) Prove que quaisquer que

Leia mais