Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo o Semestre

Tamanho: px
Começar a partir da página:

Download "Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo o Semestre"

Transcrição

1 Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo o Semestre Exame Final em 24 de Janeiro de 28 Versão B Duração: 2 horas e 3 minutos Não é permitido usar máquinas de calcular nem telemóveis Não tenha o seu telemóvel consigo Não se tiram dúvidas Simpli que os cálculos ao máximo Justi que sempre as suas respostas Pode usar o verso das folhas de resposta Os rascunhos devem estar bem identi cados Não pode desagrafar as folhas do teste ATENÇÃO: NÃO SE ESQUEÇA DE ESCREVER O SEU NÚMERO EM TODAS AS FOLHAS

2 N o : Nome:. Comente num máximo de 5 linhas as seguintes proposições: (a) ( valor) Se o conjunto dos termos de uma sucessão não tiver pontos de acumulação, a sucessão não tem limite. (b) ( valor) Se uma função real de variável real tiver limite nito em x = a e estiver de nida em x = a mas com um valor diferente do limite, então a função tem derivada em x = a mas essa derivadão é nita. RESOLUÇÃO: a. Falso. Se ter limite implicasse a existência de pontos de acumulação, então a não existência de pontos de acumulação implicaria ão existência de limite. Mas tal não é verdade. Por exemplo, as sucessões de termo geral u n = ( ) 2n e w n = 4 não têm pontos de acumulação mas têm limite, e 4 respectivamente. b. Falso. Nas condições apresentadas, a função não poderá ter derivado ponto x = a: Sendo os limites laterais iguais, e não sendo a função contínua em x = a, as derivadas laterais não poderão ser iguais! Observemos os seguintes dois exemplos: ( ( jxj se x 6= x se x 6= f(x) = g(x) = se x = 2 se x = Trata-se de duas funções com limite nito em x = limf(x) = e lim g(x) =, x! x! mas não contínuas nesse ponto. Necessariamente, têm derivadas lateriais in nitas e diferentes. Nem o caso de existência de derivadas lateriais in nitas e iguais pode ser considerado. 2

3 N o : Nome: 2. Considere a função: f(x) = x 2 ln x (a) (,5 valores) Determine o domínio de f. Indique se o conjunto é aberto, fechado e limitado. (b) (,5 valores) Determine lim f(2 + e n ): (c) (,5 valores) Escreva a fórmula de Taylor, com resto de ordem 3 (ou seja, após o uso da terceira derivado polinómio de Taylor), da função f em torno do ponto de abcissa. (d) (,5 valores) Use a alínea anterior para mostrar que: f(x) < (x ) (x )2 + 3 (x )3 ; 8x 2 Rn fg er (e) ( valor) Determine f(x)dx: (f) ( valor) Determine, pela de nição, f (2): RESOLUÇÃO: a. D f = fx 2 R : x > g = ]; +[ int(d f ) = ]; +[ fr(d f ) = fg ader(d f ) = D f = [; +[ O domínio da função f(x) é um conjunto aberto porque int(d f ) = D f. Não é fechado porque _ D f 6= D f : Não é um conjunto limitado porque apesar de ser minorado, por exemplo por 2; não é majorado. h i b. lim f (2 + e n ) = lim (2 + e n ) 2 ln (2 + e n ) = lim e : lim ln (2 + e n ) = n 4 ln 2 3

4 c. Pela fórmula de Taylor: f(x) = f() + f ()(x ) + f (x )2 () + f (x )3 () + R 2! 3! 3 f(x) = f() + f ()(x ) + f (x )2 () < c < x: 2! + f () Fazendo os seguintes cálculos auxiliares, temos: f() = f (x) = 2x ln x + x f () = f (x) = 2 ln x + 3 f () = 3 f (x) = 2 x f () = 2 f iv (x) = 2 x 2 f iv (c) = 2 c 2 (x )3 + f iv (x )4 (c), para 3! 4! (x )2 (x )3 Assim, f(x) = + (x ) , f(x) = (x ) (x )2 + (x )3 3 (x ) 4 2c 2 2 (x ) 4, c 2 4! d. Como R 3 = (x )4 2c 2 <, para x 2 D f n fg e < c < x; o desenvolvimento pela fórmula de Taylor sobrestima o valor de f(x), logo conclui-se que f(x) < (x ) (x )2 + (x )3 3 : e. er er f(x)dx = (x 2 ln x) dx Aplicando a regra de primitivação por partes, escolha-se u = x 2 e v = ln x: er h i e er h i er (x 2 x ln x) dx = 3 ln x x 3 dx = e 3 ln e ln x 2 dx = e3 3 3 x h 3 x 3 3 i e = 2e3 + 9 f. f (2) = lim h 4 lim h! f(2+h) f(2) h! h ln(2+h) ln 2 h = lim (2+h)2 ln(2+h) 22 ln 2 = lim h! h i + 4 ln(2 + h) + h ln(2 + h) = 4 ln(2+h)+4h ln(2+h)+h2 ln(2+h) 4 ln 2 = h! h 4

5 (o primeiro parêntese dá uma prenda: é, após o limite, a derivada do logaritmo no ponto 2; para ajudar vamos escrevê-la como (ln 2) ) = 4(ln 2) + lim [4 ln(2 + h) + h ln(2 + h)] = ln 2 = ln 2 h! 2 5

6 N o : Nome: 3. Considere a função de nida por. f(x; y) = p x 2 y (a) ( valor) Determine o domínio de f e represente-o gra camente. (b) ( valor) Considere o conjunto A = D f \ f(x; y) 2 R 2 : x 2 Zg :Represente-o gra camente e determine o seu interior, fronteira e derivado. (c) ( valor) Determine as derivadas parciais de primeira ordem de f: (d) ( valor) Se g(x) = f(x; ), determine os extremos da função g: RESOLUÇÃO: a. D f = f(x; y) 2 R 2 : x 2 y g D f = f(x; y) 2 R 2 : y x 2 g b. A = D f \ f(x; y) 2 R 2 : x 2 Zg A = f(x; y) 2 R 2 : x 2 Z ^ y 2 ] ; f(x)]g 6

7 int(a) = fr(a) = A der(a) = A = A c. Derivada parcial de primeira ordem de f em ordem a x: = 2 x2 y) 2 x ( 2x) = x 2 y Derivada parcial de primeira ordem de f em ordem a y: = 2 x2 y) 2 ( ) = 2 x 2 y d. A função g(x) = f(x; ) = p x 2 é contínuo seu domínio [ ; = x p x 2 ; não há pontos no intervalo ] ; [ em que não exista derivada, logo se existirem extremos, estes serão os valores de x 2 ] ; [ : g (x) = : g (x) =, f (x; ) =, p x 2 =, x = ^ p x 2 6=, x = ^ x 6=, x = A derivada de g(x) anula-se num único ponto, em x = : Vamos agora averiguar se este ponto é extremo da função. derivada da função à esquerda e à direita de x = : Para tal, estudemos o sinal da primeira lim x! g (x) = lim x! x p x 2 = + p = + > lim g (x) = lim p x x! + x! + x 2 = p = < Como o sinal da primeira derivada de g(x) muda de sinal em x = ; podemos concluir que g() = é extremo (e que não se trata de um ponto de in exão). 7

8 É máximo porque a derivada é positiva (função crescente) à esquerda de x = e negativa (função decrescente) à direita de x = : Em relação aos restantes pontos do domínio, conclui-se que há um mínimo,, para os minimizantes e :Note que a função g é estritamente crescente quando x < e estritamente decrescente quando x > : 8

9 N o : Nome: 4. É dada a sucessão ( ) de nida por = 2 p 2n + : (a) (,5 valores) Mostre que -8 é termo da sucessão. (b) (,5 valores) A sucessão tem alguns termos nulos? (c) (,5 valores) Determine o maior termo da sucessão. (d) (,5 valores) A sucessão é limitada? (e) (,5 valores) Usando o teorema das sucessões enquadradas, prove que lim sin n = : RESOLUÇÃO: a. Para que 8 seja termo da sucessão, tem de existir pelo menos um valor de n 2 N : = 8: 8 = 2 p 2n +, 9 = p 2n + ) 8 = 2n +, n = 4 Veri cação: 8 = 2 p 2 4 +, 8 = 8 b. Seguindo a lógica da alínea anterior: = 2 p 2n +, 5 = p 2n + ) 25 = 2n +, n = 2 Veri cação: = 2 p 2 2 +, = c. Estudemos, em primeiro lugar, a monotonia da sucessão : + = 2 p 2n p 2n + = 2 p 2n p 2n + < pois 2n + 3 > 2n + ; 8n 2 N: 9

10 Como a diferença entre quaisquer dois termos consecutivos da sucessão é negativa, a sucessão é estritamente monótona decrescente e o maior termo corresponde ao primeiro: a = 2 p 2 + = 2 p 3 d. Sendo a sucessão estritamente monótona decrescente, terá como majorante o primeiro termo da sucessão, ou seja, 2 p 3: O respectivo minorante será, se existir e for nito, o limite da sucessão. lim = lim 2 p 2n + = 2 p 2 (+) + = = Assim se conclui que a sucessão é propriamente divergente e assim sendo não será minorada. A sucessão não é limitada. e. Pretende-se mostrar que lim sin n = através do teorema das sucessões enquadradas. Sendo a sucessão sin n uma sucessão limitada entre - e, podemos enquadrar ossa sucessão da seguinte forma: sin n Assim sendo, lim lim sin n = lim sin n lim, lim sin n, lim sin n ) A sucessão sin n é um in nitésimo, tal como queriamos provar!

11 N o : Nome: 5. Considere a seguinte expressão implícita que relaciona as variáveis x e y: (x 2) ln y + y ln (x 2) = Admita que esta função de ne y como função de x no ponto de abcissa x = 3, isto é, que existe localmente y = f (3) : (a) (,5 valores) Calcule y = f (3) : (b) ( valor) Calcule f (3): (c) ( valor) Admitindo que também existe uma função x = g(y) na vizinhança do ponto y com que trabalhou em a) e b), poderá g ter nesse ponto um extremo? RESOLUÇÃO: a. Para calcular f(3), podemos substituir directamente x por 3 na expressão dada: (3 2) ln y + y ln (3 2) =, ln y = ) y =. Logo f(3) = : b. Para calcular f (3) usemos a regra da derivada forma implícita expressão que nos é dada: ((x 2) ln y + y ln (x 2)) x = () y x, ln y + (x 2) + y y ln (x 2) + y = x 2, y ( (x 2) + ln (x 2)) = ln y y y, y = Logo f (3) = ln y+ y x 2, f (x) = y (x 2)+ln(x 2) ln y, f (3) = (3 2)+ln(3 2), x 2 ln y+ y x 2 (x 2)+ln(x 2) c. Para que g possa ter um extremo no ponto y =, é necessário que a sua derivada se anule nesse ponto. Uma vez que g(y) é a função inversa de f(x), podemos usar a derivada da função inversa para calcular g ( ). Temos então: g (y ) = f (x ), com y = f(x ). Logo:

12 g ( ) = f (3), g ( ) =, g ( ) =. Como a derivada de g não se anula em y = extremo de g., esse ponto não poderá ser um 2

13 N o : Nome: 6. (2 valores) Considere a sucessão U n = R x n dx (a) (,25 valores) Encontre a expressão geral da abcissa h de que fala o teorema da média (ou teorema da piscina agitada ou teorema do balde aos tombos). Deve chegar a que h é uma sucessão que designará por W n : (b) (,25 valores) Sem fazer cálculos, diga porque motivo W n é limitada. (c) (,5 q valores) Calcule lim W n (Nota: Se não resolveu a alínea a) use W n = n n+ n! ): RESOLUÇÃO: a. De acordo com o Teorema da Média, 9h 2 [a; b] tal que Neste caso temos: R h i x n dx = x n+ n+ Logo W n = n+ n. br f(x)dx = (b a a)f(h). = n+. Logo n+ = ( )h n, n+ = h n, h = n n+. b. Ainda de acordo com o Teorema da Média, h 2 [; ]. Como W n = h; 8n 2 N, W n é limitada entre e (é minorada e majorada). c. Para o cálculo do limite W n = n n+ lim n+ = n q n+ podemos aplicar um dos critérios adequados a casos destes. Sendo U n = n+, então lim U n+ U n = lim A título pedagógico oferecemos a resolução à velha maneira: n = lim e ln( n+ n ) = lim e n 2 n ln(+ n) ln(n) n = lim e n 2 ln(+ n) n e ln e = n+2 n+ =. = lim e n ln( n n+ n) = lim e n ln( n n+ ) n ln(n) = lim e n ln(n) n = e lim( n 2 ) ln lim((+ n) n ) lim( ln(n) n ) = q No caso da opção W n = n n+; o critério acima invocado, leva a: lim U n+ n! lim (n+)+ (n+)! n+ n! = lim n+2 Logo, lim n q n+ n! =. n! (n+)n! n+ = lim n+2 (n+) 2 = 3 U n = n+ ln( n ) ln(n) n =

14 N o : Nome: 7. A função Gama, G, é de nida por G(x) = + R t x e t dt O domínio desta função é R + : NOTA: ISTO NÃO É UM INTEGRAL PARAMÉTRICO. (a) (,5 valores) Calcule G(). (b) (,5 valores) Mostre que G(x + ) = xg(x); 8x > : RESOLUÇÃO: Note que neste interessante exercício a variável de integração é t; o x funciona como uma letra. a. G() = + R b. G(x + ) = e t dt = lim b!+ [ + R t x e t dt e t ] b = lim b!+ e b ( e ) = + = Aplicando a regra de primitivação por partes, lembrando sempre que a variável de integração é t, escolha-se u = e t e v = t x ; u = e t e v = xt x : + R t x e t dt = lim [ e t t x ] b + R xt x ( e t )dt = lim [ e t t x ] b + +x R t x e t dt = b!+ b!+ = lim b!+ [ e t t x ] b + xg(x): O primeiro limite é o seguinte: lim ( b!+ e b b x +) = lim b!+ lim [ b!+ e t t x ] b = lim ( e b b x ) ( e x ) = b!+ b x e b : Este limite é facilmente calculado pela aplicação sucessiva da Regra de Cauchy. É, no entanto, óbvio que a exponencial cresce mais depressa que a potência, pelo que se aceita que o aluno diga que este limite é. Donde en m, G(x + ) = xg(x). 4

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Ano Lectivo 8-9 - º Semestre Eame Final de ª Época em 5 de Junho

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Definição: Uma sucessão de números reais é uma aplicação u do conjunto dos números inteiros positivos,, no conjunto dos números reais,. A expressão u n que associa a cada n a sua imagem designa-se

Leia mais

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0: 4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que

Leia mais

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807

Leia mais

CÁLCULO I Ano Lectivo o Semestre

CÁLCULO I Ano Lectivo o Semestre Faculdade de Economia da Universidade Nova de Lisboa CÁLCULO I Ano Lectivo 6-7 - o Semestre CORRECÇÃO EXAME a ÉPOCA Gruo a) A frase é falsa or dois motivos: - Função com derivada contém o caso em que as

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

Cálculo II Exame de 2 a Época, 28 de Junho de 2000

Cálculo II Exame de 2 a Época, 28 de Junho de 2000 Faculdade de Economia Universidade Nova de Lisboa Cálculo II Exame de a Época, 8 de Junho de 000 O exame é constítuido por cinco perguntas. Responda a cada questão em folhas separadas. Não se esqueça de

Leia mais

Resolução do Exame de 1 a Época 2 o Semestre /2010 Grupo 1 Exercício 1 a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0:1 2p A + 0:1 2p F

Resolução do Exame de 1 a Época 2 o Semestre /2010 Grupo 1 Exercício 1 a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0:1 2p A + 0:1 2p F Resolução do Exame de a Época o Semestre - 009/00 Grupo Exercício a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0: p A + 0: p F B = 6 4 0 @B @A @B @A @B @F @ B @A @ B @F @A @B @F @ B @A@F @ B @F

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos NOVA SCHOOL OF BUSINESS AND ECONOMICS CÁLCULO I 1º Semestre 2011/2012 EXAME 2ª ÉPOCA 23 Janeiro 2012 Duração: 2 horas e 30 minutos Não é permitido o uso de calculadoras. Não pode desagrafar as folhas do

Leia mais

Limites e continuidade

Limites e continuidade Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,

Leia mais

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla.

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. VERSÃO A Na sua folha de respostas escreva "VERSÃO A". A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. Identi que claramente os grupos e as questões que responde.

Leia mais

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es Capítulo 4 Complementos de Funções SUMÁRIO Estrutura e cardinalidade em R Topologia Limites e continuidade de unções num ponto pela deinição (vizinhanças Teorema de Bolzano e Teorema de Weierstrass Teorema

Leia mais

TÓPICOS DE CORRECÇÃO

TÓPICOS DE CORRECÇÃO Faculdade de Economia Universidade Nova de Lisboa EXAME E CÁLCULO I Ano Lectivo 007-08 - º Semestre Eame Final de ª Época em de Junho de 008 Duração: horas e 30 minutos É proibido usar máquinas de calcular

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries Numéricas DMAT Séries Numéricas Definições básicas Chama-se série numérica a uma expressão do tipo a a 2, em geral representada por, ou, onde é uma sucessão

Leia mais

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011 Eercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes Introdução Neste teto apresentam-se os enunciados de conjuntos de eercícios para as aulas de problemas do curso

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

3.1 Limite & Continuidade

3.1 Limite & Continuidade 3. FUNÇÕES CONTÍNUAS ANÁLISE NO CORPO R - 2018.1 3.1 Limite & Continuidade 1. Mostre que a função valor absoluto f (x) = jxj é contínua em qualquer ponto x 2 R: 2. A função de Dirichlet ' : R! R é de nida

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Instituto Superior Técnico - o Semestre 006/007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec a Ficha de eercícios para as aulas práticas 3-4 Novembro de 006. Determine os

Leia mais

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb) Cálculo Diferencial e Integral I o Exame - MEMec; MEEC; MEAmb) 7 de Julho de - 9 horas I val.). i) Sendo u n n do teorema das sucessões enquadradas, dado que n, tem-se u n. Como a sucessão u n é convergente,

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes

Leia mais

Prova de Avaliação de MATEMÁTICA. Identi que claramente os grupos e as questões a que responde.

Prova de Avaliação de MATEMÁTICA. Identi que claramente os grupos e as questões a que responde. Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 3 Anos 017 Prova de Avaliação de MATEMÁTICA Identi

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI)

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Análise Matemática I o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Campus da Alameda 5 de Janeiro de 2003 LEC, LET, LEN, LEM, LEMat, LEGM Apresente todos os cálculos e justificações

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

Prova de Avaliação de MATEMÁTICA. Identi que claramente os grupos e as questões a que responde.

Prova de Avaliação de MATEMÁTICA. Identi que claramente os grupos e as questões a que responde. Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 3 Anos 018 Prova de Avaliação de MATEMÁTICA Identi

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização

Leia mais

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla.

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. VERSÃO A Na sua folha de respostas escreva VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. Identi que claramente os grupos e as questões a que responde.

Leia mais

2.1 Sucessões. Convergência de sucessões

2.1 Sucessões. Convergência de sucessões Capítulo 2 Sucessões reais Inicia-se o capítulo introduzindo os conceitos de sucessão limitada, sucessão monótona, sucessão convergente e relacionando estes conceitos entre si. A análise da convergência

Leia mais

Vamos, primeiro recordar, alguns conceitos importantes para esta unidade. MAJORANTES E MINORANTES DE UM CONJUNTO DE NÚMEROS REAIS

Vamos, primeiro recordar, alguns conceitos importantes para esta unidade. MAJORANTES E MINORANTES DE UM CONJUNTO DE NÚMEROS REAIS FICHA DE TRABALHO N.º 4 (GUIA DE ESTUDO SUCESSÕES 1) TURMAS:11.ºA/11.ºB 2017/2018 Vamos, primeiro recordar, alguns conceitos importantes para esta unidade. MAJORANTES E MINORANTES DE UM CONJUNTO DE NÚMEROS

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Resolução do exame Cálculo Diferencial e Integral I Versão B Data: 8/ / 8 Grupo I - (a) x 3 + x x = x(x + x ) = x(x + )(x ) Cálculo auxiliar: x + x = x = ± + 8 = ou x + + x + + + + + x + + + + x(x+)(x

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular

Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular Consideremos uma EDO linear de segunda ordem com a forma

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 Expansão linear e geradores Se u 1 ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u 1 ; u ;

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Integração Numérica 1. Considere o integral: 1 0 e x2 dx a) Determine o seu valor aproximado, considerando 4 subintervalos e utilizando: i. A regra dos

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

VERSÃO B. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla.

VERSÃO B. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. VERSÃO B Na sua folha de respostas, escreva "VERSÃO B". A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. Identi que claramente os grupos e as questões que responde.

Leia mais

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios

Leia mais

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M,

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M, Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I - o Sem 07/8 - LEGM, MEC FICHA - SOLUÇÕES a = f/; b = f; c / = f/ Começe por aplicar o Teorema de Weierstrass a f

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

Consequências do Teorema do Valor Médio

Consequências do Teorema do Valor Médio Universidade de Brasília Departamento de Matemática Cálculo 1 Consequências do Teorema do Valor Médio Neste texto vamos demonstrar o Teorema do Valor Médio e apresentar as suas importantes consequências.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Concavidade. Universidade de Brasília Departamento de Matemática

Concavidade. Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

3 Funções reais de variável real (Soluções)

3 Funções reais de variável real (Soluções) 3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y

Leia mais

Notas sobre primitivas

Notas sobre primitivas Matemática - 8/9 - Notas sobre primitivas 57 Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0

Leia mais

Valores e vectores próprios

Valores e vectores próprios ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos Prova Escrita de Conhecimentos Específicos

Leia mais

Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015

Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015 Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015 Aluno: Matrícula. Nota: : :.Observações: I A prova tem duração de 100 min; não é permitido

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

3 Limites e Continuidade(Soluções)

3 Limites e Continuidade(Soluções) 3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das

Leia mais

Cálculo Diferencial e Integral II 2012/13 1 o semestre

Cálculo Diferencial e Integral II 2012/13 1 o semestre Cálculo Diferencial e Integral II 212/13 1 o semestre Modelo do 1 o Teste LEIC-TP, LEGI, LERC, LEE 6 de Novembro de 212 Justifique adequadamente todas as respostas. 1. Calcule V y dx dy dz em que V = {(x,

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Cálculo II Exame de 1 a Época, 29 de Maio de 2000

Cálculo II Exame de 1 a Época, 29 de Maio de 2000 Faculdade de Economia Universidade Nova de Lisboa Cálculo II Exame de a Época, 9 de Maio de 000 O exame é constítuido por cinco perguntas. Responda a cada questão em folhas separadas. Não se esqueça de

Leia mais

Análise Infinitesimal I. Maria Manuel Clementino, 2010/11

Análise Infinitesimal I. Maria Manuel Clementino, 2010/11 Análise Infinitesimal I Maria Manuel Clementino, 2010/11 Sumários Alargados Capítulo I: Fundamentos o Rigor e a Demonstração em Análise 1. Operadores lógicos e quantificadores Recomenda-se a leitura de:

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

Critérios de Avaliação A avaliação ao longo das actividades lectivas será periódica, sendo efectuados dois testes. Os testes serão nos dias 7 de Abril

Critérios de Avaliação A avaliação ao longo das actividades lectivas será periódica, sendo efectuados dois testes. Os testes serão nos dias 7 de Abril Cálculo II Mestrado Integrado em Engenharia Aeronáutica Mestrado Integrado em Engenharia Civil António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2014/2015 António Bento

Leia mais

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo MAT 1352 - Cálculo para funções de uma variável II Profa. Martha Salerno Monteiro IME-USP - Novembro de 2004 Revisitando a Função Logaritmo Considere a curva y = 1 t, t > 0. Para cada x > 1 defina a função

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51 Os números inteiros Abordaremos algumas propriedades dos números inteiros, sendo de destacar o Algoritmo da Divisão e o Teorema Fundamental da Aritmética. Falaremos de algumas aplicações como sejam a detecção

Leia mais

Primitivação de funções reais de variável real

Primitivação de funções reais de variável real Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,

Leia mais

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável Análise Matemática Cálculo diferencial, primitivas e cálculo integral de funções de uma variável (Soluções) Jorge Orestes Cerdeira, Isabel Martins, Ana Isabel Mesquita Instituto Superior de Agronomia -

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I MINI-TESTE 2 - versão A

Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I MINI-TESTE 2 - versão A MINI-TESTE - versão A Duração: 90 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão relativa ao enunciado deverá ser escrita na fola de prova para

Leia mais

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) =

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) = Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março 29 Exercício Seja f : R R uma função periódica tal que { se x < h f(x) = se h x

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

7.3 Diferenciabilidade

7.3 Diferenciabilidade CAPÍTULO 7. INTRODUÇÃO À ANÁLISE EM RN 7.18 Estude quanto a continuidade a função f de R 2 com valores em R definida por: x 2, se x 2 + y 2 < 2y, f(x, y) = x, se x 2 + y 2 = 2y, y 2, se x 2 + y 2 > 2y.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEAmb, LEMat, LQ, MEB, MEEC, MEQ o teste / o eame - 7 de Janeiro de 8 duração: o teste: :3 / o eame: 3: Apresente todos os cálculos e justificações relevantes Para resolver

Leia mais

Sucessões. Limites de sucessões O essencial

Sucessões. Limites de sucessões O essencial Sucessões Limites de sucessões O essencial Limite de uma sucessão Dada uma sucessão (u n ), um número real l designa-se por limite da sucessão (u n ) ou limite de u n quando n tende para + quando, para

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Sumários Alargados. Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction to Mathematical Analysis;

Sumários Alargados. Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction to Mathematical Analysis; Sumários Alargados Capítulo I: Fundamentos o Rigor e a Demonstração em Análise 1. Operadores lógicos e quantificadores Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction

Leia mais

Universidade Técnica de Lisboa Instituto Superior de Economia e Gestão Licenciaturas em Economia, Finanças e Gestão

Universidade Técnica de Lisboa Instituto Superior de Economia e Gestão Licenciaturas em Economia, Finanças e Gestão Universidade Técnica de Lisboa Instituto Superior de Economia e Gestão Licenciaturas em Economia, Finanças e Gestão MATEMÁTICA I Época de Recurso - 28 de Janeiro de 213 - Duração: 2 horas Grupo I - v.1

Leia mais

Matemática Computacional I

Matemática Computacional I Universidade da Beira Interior Departamento de Matemática Matemática Computacional I CURSO: ENGENHARIA INFORMÁTICA Alberto Simões asimoes@ubi.pt 204/205 Conteúdo Funções Reais de Variável Real. O Conjunto

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Teste Intermedio, 15 de Abril de 2000

Teste Intermedio, 15 de Abril de 2000 Faculdade de Economia Universidade Nova de Lisboa Calculo II Teste Intermedio, de Abril de 000 O teste e consttuido por quatro perguntas. Responda a cada quest~ao em folhas separadas. N~ao se esqueca de

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais