Análise Matemática IV
|
|
|
- Francisco Álvares
- 6 Há anos
- Visualizações:
Transcrição
1 . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas funções na equação original obtém-se (c 3 e t + 8c 3 te t + 4c 3 t e t ) 4(c 3 te t + c 3 t e t ) + 4(c 3 t e t ) = e t, ou seja, c 3 = /. Concluímos que as soluções da equação dada são y(t) = c e t + c te t + t et, c, c R.. Vamos procurar soluções de u tt = c u xx da forma u(x, t) = X(x)T (t). Substituindo na equação diferencial, XT = c X T, ou T = X. Concluise que ambos os membros da última igualdade são uma mesma constante, c T X constante essa que designaremos por λ. Tem-se X + λx = 0 e T = λc T. Das condições fronteira para u, vem u(0, t) = X(0)T (t) = 0 e u(π, t) = X(π)T (t) = 0. Uma vez que não queremos T (t) 0 (porque isso conduziria a u(x, t) 0), tiramos X(0) = X(π) = 0. As soluções não nulas de { X + λx = 0 em ]0, π[, X(0) = X(π) = 0, podem ser indexadas em n N : { λn = n π π = n, X n (x) = c n sin(nx), onde os c n s são constantes. Agora a equação T = n c T, conduz a T (t) = d n cos(nct) + e n sin(nct), onde os d n s e os e n s são constantes. Fazendo o produto de X n por T n, obtém-se u n (x, t) = sin(nx)[a n cos(nct) + b n sin(nct)], com a n = c n d n e b n = c n e n. Cada uma destas funções u n satisfaz a equação diferencial com as condições fronteiras impostas, logo u(x, t) = + sin(nx)[a n cos(nct) + b n sin(nct)]
2 Resolução do exame de AMIV é também uma solução formal da equação diferencial com as condições fronteiras impostas. Para satisfazer as condições iniciais vamos impor que u(x, 0) = u t (x, 0) = + + a n sin(nx) = sin(x), b n nc sin(nx) = sin(x), Pelo facto de as funções x sin(nx) serem ortogonais em L (0, π), tira-se que a =, b = /(c), sendo todos os restantes a n s e b n s nulos. Substituindo na expressão para u(x, t), u(x, t) = sin(x) cos(ct) + sin(x) sin(ct) c Verifica-se facilmente que esta é uma solução da equação diferencial com as condições fronteira e iniciais dadas. Foi provado nas aulas que o problema posto tem uma única solução usando o método da energia. 3. Consideremos a extensão par, f, de f ao intervalo [, ]. Sabemos que com f(x) = a 0 + a n = b n = [ a n cos ( nπx ) ( nπx + b n sin ( nπx f(x) cos ( nπx f(x) sin ) dx, ) dx. Sendo a função f par, todos os b n s são nulos e ( nπx ) ( nπx ) a n = f(x) cos dx = cos dx = [ ( nπ )] sin(nπ) sin 0 nπ = ( nπ ) { nπ sin = nπ ( )(n+)/ se n é ímpar, 0 se n é par não nulo. O valor de a 0 é a 0 = Para x e x ±, f(x) = [ cos(πx/) π dx =. cos(3πx/) 3 )], + cos(5πx/) 5 ]...,
3 Resolução do exame de AMIV onde a série do segundo membro converge pontualmente. Para x = ±, a PSfrag soma da replacements série vale / enquanto f(±) =. Restringindo x ao intervalo [0, ] obtém-se a série de cosenos de f. f(x) x Esboço do gráfico de (k )πx 7 cos[ ] π k= ( )k. k f(x) x Esboço do gráfico de (k )πx 5 cos[ ] π k= ( )k. k 4. a) y t 3 Campo de direcções de y = e y t.
4 Resolução do exame de AMIV y t b) A equação é separável: Esboço dos gráficos das soluções de y = e y t. e y y = e t. Integrando ambos os membros entre t 0 e t, e y(t) e y(t 0) = e t e t 0 y(t) = log(e y 0 + e t e t 0 ). c) Fazendo t 0 = 0 na expressão obtida na alínea b), obtém-se y(t) = log(e y 0 +e t ). Como se está a supor que y 0 < 0, tem-se e y 0 > 0, pelo que a solução está definida em R. Além disso, lim y(t) = t + log(e y 0 ). O gráfico tem como assímptota o eixo dos t s se este limite for nulo. Isto corresponde a log(e y 0 ) = 0 e y 0 = y 0 = log. d) Fazendo y 0 = 0 na expressão obtida na alínea b), obtém-se Esta solução existe para y(t) = log(e t e t 0 + ). e t e t 0 + > 0 e t > e t 0 t < log(e t 0 ). O intervalo máximo de existência da solução é ], log(e t 0 )[. Observação: A última figura acima é simétrica em relação à recta
5 Resolução do exame de AMIV y = t. Mais precisamente, seja c < 0; se os valores y 0 da alínea c) e t 0 da alínea d) satisfazem y 0 = c = t 0, então os gráficos das soluções correspondentes podem ser obtidos um do outro por reflexão na recta y = t. Isto é consequência da simetria da equação diferencial: e y dy = e t dt. É por isso claro que se na alínea c) obtivémos o valor log(e y 0 ), na alínea d) tínhamos que obter o valor log(e t 0 ). 5. Seja f : C C, definida por f(z) = z = (x iy) = (x y ) ixy. Então f x (z) = x iy e if y (z) = i(y ix) = x + iy. A equação de Cauchy-Riemann, f x = if y, é satisfeita para x = x y = y, ou seja apenas no ponto z = 0. Portanto, f apenas pode ser diferenciável na origem. Como f tem derivadas parciais contínuas, f é de facto diferenciável em zero e f (0) = f x (0) = a resolução. Seja log(re iθ ) = log r + iθ, para r > 0 e 3π < θ < π. Então d log z = para z não pertencente à parte positiva do eixo imaginário união dz z com zero. Pelo Teorema Fundamental do Cálculo, z dz = log log( ) = log(e iπ ) = iπ. γ a resolução. Como z é analítica em C \ {0}, o Teorema de Cauchy z aplicado à região C \ {iy : y R + 0 } garante que podemos substituir o arco γ pela semi-circunferência de raio centrada na origem no semiplano I z 0. Esta semi-circunferência pode ser parametrizada por e iθ com θ [ π, 0]. Por cálculo directo, 0 γ z dz = π e iθ ieiθ dθ = iπ. 7. Sabemos que para z C, logo sin z = z z3 3! + z5 5! z7 7! +... sin z z z 6 = 3!z 3 + 5!z z3 7! +... = ( ) n z n 5 (n + )! para z C \ {0}. Logo, zero é um pólo de ordem 3 da função com resíduo /5!. A função não tem nenhuma outra singularidade para além de zero.
6 Resolução do exame de AMIV Seja f : C\{ i, i} C, definida por f(z) = (z +) = (z+i) (z i). Tem-se, f(z) = g(z) (z i), com g(z) = (z + i). A função g é holomorfa em C \ { i}. Seja R > e γ um contorno fechado formado pela união do segmento de recta que une R e R com a semicircunferência centrada na origem no semiplano superior, descrita no sentido directo. Pela Fórmula Integral de Cauchy, γ Logo, f(z) dz = γ g(z) (z i) dz = πig (i) = πi π R = f(x) dx + f(z) dz. R z =R Iz>0 [ ] = πi (z + i) 3 z=i 4i = π. O cálculo seguinte mostra que o integral ao longo da semi-circunferência tende para zero quando R + : f(z) dz (R ) dz z =R Iz>0 = z =R Iz>0 ( ) πr 0 quando R +. (R ) Tomando o limite em ambos os membros de ( ) quando R +, conclui-se que + dx = π. (x +) 9. a) π e e Os planos z e e z. b)
7 Resolução do exame de AMIV e e e Os planos e z + e e e. e z +e O plano e. e z +e
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique
Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec
Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva
Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015
Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy
Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013
Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função
(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A
Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,
Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014
Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função
ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.
ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS
Análise Matemática IV Problemas para as Aulas Práticas
Análise Matemática IV Problemas para as Aulas Práticas 4 de Abril de 5 Semana 3. Determine os valores dos seguintes integrais: a) z dz em que é o semicírculo percorrido em sentido directo unindo i a i.
RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )
ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de
( x)(x 2 ) n = 1 x 2 = x
Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x
Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,
Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:
21 de Junho de 2010, 9h00
Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série
ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.
ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:
Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e
Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,
Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013
Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função
GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan
GABARITO 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan (Valor 3.) Questão 1: Responda às seguintes questões, usando as equações de Cauchy-Riemann. (1.5) (a) Mostre que a função
ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões
Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014
Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função
Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010
Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe
Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017
Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0
c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).
Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas
PROVAS DE ANÁLISE COMPLEXA
PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno
Corda Elástica Presa Somente em uma das Extremidades
Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar
1 a Lista de Exercícios de Métodos Matemáticos II
a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i
1 o Semestre 2018/2019 MEC
ACED Análise Complea e Equações Diferenciais o Semestre 208/209 MEC Conteúdo I. Números compleos, funções compleas........... II. Transformações conformes e diferenciabilidade de funções compleas.............................
Lista 2 - Métodos Matemáticos II Respostas
Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer
SEGUNDA PROVA DE EDB - TURMA M
SEGUNDA PROVA DE EDB - TURMA M Prof. MARCELO MARCHESIN -/1/7 (13:-1: DPTO. DE MATEMÁTICA, UFMG. RESOLUÇÃO E CRITÉRIOS 1. (11, ptos Sabendo-se que u n (x, y = c n senh( nπx nπy b sen( b para n = 1,,...
Departamento de Matemática da Universidade de Aveiro
Departamento de Matemática da Universidade de Aveiro ANÁLISE MATEMÁTICA II 7/8 Folha 4 - soluções: Séries de Fourier; notação complexa. Vamos mostrar que se f e g são funções periódicas de período T, fg
1. Superfícies Quádricas
. Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.
Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante
ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019
ACED Análise Complexa e Equações Diferenciais MEC Michael Paluch 1 o Semestre 2018/2019 17 a Aula 17.1 Teorema de Cauchy Recordamos que a imagem de um caminho seccionalmente de classe C 1 chamase uma curva
Análise Complexa e Equações Diferenciais
Análise Complexa e Equações Diferenciais o Semestre de 07/8 MEC Exercícios para as aulas práticas Conteúdo I Números complexos (8-/9/07) II Números complexos, funções complexas (5-9/9/07) 4 III Transformações
Funções analíticas LISTA DE EXERCÍCIOS
LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?
Fichas de Análise Matemática III
Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas
ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA
Análise Matemática II TESTE/EXAME
Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade
Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.
Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a
FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS
FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matem tica SecÁ o de Álgebra e Análise ANÁLISE MATEMÁTICA IV 1 o Teste Cursos: LCI, LEAmb, LEBL, LEGM, LEIC, LEM, LEMat, LEMG, LEQ, LQ Justifique cuidadosamente
Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.
Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro
2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas
MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)
MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: [email protected] Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
Resumo: Regra da cadeia, caso geral
Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t
f ( t) e F( z) dz, t
Fórmula Complexa de Inversão Agora possuímos o ferramental matemático necessário para obtermos a inversão efetiva da transformada de aplace. A inversão é obtida através da Fórmula Integral de Bromwich.
TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) =
Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito seg. prova unificada - Escola Politécnica / Escola de Química - 1/06/018 Questão 1: (.5 pontos) Seja f : [0,] R a função
Escoamento potencial
Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional
FEUP - MIEEC - Análise Matemática 1
FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização
1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2
Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo
Revisão do Teorema de Green
Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Análise Complexa e Equações Diferenciais Guia 6 João Pedro Boavida. 19 a 28 de Outubro
19 a 28 de Outubro Nestas teóricas, estamos a falar das últimas ideias de análise complexa. Veremos algumas aplicações do teorema dos resíduos e algumas propriedades das funções holomorfas. No livro, falta-vos
Notas breves sobre números complexos e aplicações
Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se
Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Plano tangente e reta normal
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função
ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA
ANÁLISE MATEMÁTICA 3 APONTAMENTOS DAS AULAS TEÓRICAS PARTE A ANÁLISE COMPLEXA Maria do Rosário de Pinho e Maria Margarida Ferreira Agosto 2004 Faculdade de Engenharia da Universidade do Porto Licenciatura
ANÁLISE MATEMÁTICA III A OUTONO 2005 PARTE I VARIEDADES EM R N. Sobre Topologia em R n
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 17/Set/005 ANÁLISE MATEMÁTICA III A OUTONO 005 PARTE I VARIEDADES EM R N EXERCÍCIOS COM POSSÍVEIS SOLUÇÕES ABREVIADAS acessível
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas
Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ
Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de
Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação
Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Lista 4 - Métodos Matemáticos II
Lista 4 - Métodos Matemáticos II Prof. Jorge Delgado. alcule Res f () da função f () dada. + ; (b) cos cot ; (c) ; (d) senh 4 4 ( ). Solução. ; (b) ; (c) 45 ; (d) 7 6.. Usando o teorema do resíduo verifique
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
Convergência, séries de potência e funções analíticas
Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova
Área de uma Superfície de Revolução
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície
1 Primeira lista de exercícios
1 Primeira lista de exercícios Números complexos, derivadas e integrais. 1. Ache todos os valores das seguintes raízes: (a) (2i) 1=2 (b) ( i) 1=3 (c) 8 1=6 2. Descreva geometricamente cada uma das regiões
Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor
Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material
GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018
GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente
Transformações Conformes: 15 Aplicações
AULA Transformações Conformes: 15 Aplicações META: Aplicar transformações conformes. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar transformações conformes na determinação da distribuição
Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio
