Departamento de Matemática da Universidade de Aveiro
|
|
|
- Marco Azambuja Casqueira
- 9 Há anos
- Visualizações:
Transcrição
1 Departamento de Matemática da Universidade de Aveiro ANÁLISE MATEMÁTICA II 7/8 Folha 4 - soluções: Séries de Fourier; notação complexa. Vamos mostrar que se f e g são funções periódicas de período T, fg é periódica de período T. Por hipótese, f e g são funções periódicas de período T, isto é, x R f(x + T ) = f(x) e g(x + T ) = g(x) Seja x R, arbitrário, atendendo à definição de função produto e ao facto de f e de g serem periódicas, tem-se (fg)(x + T ) = f(x + T )g(x + T ) = f(x)g(x) = (fg)(x) isto é, a função fg é periódica de período T As restantes provas são semelhantes.. Vejamos que se f é uma função diferenciável e periódica de período T, então f é periódica de período T : Sendo T o período de f, atendendo a que a função é diferenciável, pela regra de derivação da função composta tem-se para cada x real, ( f(x + T )) = (x + T ) f (x + T ) = f (x + T ); mas, pelo facto de ser periódica, isto é, a função f é periódica de período T. ( ) (, f(x+t ) = f(x)) pelo que f (x+t ) = f (x), 3. Para resolver as questões seguintes vamos recorrer às seguintes fórmulas trigonométricas: cos a cos b = cos(a + b) + cos(a b), (a) sin(nx) cos(mx) dx = sin a cos b = sin(a + b) + sin(a b), sin a sin b = cos(a + b) cos(a b). sin((n + m)x) + sin((n m)x) dx = ( ) Atendendo ao facto de que a função coseno é par e a função seno nula em kπ para k inteiro, tem-se: se n m ( ) = n + m se n m = ( ) = π cos((n + m)x) cos((n m)x) = n m sin(nx) dx = 4n cos(nx)π = As restantes alíneas resolvem-se de modo análogo.
2 4. As séries de Fourier das funções dadas são: (a) f(x) = x, x π. Se f é ímpar, então b n a = π a n = π f(x) dx = = π f(x) sin(nx) dx = π = π x n cos(nx)π + f(x) { se π x < (b) f(x) = π se x π f(x) cos(nx) dx =, n N x sin(nx) dx n cos(nx) dx = ( )n+ n, n N ( ) n+ n sin(nx) n= a a n = π = π f(x) dx = π dx + π f(x) cos(nx) dx = π π dx = π dx + π π cos(nx) dx = n sin(nx) π =, n N b n = π f(x) sin(nx) dx = π π sin(nx) dx (c) f(x) = a = π a n = π b n = π f(x) 4 + { = n cos(nx)π = ( )n+ + n = n, n ímpar, n par f(x) π + { se π x < se x π/ se π/ < x π f(x) dx = π n=. dx = f(x) cos(nx) dx = π f(x) sin(nx) dx = π n= sin((n )x) n sin(nπ/) cos(nx) dx = nπ, n N sin(nx) dx = { nπ, nπ ( ( )n/ ), n ímpar n par ( ) n (n )π cos((n )x)+ (n )π sin((n )x)+ nπ ( ( )n ) sin(nx) Nota: o Teorema da Representação em Séries de Fourier, dado mais à frente na matéria, garante que esta série converge; logo, a sua soma não é alterada pela associação feita de termos consecutivos dois a dois.
3 (d) f(x) = x + x, x π. a = π (x + x ) dx = 3 π a n = π (x + x ) cos(nx) dx = ( ) n 4, n N n b n = π (x + x ) sin(nx) dx = ( ) n+ n, n N f(x) 3 π + ( ) n 4 n cos(nx) + ( )n+ n sin(nx) n= 5. (a) Seja f a função constante igual a k (k R) em, π, isto é f(x) = k para x, π. Se f é seccionalmente contínua, então os coeficientes de Fourier são: a = π f(x) dx = π k dx = k a n = π b n = π f(x) cos(nx) dx = π k cos(nx) dx = π k n sin(nx) π =, n N k sin(nx) dx = π k n cos(nx) π =, n N Então a série de Fourier de f é k + cos(nx) + sin(nx) = k n= (b) As funções f e g estão definidas e são seccionalmente contínuas em, π. Sendo α e β constantes, a função αf + βg está também definida em, π e tem-se (αf + βg)(x) = αf(x) + βg(x). Sabe-se também que αf + βg é seccionalmente contínua nesse intervalo. Assim, os coeficientes de Fourier de αf + βg são: a = π (αf + βg)(x) dx = π αf(x) + βg(x) dx = π αf(x) + π βg(x) dx = α f(x) dx +β g(x) dx = αa f + βa g π π }{{}}{{} a n b n = π (αf + βg)(x) cos(nx) dx = α f(x) cos(nx) dx +β g(x) cos(nx) dx = αa nf + βa ng, n N π π }{{}}{{} (αf + βg)(x) sin(nx) dx = π = α f(x) sin(nx) dx +β g(x) sin(nx) dx = αb nf + βb ng, n N π π }{{}}{{}
4 { /, x < 6. (a) A função g tal que g(x) = π/, x π a função f do exercício 4b) e a função constante π. Sabemos de 4b) que é igual à diferença entre a f = π a nf = b nf = { n, n ímpar, n par Por 5a) os coeficientes da função dada por k(x) = π são: a k = π a nk = b nk =. Utilizando 5b) temos que os coeficientes de g são: a g = a ng = b ng = { n, n ímpar, n par = { n, n ímpar, n par Assim, f(x) n= sin((n )x) n { / x/, x < (b) A função h dada por h(x) = é tal que h(x) = π/ x/, x π g(x) f(x), sendo g a função dada em 6a) e f a função dada em 4a). Os coeficientes de Fourier de g são a g = a ng = b ng = Os coeficientes de Fourier da função f são: { n, n ímpar, n par a nf =, n N b nf = ( ) n+ n, n N. Usando 5b) obtemos os coeficientes de Fourier de h: a h = a nh = b nh = Assim, { n ( )n+ n, n ímpar ( )n+ n, n par h(x) n= = { n n, n ímpar n, n par = n, n N n sin(nx) 7. Para provar a identidade trigonométrica sin 3 x = 3 4 sin x 4 sin(3x) vamos recorrer ao seno do ângulo duplo e à igualdade sin a cos b = sin(a + b) + sin(a b).
5 Ora, sin 3 x = sin x sin x = sin x( cos x) = sin x sin x cos x cos x = sin x sin(x) cos x = sin x (sin(x + x) + sin(x x)) = 3 4 sin x 4 sin(3x) O segundo membro desta igualdade é um polinómio trigonométrico. A série de Fourier de uma função que é um polinómio trigonométrico é a própria função. Atendendo à identidade trigonométrica dada temos que a série de Fourier de sin 3 x é 3 4 sin x 4 sin(3x). O procedimento para provar que cos 3 x = 3 4 cos x + 4 cos(3x) é semelhante ao anterior. 8. (a) Dada a função f(x) = cos x, x π, os coeficientes da sua série de Fourier de senos são: a n =, n N b = Para n >, cos x b n = n= { π 4n n n par n ímpar π 8n 4n sin(nx). Os coeficientes da série de cosenos de f(x) = cos x, nulos com excepção de a =. cos x + cos x x π são todos (b) Os coeficientes da série de senos de f(x) = sin x, x π são todos nulos com excepção de b =. sin x sin x Os coeficientes da série de cosenos de f(x) = sin x, x π são: { a = 4 π a = a n = π n par n n ímpar, para n > 4 sin x π + n= π 4 4n cos(nx). 9. (a) f(x) = e αx, x < π, com α R. Os coeficientes de Fourier na forma complexa são α n = π eαx e inx dx.
6 Se α, temos α n = ( )n (e απ e απ ) π(α in) e αx e ( ) n (e απ e απ ) e inx. π(α in) Se α =, o coeficiente α = e os restantes coeficientes são nulos. e x = (b) f(x) = cos(αx), x < π e α R. + + Os coeficientes de Fourier na forma complexa são α n = π n= cos(αx) e inx dx. Atendendo a que cos(αx) = eiαx +e iαx, vem, quando α / Z α n = π cos(αx) e inx dx = e iαx +e iαx π e inx dx = e i(α n)x +e i(α+n)x π dx π = 4π (α n)i ei(α n)x + ( α n)i e i(α+n)x = 4π (α n)i ei(α n)π e i(α n)π + ( α n)i e i(α+n)π e i(α+n)π = 4π (α n) = α( )n sin απ π(α n ) sin (α n)π + (α+n) sin (α + n)π Se α = n cos αx α( ) n sin απ π(α n ) einx. (c) f(x) = sin(αx), x < π. cos αx eiαx + e iαx Atendendo a que sin(αx) = eiαx e iαx i, vem, quando α / Z, e α n = in( )n+ sin (απ) π(α n ) sin αx in( ) n+ sin (απ) π(α n e inx. )
7 Se α = n sin αx i eiαx + i e iαx. Atendendo a que cos x = eix +e ix, tem-se cos 5 x = Desenvolvendo este binómio tem-se: ( ) 5 e ix +e ix cos 5 x = e5ix + 5e 3ix + e ix + e ix + 5e 3ix + e 5ix 3 associando, os termos com expoente simétrico, resulta cos 5 x = cos 5x + 5 cos 3x + cos x 6 isto é, cos 5 x é um polinómio trigonométrico pelo que a sua série de Fourier é o próprio polinómio.
Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) =
Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março 29 Exercício Seja f : R R uma função periódica tal que { se x < h f(x) = se h x
Polinómio e série de Taylor
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação
Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A
Séries de Fourier Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke As séries de Fourier são a ferramente básica para se representar as funções periódicas, as quais desempenham um importante
Análise Matemática IV
. Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas
Exercícios de Coordenadas Polares Aula 41
Revisão - Métodos de Integração e Exercícios de Coordenadas Polares Aula 41 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 24 de Junho de 2014 Primeiro Semestre de 2014 Turma
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série
Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica
CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte
exercícios de análise numérica II
exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando
1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R
. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)
Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017
Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0
Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)
Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio
COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais
Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos
( x)(x 2 ) n = 1 x 2 = x
Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x
Derivada de algumas funções elementares
Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas
MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função
Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda
Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente
Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,
Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT
Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a
SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes
SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos
ÁLGEBRA LINEAR. Exame Final
UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )
MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II
ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere
O domínio [ 1, 1] é simétrico em relação a origem.
QUESTÕES-AULA 33 1. Determine quais das funções abaixo são pares, quais são impares e quais não são pares nem impares. Justifique as suas respostas. (a) g : [ 3, 3] R, x x 3 (b) h : ( 3, 3) R, x x 3 x
Exercícios - Propriedades Adicionais do Limite Aula 10
Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Álgebra Linear e Geometria Analítica
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha
CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aulas n o 9: Técnicas de Integração II - Integrais Trigonométricas e Substituição Trigonométrica Objetivos da Aula Calcular integrais de potências
5.3 Séries (trigonométricas) de Fourier
Derivando termo a termo, obtemos (cosx) = ( 1) n x n 1 (n 1)! = ( 1) n+1 x n+1 (n+1)! n=0 = senx, x R. Analogamente também se obteria (senx) = n=0 ( 1) n xn (n)! = cosx, x R. Recorrendo às séries confirmamos
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição
CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo:
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 8: Integrais Trigonométricas. Substituição Trigonométrica. Objetivos da Aula Calcular
= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3
Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores ANÁLISE MATEMÁTICA 1
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de Computadores ANÁLISE MATEMÁTICA 1 PARTE 1: EXERCÍCIOS DE REVISÃO Maria do Rosário de Pinho e Maria
CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4
CAPÍTULO 9 Exercícios 9.. Ï0, x e. Seja f( x) Ìx, se x0 Ó, se 0x Temos È 0 f x dx x dx dx ( ) Í ( ) Î 0 È 0 ù an f x dx x dx dx ( ) cos Í Î ( ) cos cos ú 0 û n n n an È cos sen ù Ê cos ˆ ÎÍ n ûú Ë È 0
Espaços Vetoriais II
Espaços Vetoriais II Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Espaço Vetorial C[a, b] Denotamos por C[a, b] o conjunto de
Matemática A - 10 o Ano
Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II O Grupo I inclui quatro questões de escolha múltipla O Grupo
Nome: Erick Bordallo Tavares. Turma: 14:00 às 16:00hs. Professor: Altair
Nome: Erick Bordallo Tavares Turma: 14:00 às 16:00hs Professor: Altair 1. SÉRIES DE FOURIER 1.1. FUNÇÕES PERIÓDICAS Exemplo: Uma função f(x) é dita periódica com um período T se f(x+t) = f(x) para qualquer
Polinômios de Legendre
Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.
Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e
Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,
Integrais. ( e 12/ )
Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos
Aula 13 mtm B TRIGONOMETRIA
Aula 13 mtm B TRIGONOMETRIA Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro
Notas de Análise Matemática III
Ricardo Mamede Notas de Análise Matemática III (Mestrado integrado em Engenharia Electrotécnica e de Computadores) Departamento de Matemática - Universidade de Coimbra 2008/2009 2 Conteúdo. Sucessões Numéricas
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.
QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:
QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência
Séries de Fourier. Computação, Engenharia Elétrica e Engenharia Civil. Prof. Ulysses Sodré. Notas de aulas compiladas no dia 6 de Maio de 2003
Séries de Fourier Notas de aulas compiladas no dia 6 de Maio de 23 Computação, Engenharia Elétrica e Engenharia Civil Prof. Ulysses Sodré ii email: email:
Notas breves sobre números complexos e aplicações
Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se
1. Polinómios e funções racionais
Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição
Notas de Análise Real. Jonas Renan Moreira Gomes
Notas de Análise Real Jonas Renan Moreira Gomes 6 de novembro de 2008 ii Sumário 1 Séries de Fourier 1 1.1 Produto Hermitiano......................... 1 1.1.1 Definições........................... 1 1.1.2
Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação
Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios
Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste)
Exame/Teste () de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de, 8h-h (º Teste) ) [] Seja f(x) = e x a) Determine um p n polinómio interpolador de f nos nós {, }, tal que
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
Ementa detalhada até agora
Ementa detalhada até agora de Setembro de 07. (3/07): Introdução aos números reais: soma, produto, opostos, inversos,(o inverso de a só existe quando a 0). Demostração do fato que a 0 = 0, regra dos sinais,
A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18
A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106
Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor
Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material
Resolvendo Integrais pelo Método de
Capítulo Resolvendo Integrais pelo Método de Substituição. Métodos da substituição em integrais indefinidas O teorema fundamental do cálculo permite que se resolva rapidamente a integral b a f(x) dx, desde
Plano tangente e reta normal
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função
Corda Elástica Presa Somente em uma das Extremidades
Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
Tópico 4. Derivadas (Parte 1)
Tópico 4. Derivadas (Parte 1) 4.1. A reta tangente Para círculos, a tangencia é natural? Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num único ponto. Na situação da figura
PROBLEMAS DE OLIMPÍADA UNIVERSITÁRIA
PROBLEMAS DE OLIMPÍADA UNIVERSITÁRIA CÁLCULO. Problemas da OBMU nos últimos anos Problema (OBMU-26 - Segunda Fase, Problema ). Seja {a n } uma sequência de número reais tal que n an n converge. Prove que
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Limites e continuidade
Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,
Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Funções reais de variável real.
Capítulo 3 Funções reais de variável real. Continuidade. Diferenciabilidade. Este capítulo tem como primeiro objectivo desenvolver as bases da teoria da continuidade de funções reais de variável real.
1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério
da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4
Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2
Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos
Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios
Limites. 2.1 Limite de uma função
Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos
Notas de. Análise Complexa
Notas de Análise Complexa Ricardo Mamede Departamento de Matemática, Faculdade de Ciências e Tecnologia Universidade de Coimbra 205 Índice Números Complexos. O corpo dos números complexos..........................2
IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.
IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo
