Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) =

Tamanho: px
Começar a partir da página:

Download "Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) ="

Transcrição

1 Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março 29 Exercício Seja f : R R uma função periódica tal que { se x < h f(x) = se h x <, onde h (, ) é uma constante. (i) A série de Fourier de f na forma complexa Sf(x) = n= tem seus coeficientes calculados no intervalo [, ]: c n = = = c n e inx () f(x)e inx dx e inx dx e inh, in para n e c = f(x)dx. (ii) Podemos então escrever a série de Fourier () de f como Sf(x) = c + ( cn e inx + c n e inx) ( e inh e inx ) e inh e inx 2in 2in e inx e inx + einh e inx e inh e inx n 2i 2i (sin nx + sin n(h x)), (2) n devido à lei do produto de exponenciais: e z e w = e z+w e às fórmulas de Euler: e ±iα = cos α ± i sin α. (iii) A série de Fourier de f em senos e cossenos no intervalo [, ) é dada por Sf(x) = a 2 + (a n cos nx + b n sin nx) (3)

2 onde para n, a = f(x) dx = dx ; a n = = f(x) cos nx dx cos nx dx e = sin nh n b n = = Substituindo os coeficientes na série (3), resulta Sf(x) + f(x) sin nx dx sin nx dx = ( cos nh). n ( n sin nx + ) (sin nh cos nx cos nh sin nx n a mesma expressão (2), devido a relação trigonométrica: sin(a b) = sin a cos b cos a sin b. Sabemos que, se g(x) denota a função periódica tal que g() = e g(x) = ( x/) /2 em (, ), então a série de Fourier de g(x) é Sg(x) = sin nx. Por conta disso, a série de n Fourier (2) de f(x) pode ser escrita como Sf(x) + Sg(x) Sg(h x). Sabemos que, pelo teste de Dirichlet juntamente com a unicidade dos coeficientes de Fourier, Sg(x) converge uniformemente para g(x) em todo intervalo [a, b] onde g(x) é contínua. Logo Sf(x) converge uniformemente para f(x) /() + g(x) g(h x) em todo intervalo [a, b] onde f(x) é contínua. Observe que, nos pontos de continuidade de f, a derivada de ambos os lados desta igualdade se anula e os limites quando x tende à e h pela direita são f(+) h + g(+) g(h ) = h = f(h + ) h + g(h + ) g( ) = + 2 h 2 =, confirmando que ambas funções coincidem em (, h) e (h, ). 2

3 Exercício 2 Seja f : R R uma função periódica tal que no intervalo simétrico x. f(x) = cos αx, α R (4) (i) Calculemos a série de Fourier (3) de f(x) em senos e cossenos. O n ésimo coeficiente desta série (par e ímpar) a n = b n = f(x) cos nx dx, (5) f(x) sin nx dx (6) está definido pois, qualquer que seja α, cos αx é integrável e absolutamente integrável em [, ]. Substituindo (4) nas integrais (5) e (6), temos para n a n = = = = cos αx cos nx dx cos αx cos nx dx (cos(α + n)x + cos(α n)x) dx (α + n) sin(α + n) + sin(α n) (α n) (α n) + sin α cos n (α + n) α sin α cos n α 2 n2 = 2( )n α sin α, (7) α 2 n2 onde usamos a paridade do integrando e as relações trigonométricas cos αx cos nx = (cos(α + n)x + cos(α n)x) /2 sin(α ± n) = sin α cos n ± cos α sin n = sin α cos n ; Devido a paridade do integrando, os coeficientes ímpares se anulam: b n = cos αx sin nx dx =. (8) 3

4 Para n =, a = cos αx dx cos αx dx = 2 sin α. (9) α Substituindo os a n s e b n s em (3), a série de Fourier de f(x) pode ser escrita como Sf(x) = α sin α + 2α sin α ( ) n cos nx. () α 2 n2 Note que, devido a f(x) ser par, os coeficientes c n da série de Fourier () de f complexa tem a mesma paridade: c n = c n (veja Proposição. do texto Complementos em marchett/fismat, Notas de Aula). Por conta disso, podemos concluir da periodicidade e paridade de f(x) que a série de Fourier Sf(x) de f(x) é uma função periódica e par e a mesma expressão () seria obtida caso empregassemos esta forma. (ii) Com base neste fato, evidente pela expansão (), vamos mostrar (por contradição) que Sf(x) é contínua nos pontos extremos ± do intervalo [, ]. Suponhamos que Sf(x) seja descontinua em x =, isto é, Sf( + ) Sf( ). Então, pela periodicidade de Sf(x), Sf( +) = Sf( +) e, pela hipótese de descontinuidade, Sf( +) Sf( ), em contradição com sua paridade: Sf( x) = Sf(x) em x =. (iii) Suponhamos que Sf(x) convirja para f(x) (veja ítem (v)), isto é, que a sequência de séries parciais (S N f(x)) N converge para f(x) qualquer que seja x R. Tomando x = na igualdade f(x) = Sf(x), temos cos α = α sin α + 2α sin α α 2 n 2 onde usamos cos 2 n = ( ) 2n =. Para α / Z, sin α e podemos dividir a igualdade por esta quantidade concluindo cot α = α 2α n 2 α 2 (iv) Fazendo α = /2 na última igualdade, temos cot /2 = cos /2 sin /2 = e n 2 (/2) 2 4 4n 2 de onde se conclui 4n 2 = 2. 4

5 (v) Pelo teste M de Weierstrass Sf(x) é uniformemente convergente em [, ] se a série majorante de () M n = α + 2 α n 2 α 2 n= cujos coeficientes satisfazem < 2 c n = a n M n, devido a sin α, for convergente. A série n2 α 2, por sua vez, é majorada da seguinte forma. Seja n α o inteiro n mais próximo de α e defina C = (α/nα ) 2. Note que < C <. Temos n= M n = α + 2 α que é finita pelo teste da convergência integral n 2 (α/n) 2 α + 2 α C n + 2 x dx = 2. 2 Por outro lado, a série de Fourier Sf(x) converge uniformemente para f(x) pela unicidade das funções f s, periódicas e contínuas, que possuem coeficientes de Fourier dados por (9), (7) e (8). n 2 5

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4 CAPÍTULO 9 Exercícios 9.. Ï0, x e. Seja f( x) Ìx, se x0 Ó, se 0x Temos È 0 f x dx x dx dx ( ) Í ( ) Î 0 È 0 ù an f x dx x dx dx ( ) cos Í Î ( ) cos cos ú 0 û n n n an È cos sen ù Ê cos ˆ ÎÍ n ûú Ë È 0

Leia mais

Departamento de Matemática da Universidade de Aveiro

Departamento de Matemática da Universidade de Aveiro Departamento de Matemática da Universidade de Aveiro ANÁLISE MATEMÁTICA II 7/8 Folha 4 - soluções: Séries de Fourier; notação complexa. Vamos mostrar que se f e g são funções periódicas de período T, fg

Leia mais

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2) Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A Séries de Fourier Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke As séries de Fourier são a ferramente básica para se representar as funções periódicas, as quais desempenham um importante

Leia mais

35 a Aula AMIV LEAN, LEC Apontamentos

35 a Aula AMIV LEAN, LEC Apontamentos 35 a Aula 4.1.1 AMIV LEAN, LEC Apontamentos (icardo.coutinho@math.ist.utl.pt) 35.1 Série de Fourier na forma de exponenciais complexas Seja f definida em [, ], parasimplificar notação, integrável neste

Leia mais

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1 Séries de Fourier Matemática Aplicada Artur M. C. Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 14/15 1 1 versão 16 de Dezembro de 17 Conteúdo 1 Séries de Fourier...............................

Leia mais

Séries de Fourier. Victor Rios Silva

Séries de Fourier. Victor Rios Silva Séries de Fourier Victor Rios Silva victorrios@live.com Universidade Federal Fluminense (UFF) Instituto de Matemática (IM) Departamento de Matemática Aplicada (GMA) Rua Mário Santos Braga, S/N Valonguinho

Leia mais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu

Leia mais

Convergência de séries de Fourier

Convergência de séries de Fourier Recorde-se que: Convergência de séries de Fourier Sendo f uma função definida num intervalo a,b, excepto, eventualmente, num número finito de pontos, diz-se que f é seccionalmente contínua em a, b se:

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos

Leia mais

Polinómio e série de Taylor

Polinómio e série de Taylor Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação

Leia mais

5.3 Séries (trigonométricas) de Fourier

5.3 Séries (trigonométricas) de Fourier Derivando termo a termo, obtemos (cosx) = ( 1) n x n 1 (n 1)! = ( 1) n+1 x n+1 (n+1)! n=0 = senx, x R. Analogamente também se obteria (senx) = n=0 ( 1) n xn (n)! = cosx, x R. Recorrendo às séries confirmamos

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT o Teste (VA) - 8 de Janeiro de 8-8: às : Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam

Leia mais

Substituição trigonométrica hiperbólica. Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso

Substituição trigonométrica hiperbólica. Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso MÓDULO - AULA 30 Aula 30 Técnicas de integração Miscelânea Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso significa que você está completando boa parte desta jornada. Você já enfrentou

Leia mais

Nome: Erick Bordallo Tavares. Turma: 14:00 às 16:00hs. Professor: Altair

Nome: Erick Bordallo Tavares. Turma: 14:00 às 16:00hs. Professor: Altair Nome: Erick Bordallo Tavares Turma: 14:00 às 16:00hs Professor: Altair 1. SÉRIES DE FOURIER 1.1. FUNÇÕES PERIÓDICAS Exemplo: Uma função f(x) é dita periódica com um período T se f(x+t) = f(x) para qualquer

Leia mais

Material Básico: Calculo A, Diva Fleming

Material Básico: Calculo A, Diva Fleming 1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de

Leia mais

SÉRIE DE FOURIER. Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos Niterói RJ, CEP

SÉRIE DE FOURIER. Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos Niterói RJ, CEP SÉRIE DE FOURIER LUCAS NOBREGA CANELAS COSTA GUIMARÃES NATÃ DOS SANTOS LOPES GOMES RICARDO DE ALMEIDA CARVALHO WERTES MOTTA OLIVEIRA Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos

Leia mais

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o

Leia mais

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier AULA DE APOIO - 1 FÍSICA MATEMÁTICA I A transformada de Fourier Assuntos da aula 1 Visão geral Motivações Linearidade e limitação uniforme 2 3 Translações, modulações, continuidade e etc. Física-Matemática.

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Paridade das Funções Seno e Cosseno Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

2 ā Prova de MAT0220 Cálculo IV - IFUSP 2 ō semestre de /11/09 Prof. Oswaldo Rio Branco de Oliveira

2 ā Prova de MAT0220 Cálculo IV - IFUSP 2 ō semestre de /11/09 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : ā Prova de MAT00 Cálculo IV - IFUSP ō semestre de 009-3//09 Prof. Oswaldo Rio Branco de Oliveira GABARIT O Q 3 4 5 6 Total N JUSTIFIQUE TODAS AS PASSAGENS BOA SORTE. Determine os valores

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO SÉRIES DE FOURIER Felipe do Carmo Amorim Fernando Soares Alves Marcelo da Rocha Lopes Engenharia Mecânica RESUMO Apresentam-se no artigo que segue os conceitos sobre função periódica, séries trigonométricas,

Leia mais

Capítulo 4 Séries de Fourier

Capítulo 4 Séries de Fourier Capítulo 4 Séries de Fourier Dizemos que representamos uma função real ela se expressa na série em série de Fourier quando os coeficientes são chamados de coeficientes de Fourier. Claro, a série de Fourier

Leia mais

Convergência das Séries de Fourier

Convergência das Séries de Fourier Convergência das Séries de Fourier Elton Gastardelli Kleis 6 de outubro de 010 1 1 Palavras-Chave Séries de Fourier, convergência de séries e convergência Resumo O objetivo do presente artigo é estudar

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 11.º ano Ano Letivo de 2016/2017 Manual adotado: Máximo 11 Matemática A 11.º ano Maria Augusta Ferreira

Leia mais

Notas de Análise Real. Jonas Renan Moreira Gomes

Notas de Análise Real. Jonas Renan Moreira Gomes Notas de Análise Real Jonas Renan Moreira Gomes 6 de novembro de 2008 ii Sumário 1 Séries de Fourier 1 1.1 Produto Hermitiano......................... 1 1.1.1 Definições........................... 1 1.1.2

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

INTEGRAIS IMPRÓPRIAS

INTEGRAIS IMPRÓPRIAS Teoria INTEGRAIS IMPRÓPRIAS Intervalos Infinitos: Seja f integrável em [a, t], para todo t > a. Definimos + a f(x)dx = lim t + t a f(x)dx. Tal limite denomina-se integral imprópria de f estendida ao intervalo

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1)) GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais

Análise de Sinais no Tempo Contínuo: A Série de Fourier

Análise de Sinais no Tempo Contínuo: A Série de Fourier Análise de Sinais no Tempo Contínuo: A Série de Fourier Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Análise Complexa e Equações Diferenciais Exame - 9 de Janeiro de 8 MEC Resolução. A imagem da região { z C : Rz < e 3 8 < Iz < 8} por z e z é { z C : < z < e 3 } 4 < argz

Leia mais

Provas de Análise Real - Noturno - 3MAT003

Provas de Análise Real - Noturno - 3MAT003 Provas de 2006 - Análise Real - Noturno - 3MAT003 Matemática - Prof. Ulysses Sodré - Londrina-PR - provas2006.tex 1. Definir a operação ϕ entre os conjuntos A e B por ϕ(a, B) = (A B) (A B). (a) Demonstrar

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Comprimento de Arco, o Número π e as Funções Trigonométricas

Comprimento de Arco, o Número π e as Funções Trigonométricas Comprimento de Arco, o Número π e as Funções Trigonométricas J. A. Verderesi Apresentaremos a seguir a medida de um ângulo como limite de poligonais inscritas e circunscritas à circunfêrencia unitária,

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA QUINTA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Iniciamos a aula definindo as funções trigonométricas e estabelecendo algumas de suas propriedades básicas. A seguir, calcularemos

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Definição: Uma sucessão de números reais é uma aplicação u do conjunto dos números inteiros positivos,, no conjunto dos números reais,. A expressão u n que associa a cada n a sua imagem designa-se

Leia mais

exercícios de análise numérica II

exercícios de análise numérica II exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

Números Complexos. Professores Jorge Aragona e Oswaldo R. B. de Oliveira

Números Complexos. Professores Jorge Aragona e Oswaldo R. B. de Oliveira úmeros Complexos Professores Jorge Aragona e Oswaldo R. B. de Oliveira Capítulo ÚMEROS COMPLEXOS 2 Capítulo 2 POLIÔMIOS 3 Capítulo 3 SEQUÊCIAS E TOPOLOGIA 4 Capítulo 4 O TEOREMA FUDAMETAL DA ÁLGEBRA E

Leia mais

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas.

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas. PROVA EXTRAMUROS-MESTRADO - 2016 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) A parte I (duas questões dissertativas) corresponde a 25%

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

Séries de Termos Não-Negativos

Séries de Termos Não-Negativos Séries de Termos Não-Negativos Em geral não é possível calcular explicitamente a soma duma série. O que podemos fazer é perceber se ela converge ou diverge e neste último caso, calcular aproximadamente

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

Sistemas Lineares. Aula 9 Transformada de Fourier

Sistemas Lineares. Aula 9 Transformada de Fourier Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

LIMITES E CONTINIDADE

LIMITES E CONTINIDADE MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função

Leia mais

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI)

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Análise Matemática I o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Campus da Alameda 5 de Janeiro de 2003 LEC, LET, LEN, LEM, LEMat, LEGM Apresente todos os cálculos e justificações

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Escolas João de Araújo Correia ORGANIZAÇÃO DO ANO LETIVO 16 17 GESTÃO CURRICULAR DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA A 11º ANO 1º PERÍODO ---------------------------------------------------------------------------------------------------------------------

Leia mais

Portanto, = 4 1= 2. LETRA D

Portanto, = 4 1= 2. LETRA D TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais Séries de Fourier Série de Fourier Qualquer função periódica f(t) pode ser representada por uma

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Diferenciais em Série de Potências

Diferenciais em Série de Potências Existência de Soluções de Equações Diferenciais em Série de Potências Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/ regi 0 de julho de

Leia mais

Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo

Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Modos de convergência Teoria da Medida e Integração (MAT505) Modos de convergência. V. Araújo Instituto de Matemática, Universidade Federal da Bahia Mestrado em Matemática, UFBA, 2014 Modos de convergência

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Expansão de funções em série de Taylor

Expansão de funções em série de Taylor Epansão de funções em série de Talor Hudson Pimenta Silveira I. INTRODUÇÃO Neste teto, introduzirei um recurso frequentemente usado em problemas de Física: a epansão de funções em série de Talor. Muito

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br PRIMEIRO LIMITE FUNDAMENTAL

Leia mais

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios

Leia mais

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! =

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! = 0 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE 09- PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. Para cada questão, assinale uma alternativa como a resposta correta. NOME DO(A) ESTUDANTE: UNIVERSIDADE:. O fatorial

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

ESCOLA SECUNDÁRIA DA AMADORA. Conteúdos programáticos/unidades

ESCOLA SECUNDÁRIA DA AMADORA. Conteúdos programáticos/unidades ESCOLA SECUNDÁRIA DA AMADORA Curso Científico-Humanístico de Ciências e Tecnologias e de Ciências Socioeconómicas 018/019 Disciplina de Matemática A - 11ºAno Planificação Anual e Critérios de Avaliação

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV ANÁLISE MATEMÁTICA IV (2 ō semestre 2006/07) LEC e LEGM Professor Responsvel: Maria João Borges http://www.math.ist.utl.pt/ mborges/amiv Sumários das Aulas Teóricas Aula 37: (05/06) Aula 36: (04/06) Continuação

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO 018/019 DISCIPLINA: Matemática A ANO: 11º CURSO GERAL DE CIÊNCIAS E TECNOLOGIAS Total de aulas previstas: 15 Mês Unidades Temáticas Conteúdos Conteúdos programáticos Descritores N.º Aulas Avaliação Primeiro

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. Extensão da definição das razões trigonométricas aos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. Extensão da definição das razões trigonométricas aos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Modos de convergência V. Araújo Mestrado em Matemática, UFBA, 2014 1 Modos de convergência Modos de convergência Neste ponto já conhecemos quatro modos de convergência

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais