f ( t) e F( z) dz, t

Tamanho: px
Começar a partir da página:

Download "f ( t) e F( z) dz, t"

Transcrição

1 Fórmula Complexa de Inversão Agora possuímos o ferramental matemático necessário para obtermos a inversão efetiva da transformada de aplace. A inversão é obtida através da Fórmula Integral de Bromwich. Definição: Se F(s) = [f (t)](s), então f ( t) e F( ) d, t i (FI) i OBS: Tem-se que st F( s) e f ( t) dt. Complexificando a variável independente, ou seja, faendo s = = x+iy, obtem-se que ( xiy) t xt xt ( ) ( ) ( cos sen ) ( ) F e f t dt e yt ie yt f t dt xt xt f ( t) e cos ytdt i f ( t) e sen ytdt u( x, y) iv( x, y) Como f E então C >, α tq. xt f ( t) e cos ytdt t ( x ) t C f ( t) Ce, t C e dt, x. xt f ( t) e sen ytdt x ogo, u e v estão bem definidos na faixa e() > α. Por outro lado, usando eibni xt xt ux ( x, y) f ( t) e cos ytdt tf ( t) e cos ytdt x xt xt uy ( x, y) f ( t) e cos ytdt tf ( t) e sen ytdt y xt xt vx ( x, y) f ( t) e sen ytdt tf ( t) e sen ytdt x xt xt vy ( x, y) f ( t) e sen ytdt tf ( t) e cos y ytdt De modo que, u x,u y,v x e v y são contínuas em ]α,[ e satisfaem as equações de Cauchy- Riemann. Portanto, F() é analítica em e() >α. Paulo Marcelo Dias de Magalhães - UFOP Página 46

2 (FI) é o método direto para obtenção de - [F()](t). A integração é efetuada ao longo da reta e() =, onde é tal que as singularidades de F() estão à esquerda de e() =. Origem da Fórmula (FI): Trata-se de uma generaliação da Fórmula Integral de Cauchy para retas e() = no caso em elas são a fronteira do semi-plano aonde f () é analítica. Para isso necessitaremos ter alguma informação sobre o comportamento de f () para arbitrariamente grande. Definição: f () é de ordem quando, se M, r > tais que; f ( ) M, se r. Notação: f () = O( ). Teorema: (Integral Imprópria de Cauchy) Hip: f () analítica sobre o semi-plano e() e f () = O( ), >. Tese: Se e( ) >, então f ( ) f ( iy) f ( ) d dy ( ) ( ) i i iy De modo que, se F() é analítica em e(), F() = O( ), >, >>, tem-se que Prova: i F () F( ) d,, e( ). i ( ) Seja C R o arco: x do círculo = R, onde R > e R >. De modo que, int(c R {x = }). Definindo β=(r γ ) / tem-se, pela Fórmula Integral de Cauchy, que Paulo Marcelo Dias de Magalhães - UFOP Página 47

3 i i f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) i d i d d i d d ( { } ) ( ) ( ) ( ) ( ) CR x CR i CR i Quando C R tem-se que ; R- e como f ()<M, então se = R, R suficientemente grande (R >> ), obtem-se que f ( ) M M R ( R ),se R > r,p/algum r >>. Os integrandos em f ( ) na expressão acima são contínuos. O comprimento de C R é menor que R. Portanto, como f ( ) M M f ( ) d f ( ) d M d R ( ) R ( R ) R ( / R) C C CR Quando R, pois >. Além disso, como R = + a integral tb. converge para quando +. De modo que, tomando o limite + obtem-se que i f ( ) f ( iy) f ( iy) i iy i iy f ( ) lim d lim dy dy ( ) ( ) ( ) Então, procedendo formalmente, obtem-se que i F( ) i f ( t) [ F( s)]( t) [ d]( t) F( ) [ ]( t) d i ( s ) i s i i F( ) e d Contorno de Bromwich: Na prática a integral em (FI) é transformada numa integral de contorno Paulo Marcelo Dias de Magalhães - UFOP Página 48

4 f ( t) e F( ) d C B onde C B = {e = γ}é o contorno de Bromwich; Tem-se que T =(R γ ) / donde T se sé se R, donde it f ( t) lim i e F( ) d lim i e F( ) d i e F( ) d R it R C B OBS: Condição suficiente para que a integral sobre convirja para ero quando R: F( ) O( ) (CS) para algum >. Esta condição sempre ocorre quando, por exemplo, F()=p()/q(), para p e q polinômios com grau(p) < grau(q). Paulo Marcelo Dias de Magalhães - UFOP Página 49

5 Aplicação do teorema dos Resíduos à Inversão da Transformada de aplace: Se as singularidades de F() são pólos (ordem finita) à esquerda de uma reta e()= e, além disso, tivermos no contorno de Bromwich, então Exemplo: Calcule e F( ) d, qdo. R f ( t) Re s( e F( ) : ), pólo de F( ). [ ]( t), a. s a Tem-se que F(s) = p(s)/q(s) com a pólo simples e grau(p)= < =grau(q). Então F atende a condição suficiente (CS), donde e e at [ ]( t) Re s( : a) a ( a) lim( a) e. s a a a a Exemplo: Calcule [ ]( t). ( s)( s) Tem-se que F atende (CS), donde e [ ]( t) Re s( : ) ( s )( s ) ( )( ) Polos de e F(): e e ( ordem ) Re s( e F( ) : ) a lim( ) ( )( ) 9 Assim, d e ( ordem ) Re s( e F( ) : ) a lim [( ) ] d ( )( ) d e te ( ) e t lim ( ) lim ( ) e d ( ) 3 9 t t Paulo Marcelo Dias de Magalhães - UFOP Página 5

6 t e [ ]( t) ( t ). ( s)( s ) 3 3 Exemplo: Calcule s [ ]( t). 3 ( s) ( s) e Polos de : 3 ( ) ( ) d e ( ordem 3) Re s( e F( ) : ) lim! [ ] a d ( ) d ( t) e ( ) e ( ) d ( t) e ( ) e ( ) lim [ ] 4 lim [ ] 4 d ( ) d ( ) 3 d ( ) te e ( ) lim [ 4 ] d ( ) [( )( ) te e ]( ) e [( ) t( ) ]4( ) ( ) 4 3 lim 8 t t 4 t 3 6 t 5 t 7 t [( t)4te e ] e [ 4 t]4( ) ( t) te e te 8 8 t t t t t t t ( t) te e te te t e e te t t ( ). 3 e d e ( e te )( ) 3 e ( ) ( ordem) Re s( e F( ) :) lim [ ] lim[ ] 3 6 d ( ) ( ) 3 t t t ( t) e 3. e ( t) t 3 t e e e t ( ). De modo que, Exemplo: Calcule s t [ ]( t) ( t ) e (t ) e. ( s) ( s) t [ ]( t). ( s ) OBS: ( s ) ( s i) ( s i) Paulo Marcelo Dias de Magalhães - UFOP Página 5

7 e Pólos de ( i) ( i) : d e te ( i) e ( i) i i 4 i ( ordem) Re s( e F( ) : i) lim [ ] lim[ ] d ( i) ( i) it it 4te 4ie t(cos t isen t) i(cost isen t) ( t cos t sent) i(cost tsen t) 4 d e te ( i) e ( i) i i 4 i ( ordem) Re s( e F( ) : i) lim [ ] lim[ ] d ( i) ( i) it it 4te 4ie [ t(cost i sen t) i(cost i sen t)] [( t cost sen t) i( t sent cos t)] ogo, [ ]( ) [sen cos ]. ( s ) t t t t Funções Plurívocas e Pontos de Ramificações: Dado, a função f ( ) (cos isen ), Arg associa a cada dois valores distintos, ; (cos isen ), [cos( ) isen( )] De modo que, não é uma função unívoca (ou seja, univalente). Ela é uma função multívoca a dois valores (bivalente). Paulo Marcelo Dias de Magalhães - UFOP Página 5

8 plano plano w Definição: Um ramo de uma função multivalente f é uma função univalente que é analítica em alguma região e cujos valores em cada ponto dessa região coincidem com os valores de f. Exemplo: A função f ( ) (cos isen ), i f é { re : r } é um ramo da função f (). A região de analiticidade de Tem-se que no eixo-real negativo ],[, f nem sequer é contínua uma ve que ; De modo que, i se f ( ) i r, e se, f ( ) i r, re. lim f ( ),. Definição: O eixo-real negativo { re i : r } f()= e a origem é um ponto de ramificação de f()=. OBS: Todo os pontos do semi-eixo { re i : r } são pontos singulares não são isolados. é denominado um corte da ramificação de são pontos singulares de, e portanto A função f ( ) cos isen, 3, é um segundo ramo de. Tem-se que, ], [ ; Paulo Marcelo Dias de Magalhães - UFOP Página 53

9 ( ) ( ) f( ) cos i sen cos( ) isen( ) cos isen f ( ) Na verdade, existe um número infinito (enumerável) de ramos dados por f ( ) cos isen,( ) ( ),. OBS: Pode-se usar qualquer outra semi-reta { re i : r } como corte de ramificação. Neste caso, os ramos podem ser dados por f ( ) cos isen,( ) ( ),. Vamos relembrar a seguinte Definição:,o -ésimo ramo da função logaritmo de é dado por log log i arg,( ) arg ( ). A função valor principal de log é dado por onde Arg é o argumento principal de og log i Arg ; Arg OBS: log log( i i re ) log r log( e ) log r i. Definição: A função multivalente ogaritmo de um número complexo é uma família infinita enumerável de funções dada por todos os ramos; Propriedades: og {log : } {log iarg i : }. (P) i og é descontínua sobre o corte { re : r }. (P) i og é analítica { re : r } e d log,. d (P3) Um ramo difere de qualquer outro por um múltiplo inteiro de. Paulo Marcelo Dias de Magalhães - UFOP Página 54

10 Com isto podemos definir a seguinte função que esclarecerá porque a função não pode ser definida em. Definição:,, defini-se a função como sendo a coleção infinita enumerável de todos os ramos log ( ) e,( ) arg ( ),. O valor principal de é dado pela função og e,. Propriedades:, e um particular ramo log ; (P) é analítica onde log é analítica. (P) d d. (P3). (P4) (P5) ( i) ( ) e,p/ algum.. Aplicação ao calculo de integrais: Exemplo: Calcule a família de integrais impróprias p x I( p) dx, p. x Complexificando o integrando obtem-se a função Então, sobre o semi-eixo { re : r } p f ( ), p. p ( ) p ( p)log ( p)[log i ] ( p)log i( p) e e e e,,,, De modo que, é ponto de ramificação. Tomando como corte de ramificação o semi-eixo { re : r } e integrando f () sobre o seguinte contorno fechado Paulo Marcelo Dias de Magalhães - UFOP Página 55

11 Tem-se que o integrando possui um pólo simples em int( C) com p Re s( f ( ) : ) lim( ) ( ) ( e ) e ( ) Aplicando o Teorema dos Resíduos, obtem-se que Por outro lado, tem-se que C C p d i( p) ie. p i p i( p) p p p p p d d d d d AB BC CD DA { re : r } OBS: Sobre tem-se que, Sendo assim, obtem-se que xe iarg x,sobre AB xe,sobre CD x ( Re ) ( xe ) ( re ) x Re xe re R p i p r p i p i i ( p) i dx ire d dx ire d ie i i r R OBS: Paulo Marcelo Dias de Magalhães - UFOP Página 56

12 ( p) i ( p) i ( p)log Ri( p) i log R i( p) i p p ( R e ) ir e e ir e e e R ie R R i i i i R e R e R e Re R M M,para R, M. p R M Como se tem Então ( re ) ire e d ir d ;onde re ( re ) r,se r. re re i p i ip p i i i i ( Re ) ire M M d d, qdo. R. Re R R i p i i p p e ie ie d d d d, qdo. r. re re re r r ip ip i i i De modo que, passando os limites r, R, obtém-se que x e x dx dx ie x x p i( p) p ( p) i Ou seja x x e ( e ) dx ie dx x x ( e ) e e p p i ( p) i ( p) i( p) i ( p) i ( p) i ( p) p x i i dx i i p i i p i p i p x e e e e e e sen p Paulo Marcelo Dias de Magalhães - UFOP Página 57

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

1 a Lista de Exercícios de Métodos Matemáticos II

1 a Lista de Exercícios de Métodos Matemáticos II a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i

Leia mais

Sistemas lineares. Aula 7 Transformada Inversa de Laplace

Sistemas lineares. Aula 7 Transformada Inversa de Laplace Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

Lista 4 - Métodos Matemáticos II

Lista 4 - Métodos Matemáticos II Lista 4 - Métodos Matemáticos II Prof. Jorge Delgado. alcule Res f () da função f () dada. + ; (b) cos cot ; (c) ; (d) senh 4 4 ( ). Solução. ; (b) ; (c) 45 ; (d) 7 6.. Usando o teorema do resíduo verifique

Leia mais

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec

Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matem tica SecÁ o de Álgebra e Análise ANÁLISE MATEMÁTICA IV 1 o Teste Cursos: LCI, LEAmb, LEBL, LEGM, LEIC, LEM, LEMat, LEMG, LEQ, LQ Justifique cuidadosamente

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h, Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

1 a Lista de Exercícios de Cálculo VIII

1 a Lista de Exercícios de Cálculo VIII a Lista de Eercícios de Cálculo VIII. Simplifique: [ ] + i a + i i b 4 i c + i 6 i + i d i 4 e eπi f i e πi e +πi. Encontre todos os valores de C tais que: a i 0 b + i c + i d 6 + 64 0 e i 8 f 4/. Seja

Leia mais

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c)

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c) VAIÁVEL COMPLEXA 4. INTEGAÇÃO COMPLEXA 4. Função Complexa de uma Variável eal. Calcule as seguintes integrais: =4 e it dt e wt dt; (e w > ) (c) 2 e imt e int dt; m; n 2 : 2. Calcule as integrais trigonométricas:

Leia mais

Aula 6 Transformada de Laplace

Aula 6 Transformada de Laplace Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma

Leia mais

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 ) ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função

Leia mais

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015 Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy

Leia mais

LOM3253 Física Matemática 2017 S2

LOM3253 Física Matemática 2017 S2 LOM3253 Física Matemática 2017 S2 Parte 2. Funções de variável complexa Prof. Dr. Viktor Pastoukhov EEL-USP Subconjuntos no plano complexo Geometria Analítica no plano complexo Geometria Analítica no plano

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010 Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe

Leia mais

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato

Leia mais

1 Primeira lista de exercícios

1 Primeira lista de exercícios 1 Primeira lista de exercícios Números complexos, derivadas e integrais. 1. Ache todos os valores das seguintes raízes: (a) (2i) 1=2 (b) ( i) 1=3 (c) 8 1=6 2. Descreva geometricamente cada uma das regiões

Leia mais

II. REVISÃO DE FUNDAMENTOS

II. REVISÃO DE FUNDAMENTOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019 ACED Análise Complexa e Equações Diferenciais MEC Michael Paluch 1 o Semestre 2018/2019 17 a Aula 17.1 Teorema de Cauchy Recordamos que a imagem de um caminho seccionalmente de classe C 1 chamase uma curva

Leia mais

Lista 1 - Métodos Matemáticos II Respostas

Lista 1 - Métodos Matemáticos II Respostas Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele

Leia mais

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2 SUMÁRIO CAPÍTULO 1 NÚMEROS COMPLEXOS 1 Somas e produtos 1 Propriedades algébricas básicas 3 Mais propriedades algébricas 5 Vetores e módulo 8 Desigualdade triangular 11 Complexos conjugados 14 Forma exponencial

Leia mais

Funções analíticas LISTA DE EXERCÍCIOS

Funções analíticas LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?

Leia mais

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa. UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função

Leia mais

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha INTEGRAIS DE LINHA INTRODUÇÃO: Temos como objetivo definir uma integral que é semelhante a uma integral simples, exceto que ao invés de integrarmos sobre um intervalo [a,b], integramos sobre uma curva

Leia mais

Sistemas lineares. Aula 6 Transformada de Laplace

Sistemas lineares. Aula 6 Transformada de Laplace Sistemas lineares Aula 6 Transformada de Laplace Introdução Transformada de Laplace Convergência da transformada de laplace Exemplos Região de Convergência Introdução Transformações matemáticas: Logaritmo:

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições

Leia mais

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan GABARITO 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan (Valor 3.) Questão 1: Responda às seguintes questões, usando as equações de Cauchy-Riemann. (1.5) (a) Mostre que a função

Leia mais

2 Transformada inversa numérica de Laplace

2 Transformada inversa numérica de Laplace 2 ransformada inversa numérica de Laplace Neste capítulo damos uma breve descrição da transformada de Laplace e a transformada inversa de Laplace, dando ênfase aos métodos numéricos para calcular a transformada

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Lista 3 - Métodos Matemáticos II

Lista 3 - Métodos Matemáticos II Lista 3 - Métodos Matemáticos II Prof. Jorge Delgado. Seja a curva poligonal de vértices 2( + i), 2( + i), 2( + i) e 2( i) orientada positivamente. Use a fórmula integral de auchy para verificar que: e

Leia mais

PROVAS DE ANÁLISE COMPLEXA

PROVAS DE ANÁLISE COMPLEXA PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Análise Matemática IV Problemas para as Aulas Práticas 4 de Abril de 5 Semana 3. Determine os valores dos seguintes integrais: a) z dz em que é o semicírculo percorrido em sentido directo unindo i a i.

Leia mais

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

INTEGRAIS IMPRÓPRIAS

INTEGRAIS IMPRÓPRIAS Teoria INTEGRAIS IMPRÓPRIAS Intervalos Infinitos: Seja f integrável em [a, t], para todo t > a. Definimos + a f(x)dx = lim t + t a f(x)dx. Tal limite denomina-se integral imprópria de f estendida ao intervalo

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro 2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas

Leia mais

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

Introdução às superfícies de Riemann

Introdução às superfícies de Riemann Introdução às superfícies de Riemann Sylvain Bonnot Fevereiro 2015 Nessa primeira aula vamos apresentar o conteúdo do curso, os principais resultados e as definições basicas com primeiros examplos de superfícies

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV o Teste do 1 o semestre de 04/05 cursos: LEAm, LEBl, LEQ, LQ, LEIC, LEM, LEMat, LEGM, LEAN e LEC

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Transformada de Laplace. Transformada de Laplace (CP1) DEQ/UFSCar 1 / 76

Transformada de Laplace. Transformada de Laplace (CP1)  DEQ/UFSCar 1 / 76 Transformada de Laplace Transformada de Laplace (CP) www.professores.deq.ufscar.br/ronaldo/cp DEQ/UFSCar / 76 Roteiro I Introdução Definição da Transformada Transformada de Laplace de Algumas Funções Transformada

Leia mais

ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA

ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA VIII- CAPÍTULO VIII ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA 8.- INTRODUÇÃO O método da resposta em freqüência, nada mais é que a observação da resposta de um sistema, para um sinal de entrada senoidal,

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t)

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t) Assunto: Regra da cadeia UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16 Palavras-chaves: derivada,derivadas parciais, função composta, regra da cadeia Regra da Cadeia Os teoremas que

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Mais Alguns Aspectos da Derivação Complexa

Mais Alguns Aspectos da Derivação Complexa Mais Alguns Aspectos da Derivação Complexa META: Introduzir o conceito de funções holomorfas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir funções holomorfas e determinar se uma

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Aula 14. Regra da cadeia

Aula 14. Regra da cadeia Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV ANÁLISE MATEMÁTICA IV (2 ō semestre 2006/07) LEC e LEGM Professor Responsvel: Maria João Borges http://www.math.ist.utl.pt/ mborges/amiv Sumários das Aulas Teóricas Aula 37: (05/06) Aula 36: (04/06) Continuação

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.5 Regra da Cadeia Nesta seção, aprenderemos sobre: A Regra da Cadeia e sua aplicação em diferenciação. A REGRA DA CADEIA Lembremo-nos de que a Regra

Leia mais

Análise Matemática II TESTE/EXAME

Análise Matemática II TESTE/EXAME Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas

Leia mais

PARTE 10 REGRA DA CADEIA

PARTE 10 REGRA DA CADEIA PARTE 10 REGRA DA CADEIA 10.1 Introdução Em Cálculo 1A, quando queríamos derivar a função h(x = (x 2 3x + 2 37, fazíamos uso da regra da cadeia, que é uma das mais importantes regras de derivação e nos

Leia mais

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 RICARDO SA EARP (1) Considere S 3 = {(z 1, z 2 ) C 2 ; z 1 2 + z 2 2 = 1}. seja q um inteiro q > 1. Seja Γ = {1, e 2π1/q,..., e 2π(q 1)/q }, o grupo finito agindo

Leia mais

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná Ministério da Educação Universidade Tecnológica Federal do Paraná ampus ampo Mourão Números omplexos álculo Diferencial e Integral III WELLINGTON JOSÉ ORRÊA ampo Mourão, Paraná Brasil Sumário Wellington

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais