2 Transformada inversa numérica de Laplace
|
|
|
- Lucas Gabriel Barros Câmara
- 8 Há anos
- Visualizações:
Transcrição
1 2 ransformada inversa numérica de Laplace Neste capítulo damos uma breve descrição da transformada de Laplace e a transformada inversa de Laplace, dando ênfase aos métodos numéricos para calcular a transformada inversa de Laplace. Para isto, descrevemos de forma sucinta alguns métodos numéricos propostos por alguns autores. 2.1 ransformada de Laplace A transformada de Laplace é um operador linear L pertencente à família das integrais de transformação. Seja f(t) uma função não periódica e definida para todo t ; define-se a transformada de Laplace de f(t) como: L{f(t)} = f(t)e st dt, onde s = a + iω. (2-1) A transformada de Laplace da função f(t) (dependente de t) é geralmente denotada por: F(s) = L{f(t)}. (2-2) Observe que a transformada de Laplace é dependente da variável s. As vezes, em lugar de F(s) também escreve-se f(s). Diz-se que a transformada de Laplace de f(t), existe quando a integral (2-1) converge para algum valor de s. Para a existência da transformada de Laplace é suficiente que satisfaça a seguinte proposição: Se f(t) é uma função contínua em trechos para t e além disso f(t) Me ct para todo t, onde M, c > e > são constantes, então L{f(t)} existe para s > c. Para fazermos uso da técnica da transformada de Laplace na solução das equações diferenciais ordinárias ou parciais com valores iniciais os seguintes passos são usuais: 1. Usar a equação (2-1) para transformar o problema inicial (em função de t), para um problema bem mais simples (em função de s).
2 Capítulo 2. ransformada inversa numérica de Laplace Resolver esse problema simples e encontrar F(s) 3. Finalmente, recuperar a função desejada f(t) mediante a transformada inversa de Laplace Uma outra propriedade importante ao aplicarmos a transformada de Laplace é a seguinte: Se L{f(t)} = F(s) e f n (t) é a n-ésima derivada de f, então L{f n (t)} = s n F(s) s n 1 f() s n 2 f () sf (n 2) () f (n 1) () (2-3) sempre que f(t), f (t),...,f n 1 (t) sejam contínuas para t N e de ordem exponencial para t > N com f (n) sendo seccionalmente contínua para t N. 2.2 ransformada inversa de Laplace Se L{f(t)} = F(s) então escrevemos como L 1 a função que transforma F(s) em f(t). Ou seja, f(t) = L 1 {F(s)} (2-4) e dizemos que f(t) é a transformada inversa de Laplace de F(s). A transformada inversa de Laplace é definida formalmente pela seguinte integral de inversão: f(t) = 1 a+i F(s)e st ds (2-5) 2πi a i onde a é uma constante maior que qualquer ponto singular de F(s), f(t) = para t <. Este resultado é conhecido como fórmula de inversão complexa, ou também como fórmula integral de Bromwich e fornece um método direto para obter a transformada inversa de Laplace de uma função dada F(s). Vejamos isto na seguinte seção. 2.3 eorema de inversão de Bromwich Seja f(t) uma função continuamente derivável com f(t) < Ke γt onde K e γ são constantes positivas. Se definimos F(s) como F(s) = e st f(t)dt, Re(s) > γ (2-6)
3 Capítulo 2. ransformada inversa numérica de Laplace 18 então f(t) = 1 c+i 2πi lim e st F(s)ds, onde c > γ. (2-7) c i A equação (2-7) também pode ser expressa como f(t) = 1 2πi c+i c i e st F(s)ds (2-8) Demonstração. Definimos I = I(, t) = 1 c+i e st F(s)ds. Logo 2πi c i I = 1 c+i e st F(s)ds = 1 c+i 2πi c i 2πi c i e st ( ) e su f(u)du ds = 1 ( c+i ) f(u) e s(t u) ds du (2-9) 2πi c i A mudança na ordem de integração é possível graças à convergência uniforme. Integrando em s segue que I = 1 2πi f(u) e(γ+i)(t u) e (γ i)(t u) t u du = 1 π e γ(t u) f(u) sen (t u) du (2-1) t u mudando a variável u = t + e substituindo ψ() = e γ f(t + ) na integral (2-1) temos I = 1 π t ψ() sen d (2-11) dividimos a integral (2-11) em duas parcelas, uma primeira I 1 correspondente à integração no intervalo [, [ e uma segunda I 2 correspondente à integração no intervalo [ t, ]. Ou seja I = I 1 + I 2. Escrevendo πi 1 da forma conveniente temos
4 Capítulo 2. ransformada inversa numérica de Laplace 19 ψ() sen δ sen δ ψ() ψ() d = ψ() d + sen d + X δ ψ() sen d + X ψ() sen d (2-12) escolhendo δ muito pequeno e X muito grande. emos que δ ψ() ψ() sen d < ǫ (2-13) X ψ() sen d < ǫ (2-14) considerando a integral X, após a integração por partes e considerando que δ cada termo envolve 1/ e sendo a integral limitada, obtemos X δ sen ψ() d = cos ψ() X δ + 1 X δ cos d d ( ψ() ) d = O(1/) (2-15) Seguindo de modo análogo para a integral δ, fazendo a mudança de X variável φ = obtemos δ ψ() sen δ sen φ d = ψ() φ dφ = ψ() π 2 + O(1/) (2-16) somando os resultados obtidos acima e fazendo obtemos t I 1 = 1 π lim ψ() sen d = 1 2 ψ() = 1 f(t) (2-17) 2 Expressamos πi 2 de forma análoga à equação (2-12). Para a parcela da obtemos o igualdade
5 Capítulo 2. ransformada inversa numérica de Laplace 2 t ψ() sen δ d = ψ() t sen d + ψ() δ sen d + δ ψ() ψ() sen d (2-18) A partir de um argumento similar segue que I 2 = 1 π lim sen ψ() d = 1 f(t) (2-19) t 2 Fazendo na equação (2-9) obtemos (2-7) e denotamos como I. Somando as duas parcelas da integral I = I 1 + I 2 segue que I = f(t) como queriamos demonstrar. 2.4 Métodos de transformada inversa numérica de Laplace Método de Bellman-Kalaba-Lockett (1966) O método proposto para inverter a transformada de Laplace, consiste em reduzir primeiro o intervalo infinito de integração [, ) a um intervalo finito [, 1], por meio de uma substituição de variáveis. Posteriormente empregase a fórmula de quadratura de Gauss-Legendre de n pontos para reduzir o problema de inversão a um sistema de n equações lineares algébricas. Lembrando que a transformada de Laplace de uma função é F(s) = e st f(t)dt, (2-2) fazendo a mudança de variável u = e t em (2-2) segue que F(s) = 1 u s 1 f( ln u)du. (2-21) Aplicando a fórmula da quadratura de Gauss-Legendre, a equação (2-21) é discretizada da seguinte forma F(s) N i=1 w i u s 1 i f( ln u i ) s = 1, 2,...,N (2-22)
6 Capítulo 2. ransformada inversa numérica de Laplace 21 onde u i, para i = 1, 2,..., N, são as raízes obtidas do polinômio de Legendre PN de grau N, w i são os pesos correspondentes. Se s assume N valores, por exemplo, s = 1, 2,..., N, então um sistema de N equações lineares é obtido com N valores desconhecidos de f( ln u i ), onde i = 1, 2,..., N. A solução desse sistema pode ser explicitamente resolvido tomando a forma f(t i ) N a (N) ik F(k) onde t i = ln u i (2-23) A equação (2-23) é a fórmula de inversão dada em (Bellman-1966), os coeficientes a (N) ik são tabulados para diferentes valores de N Método de R. Piessens (1968) É uma extensão do método de Bellman-Kalaba-Lockett (Bellman-1966), que tem como fórmula de inversão a equação (2-23). O inconveniente desse método é que só pode ser utilizado num número restrito de pontos. Para evitar essa dificuldade, o método propõe fazer uma mudança de escala da variável t, com este propósito, propõe a seguinte extensão de (2-23): f(t) N ϕ (N) k (e t )F(k) (2-24) onde ϕ (N) k é um polinômio de grau N 1. A equação (2-24) é obtida a partir da equação (2-25) que é uma função de interpolação generalizada de Lagrange da transformada de Laplace nos pontos s = 1, 2,..., N. F(s) N ( 1) N k (k + N 1)! [(k 1)!] 2 (N k)! N m=1, m k (s m) N 1 (s + m) m= F(k) (2-25) Invertendo a equação (2-25) obtemos a fórmula de inversão da transformada de Laplace (2-24). Onde N 1 ϕ (N) k (e t ) = m= ( 1) k+m+1 (N + k 1)!(N + m)!e mt [(K 1)!] 2 (N k)!(m!) 2 (N 1 m)!(k + m)! (2-26)
7 Capítulo 2. ransformada inversa numérica de Laplace Método de Dubner-Abate (1968) O método desenvolvido por Dubner e Abate, para inverter a transformada de Laplace, relaciona a integral de Fourier à transformada de Fourier de cosenos. Seja h : R R uma função tal que h(t) = para t <. A partir da função h definimos as funções periódicas pares g n (t) (de período 2, veja a figura 2.1), para cada n =, 1, 2,... como: h(2n t), para t [(n 1), n] g n (t) = h(t), para t [n, (n + 1)] (2-27) h(t) h(t) = e at f(t) 2 3 g (t) 2 3 g 1 (t) 2 3 g 2 (t) 2 3 Figura 2.1: Funções h(t) e g n (t) Para obter uma representação em série de Fourier para cada g n (t) reescrevemos (2-27) de tal forma que as g n (t) estejam definidas no intervalo (, ). Assim, para cada n =, 2, 4,... temos h(n t), t g n (t) = h(n + t), t (2-28)
8 Capítulo 2. ransformada inversa numérica de Laplace 23 e para cada n = 1, 3, 5,... temos h((n + 1) + t), t g n (t) = h((n + 1) t), t (2-29) por Logo, a representação de Fourier em termos de co-senos de g n (t) é dado para cada n =, 1, 2,..., onde g n (t) = A n, 2 + A n,k cos kπt (2-3) e A n,k = 2 A n,k = 2 h(n + x) cos kπx dx para n =, 2, 4,... (2-31) h((n + 1) x) kπx dx para n = 1, 3, 5,... (2-32) Após uma mudança de variável em (2-31) e (2-32) segue que A n,k = 2 (n+1) n h(t) cos kπt dt (2-33) Em (2-3), somando em termos de n obtemos g n (t) = 2 [ A(w ) + 2 n= A(w k ) cos kπt ] (2-34) onde A(w k ) = h(t) cos kπt dt e A(w k) é uma transformada de Fourier en termos de co-senos. Se introduzimos o seguinte fator de atenuação h(t) = e at f(t) (2-35) realmente A(w k ) é a transformada de Laplace da função f(t) com a variável de transformação sendo dado por s = a + kπ i. Ou seja A(w k) = Re{F(s)}. Portanto, da equação (2-34) segue que n= [ e at g n (t) = 2eat 1 2 Re{F(a)} + Re { F(a + kπi)} cos kπt ] (2-36) onde ambos lados da equação são multiplicados pelo fator de atenuação e at.
9 Capítulo 2. ransformada inversa numérica de Laplace 24 Note que (2-36) é já uma aproximação de f(t) em (, ), ou seja f(t) n= eat g n (t). A partir de (2-28) e (2-29) pode-se determinar n= eat g n (t) em (, ) e at g n (t) = e at h(2n + t) + e at h(2n t) (2-37) escrever n= n= Usando o fator de atenuação (2-35) e separando adequadamente podemos onde o erro ε é dado por ε = n= e at g n (t) = f(t) + ε (2-38) n= e [ 2an f(2n + t) + e 2ct f(2n t) ] (2-39) n=1 Denotando f(t) = n= eat g n (t), então f(t) = f(t) + ε (2-4) Dubner e Abate em (Dubner-Abate-1968) mostram que ε pode ser feito suficientemente pequeno apenas para t /2. Portanto concluem que no intervalo (, /2) uma aproximação da transformada inversa de Laplace pode ser achada, com o grau de exatidão que desejarmos, pela fórmula [ f(t) = 2eat 1 2 Re{F(a)} + ] Re{F(a + kπ kπt i)} cos (2-41) Método de Kenny Crump (197) O método de Kenny Crump é uma generalização do método de Dubner e Abate, lembre que esse método aproxima a transformada inversa por meio de séries de Fourier em termos de co-senos, pois considera a parte real Re{F(s)}. Entretanto, o método de Crump considera (além das séries de Fourier em cosenos) séries de Fourier em termos em senos, de tal forma que o erro seja menor ao obtido por Dubner e Abate. Para tal propósito considera a parte imaginária Im{F(s)}. No desenvolvimento deste método obtemos a série de Fourier para uma função g (t), que é periódica con período 2 e igual a f(t)e at num intervalo (, 2). Os coeficientes da série podem ser aproximados usando F(s). Com a finalidade que a série de Fourier tenha convergência à g (t) em pontos de
10 Capítulo 2. ransformada inversa numérica de Laplace 25 descontinuidade vamos impor a condição f(t) = {f(t+) + f(t )}/2 para todo t onde f(t) é descontínua. Para n =, 1, 2,, define-se g n (t) para < t <, por g n (t) = f(t)e at, 2n t 2(n + 1), com a condição de ser periódica com período 2. A representação da série de Fourier de cada g n (t) é dado por g n (t) = 1 2 A n, + onde os coeficientes de Fourier são { A n,k cos kπt + B n,k sen kπt } (2-42) A n,k = 1 B n,k = 1 2(n+1) 2n 2(n+1) 2n e at f(t) cos(kπt/)dt (2-43) e at f(t) sen(kπt/)dt (2-44) Em (2-42) somando com respeito aos n e observando que n= e at f(t) cos(kπt/)dt = Re{F(a + ikπ/)} (2-45) e at f(t) sen(kπt/)dt = Im{F(a + ikπ/)} (2-46) obtemos g n (t) = 1 2 Re{F(a)}+ 1 [ Re{F(a+ kπ kπt i)} cos Im{F(a+kπ ] kπt i)} sen (2-47) Como g (t) = f(t)e at para t (, 2), a partir de (2-47) obtemos uma aproximação f(t) da transformada inversa f(t) dada por f(t) = eat eat Re{F(a)} [ Ou seja f(t) = f(t) ε, onde Re{F(a+ kπ ε = e 2nat g n (t) = n= i)} cos kπt ] kπ kπt Im{F(a+ i)} sen (2-48) e 2nat f(2n + t) (2-49) n=1
11 Capítulo 2. ransformada inversa numérica de Laplace 26 Método de Gaver-Stehfest (197) O algoritmo desenvolvido por H. Stehfest (Stehfest-197) é baseado no trabalho de D. P. Gaver (Gaver-1966) (quem utiliza uma linguagem inteiramente probabilística), Gaver considera a esperança matemática f n da inversa f(t) de F(s), f n = (2n)! f(t)g n (a, t)dt = a n!(n 1)! n i= ( ) n ( 1) i F((n + i)a). (2-5) i Ou, o que é o mesmo, valor esperado de f(t) = L 1 {F(s)} com respeito à função de probabilidade (2n)! g n (a, t) = a n!(n 1)! (1 e at ) n e nat, a > (2-51) onde g n (a, t) tem as seguintes propriedades 1. g n (a, t)dt = 1 2. Valor modal de g n (a, t) = ln2 a 3. e variância var(t) = 1/a 2 n t= 1/(n + i)2 As quais implicam que f n converge para f( ln2) quando n. f a n tem expansão assintótica (vide (Stehfest-197)) ( ) ln 2 f n f + α 1 a n + α 2 n + α 3 2 n + (2-52) 3 Para um número N de valores de F, uma melhor aproximação para f( ln 2 a ) do que f n 1 é possível. Por combinação linear de f 1, f 2,...,f N/2 e requerendo K 1 x i (K) (N/2 + 1 i) = δ k; k =, 1,..., K 1; K N/2 (2-53) k i=1 segue que x i (K) = ( 1)i 1 K! ( ) K i(n/2 + 1 i) K 1 (2-54) i portanto K ( ) ln 2 x i (K)f (N/2)+1 i = f a i=1 + ( 1) k+1 (N/2 K)! α + o (N/2)! ( ) (N/2 K)!. (N/2)! (2-55)
12 Capítulo 2. ransformada inversa numérica de Laplace 27 Substituindo K = N/2, a = ln 2 e utilizando (2-5) obtemos a expressão que produz um valor aproximado f a da transformada inversa a partir da transformada de Laplace F(s), em s =. com f a = ln 2 min{i,n/2} V i = ( 1) (N/2)+1 k= i+1 2 ( N 2 N i=1 ( ) ln 2 V i F i k N/2 (2k)! k)!k!(k 1)!(i k)!(2k 1)!
Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica
Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia
Carlos Andrés Aguilar Marón. Comparação do desempenho computacional da técnica de superposição modal avançada com técnicas da transformada de Laplace
Carlos Andrés Aguilar Marón Comparação do desempenho computacional da técnica de superposição modal avançada com técnicas da transformada de Laplace Dissertação de Mestrado Dissertação apresentada como
O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que
O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique
t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )
MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
Polinômios de Legendre
Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.
UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado
UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato
x exp( t 2 )dt f(x) =
INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação
Métodos tipo quadratura de Gauss-Radau
COQ-8 Métodos Numéricos para Sistemas Algébricos e Diferenciais Métodos tipo quadratura de Gauss-Radau Introdução Método de quadratura de Gauss com pontos internos+ extremidade superior Considerando a
Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017
Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0
Aula 3 11/12/2013. Integração Numérica
CÁLCULO NUMÉRICO Aula 3 11/12/2013 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/64 Integração Numérica Cálculo Numérico 4/64 Integração Numérica Em determinadas
( x)(x 2 ) n = 1 x 2 = x
Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x
13 Fórmula de Taylor
13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =
EXAMES DE ANÁLISE MATEMÁTICA III
EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,
y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o
Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique
Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec
Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva
Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico
Integração Numérica Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 27 de Outubro, 2010 e 8 de Novembro, 2010 Introdução Nas últimas aulas: MMQ: aproximar função y = f (x) por uma função F(x),
A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO
A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES Fernando Ricardo Moreira 1, Esdras Teixeira Costa 2, Marcio Koetz 3, Samanta Andressa Santos Dumke Teixeira 4, Henrique Bernardes da Silva 5 1 Professor Mestre
COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z.
Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z. 2014/1 Introdução ao Domínio Discreto
FEUP - MIEEC - Análise Matemática 1
FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização
Controle. Transformada Laplace básico
Controle Transformada Laplace básico REQUISITOS Para perfeita compreensão do conteúdo desta aula é desejável o entendimento dos seguintes assuntos (eventualmente disponíveis em outros vídeos neste canal):
Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)
Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
TRANSFORMADA DE LAPLACE E PVI
Inversa Solução de PVI via TRANSFORMADA DE LAPLACE E PVI por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 21 e 23 de novembro de 2018 Inversa Solução de PVI via Propriedades
Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) =
Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março 29 Exercício Seja f : R R uma função periódica tal que { se x < h f(x) = se h x
Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015
Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy
Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I
Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor
Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.
Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Aula 25 Técnicas de integração Aula de exercícios
MÓDULO - AULA 5 Aula 5 Técnicas de integração Aula de exercícios Objetivo Conhecer uma nova série de exemplos nos quais diferentes técnicas de integração são utilizadas. Nesta aula, você verá uma série
Testes Formativos de Computação Numérica e Simbólica
Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste
TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER
TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada
CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO
CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac [email protected] Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa
COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais
Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu
Lista de exercícios sobre integrais
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas ICEB Departamento de Matemática DEMAT Cálculo Diferencial e Integral A Lista de exercícios sobre integrais Questão : Em nossa
ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida
exercícios de análise numérica II
exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando
Capı tulo 5: Integrac a o Nume rica
Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Sumário Quadratura de Fórmula para dois pontos Fórmula geral Mudança de intervalo Polinômios de Legendre Fórmula de Interpretação
1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)
1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes
{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak
Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente
0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.
Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :
= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3
Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)
Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE
Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem
2 Propriedades geométricas de curvas parametrizadas no R 4
2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma
depende apenas da variável y então a função ṽ(y) = e R R(y) dy
Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas
1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7
Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais
ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS
Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.
Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para
Transformada de Laplace aplicada a circuitos elétricos
Escola Politécnica da USP Departamento de Engenharia de Sistemas Eletrônicos Transformada de Laplace aplicada a circuitos elétricos Magno T. M. Silva Junho de 25 Sumário Introdução 2 2 Definição 4 3 Existência
Modelagem Computacional. Parte 2 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
Sistemas lineares. Aula 6 Transformada de Laplace
Sistemas lineares Aula 6 Transformada de Laplace Introdução Transformada de Laplace Convergência da transformada de laplace Exemplos Região de Convergência Introdução Transformações matemáticas: Logaritmo:
3.1 Introdução... 69
Sumário Prefácio Agradecimentos xi xvii 1 EDOs de primeira ordem 1 1.1 Introdução.............................. 1 1.2 Existência e unicidade de soluções................. 6 1.3 A equação linear..........................
Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )
Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação
Convergência em espaços normados
Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e
Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.
Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série
Lista 1 - Cálculo Numérico - Zeros de funções
Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
- identificar operadores ortogonais e unitários e conhecer as suas propriedades;
DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;
OUTRAS TÉCNICAS DE INTEGRAÇÃO
8 OUTRAS TÉCNICAS DE INTEGRAÇÃO Gil da Costa Marques 8. Integração por partes 8. Integrais de funções trigonométricas 8.3 Uso de funções trigonométricas 8.4 Integração de Quociente de Polinômios 8.5 Alguns
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,
! " # $ % & ' # % ( # " # ) * # +
a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n
Resolução de sistemas de equações não-lineares: Método de Newton
Resolução de sistemas de equações não-lineares: Método de Newton Marina Andretta/Franklina Toledo ICMC-USP 24 de setembro de 202 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES O DOMÍNIO DE LAPLACE Usualmente trabalhamos com situações que variam no tempo (t), ou seja, trabalhamos no domínio do tempo. O domínio de Laplace é um domínio
Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática
Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula
de Interpolação Polinomial
Capítulo 10 Aproximação de Funções: Métodos de Interpolação Polinomial 101 Introdução A aproximação de funções por polinômios é uma das idéias mais antigas da análise numérica, e ainda uma das mais usadas
Interpolação polinomial: Diferenças divididas de Newton
Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500
Matemática 2 Engenharia Eletrotécnica e de Computadores
Matemática Engenharia Eletrotécnica e de Computadores Eercícios Compilados por: Alzira Faria Ana Cristina Meira Ana Júlia Viamonte Carla Pinto Jorge Mendonça Teórico-prática. Indique o domínio das funções:
ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq.
Notas sobre Funções de Green FMA 43 Prof. Luís Raul Weber Abramo Departamento de Física Matemática Instituto de Física USP Introdução geral às funções de Green A função de Green (G. Green, c. 828) é uma
