Cálculo Diferencial e Integral I

Tamanho: px
Começar a partir da página:

Download "Cálculo Diferencial e Integral I"

Transcrição

1 Cálculo Diferencial e Integral I LEA, LEM, LEAN, MEAer, MEMec o Semestre de 006/007 6 a Aula Prática Soluções e algumas resoluções abreviadas. a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ]e, + [, f() = y e = y = log y = + log y. Logo, a inversa de f é f : ]e, + [ R +, f (y) = + log y. b) O contradomínio de sen restrito a ] π, π[ é sen] π, π [=], [, logo o contradomínio de f é ], [. Para ] π, π [, y ], [, f() = y sen = y = arcsen y (note-se que y ], [, que é o domínio de arcsen ). Logo a inversa de f é ] f : ], [ π, π [, f (y) = arcsen y. c) f : ], [ ] [ 0, π, f (y) = arcos y. d) f : R ] π, + π[, f (y) = + arctg y.. Por definição, arcsen[, ] = [ π, π ], arcos[, ] = [0, π]. Temse arcos 0 = π, arcos = 0, arcos ( ) = π, arcsen ( ) 3 = π, 6 arcsen ( 3 = π, arcos ) 3 = 5π, arcsen = π, arctg = π, arctg( 3) = π sen = a = arcsen a + kπ, k Z, tg = a = arctg a + kπ, k Z. 4. a) Directamente da definição de arcos. b) Directamente da definição de arcsen. c) Se α = arcsen, então sen α = e α [ π, π ]. Queremos calcular cos α. De cos α + sen α =, cos α = ± sen α. Como α [ π, π ], cos α 0, vem cos(arcsen ) = cos α = sen α =.

2 d) Idêntico a c). e) Se α = arcsen, ±, então sen α = e α ] π, [ π. Queremos calcular tg α. De + tg α = = cos α sen α tg α = sen α = sen α sen α tg α = ± sen α sen α = sen α ± sen α. Logo, tg(arcsen ) = ±. Se α ] π, 0], então sen α 0 =. Como tg α 0, tg(arcsen ) =. Se α [ 0, π [, sen α 0 =. Como tg α 0, f) Idêntico a e). tg(arcsen ) = =. 5. f : D R função injectiva e g : f(d) D a sua inversa. a) Seja f crescente. Como f é injectiva, f é estritamente crescente. Logo, para, D, > f() > f( ). Então, para y, y f(d), y = f(), com y = f( ) (ou seja, g(y) =, g(y ) = ) y > y f() > f( ) > g(y) > g(y ). Logo g é (estritamente) crescente. b) Para y f(d), seja D, com y = f(), ou seja, tal que g(y) =. Então y = f() = f( ), porque f é ímpar, logo g( y) =, e assim g( y) = = g(y), e g é ímpar. c) Directamente de a), b) e das propriedades de sen, cos, tg. 6. a) ], [; b) R \ {k π : k Z}; c) R \ {k π : k Z}; d) ], + [; e) [0, [; f) R \ {, }; g) ], ] [, + [; h) ], 0]; i) [, sen [. 7. Como arctg é uma função limitada, arctg(u n ) é uma sucessão limitada. Por outro lado, como arctg é uma função crescente, se (u n ) é uma sucessão monótona crescente (para decrescente é idúntico), (arctg u n ) será também crescente: u n+ u n arctg(u n+ ) arctg(u n ). Sendo monótona e limitada, (arctg u n ) é convergente.

3 8. f é contínua em a R sse dado δ > 0, eiste ɛ > 0 tal que a < ɛ f() f(a) < δ. Para f() = + : dados a R e δ > 0, f() f(a) = + a = a = +a a ( + a ) a. Se V ɛ (a) a < ɛ e também = ( a) + a a + a < ɛ + a. Logo, para V ɛ (a) tem-se f() f(a) < (ɛ + a + a ) a < ( a + ɛ)ɛ. Agora para que f() f(a) < δ é suficiente escolher ɛ > 0 tal que ( a + ɛ)ɛ < δ ɛ + a ɛ δ < 0. Como ɛ + a ɛ δ = 0 ɛ = a ± 4 a +4δ = a ± a + δ, então que é suficiente tomar ɛ tal que 0 < ɛ < a + a + δ, para obter que a < ɛ f() f(a) < δ. 9. Seja φ : [a, b] R uma função contínua (com a, b R e a < b), e ( n ) de termos em [a, b] tal que lim φ( n ) = 0. Como ( n ) tem os termos em [a, b], ( n ) é limitada e, do Teorema de Bolzano-Weierstrass, tem uma subsucessão convergente que designamos por ( pn ). Como lim φ( n ) = 0, e (φ( pn )) é uma subsucessão de (φ( n )), lim φ( pn ) = 0. Por outro lado, como φ é contínua em [a, b], lim φ( pn ) = φ(lim pn ). Logo, se l = lim pn, φ(l) = Seja g : [0, ] R uma função contínua em [0, ]. a) Se eistisse uma sucessão ( n ) de termos em [0, ] tal que g( n ) = n para todo n, então lim g( n ) = +. Tomando uma subsucessão ( pn ) convergente de ( n ), que eiste pelo Teorema de Bolzano-Weierstrass, teríamos: lim g( n ) = + e lim g( pn ) = g(lim pn ), porque g é contínua. Logo g(lim pn ) = +, o que é absurdo. (Alternativamente, g não seria limitada em [0, ], o que é impossível, do Teorema de Weierstrass, uma vez que g é contínua em [0, ].)

4 b) Se ( n ) de termos em [0, ] é tal que g( n ) = para todo n, n então lim g( n ) = 0. Além disso, sendo ( n ) limitada, possui uma subsucessão convergente em R como na alínea anterior. Designemos essa subsucessão por ( pn ) e lim pn = c. Como ( pn ) [0, ] e este intervalo é fechado c [0, ]. Como (g( pn )) é uma subsucessão de (g( n )) também lim g( pn ) = 0. Pelo critério de continuidade de Heine lim g( pn ) = g(c) e portanto g(c) = a) é dada pelo quociente de duas funções polinomiais, logo é 3 + contínua no seu domínio D = { R : 3 + 0} = R \ {0}; b) Como a): é contínua em R \ {,, 0}; c) é contínua em [0, + [, + (como em a)), ou seja em R\{, 0}. Logo é contínua no seu domínio é contínua + em [0, + [ R \ {, 0} =]0, + [; d) sen ( cos ) é dada pela composição de funções contínuas nos seus domínios, logo é contínua no seu domínio D = { R : 0} = [, ]; e) Como d): é contínua no seu domínio, D = { R : > 0} =], [; f) 3 tg cotg é dada pela composição de funções contínuas nos seus dominíos logo é contínua no seu domínio, ou seja em D = { R : π + kπ kπ : k Z} = R \ {k π 4 : k Z}; g) + é dada pelo quociente de duas funções contínuas nos seus domínios, logo é contínua no seu domínio, R. 3 é 3 também dada pelo quociente de duas funções contínuas nos seus domínios, logo é contínua no seu domínio que é R \ {}. Logo, é contínua em R \ {} h) é dada pelo quociente de duas funções contínuas nos seus domínios, logo será contínua no seu domínio que é R{, }. (Nota: =, se < >, e =, se < <.) i) sen é dada pela composição de funções contínuas nos seus domínios, logo é contínua no seu domínio, que é D = { R : sen 0} = { R : sen = 0} = {kπ R : k Z}.. Sendo f e h duas funções e a R, tais que h é contínua em a e f é contínua em h(a), então necessariamente g = f h é contínua em a. Se f : R R é contínua no ponto, e g() = f(sen ), então, como sen é uma função contínua em qualquer a R, g será contínua em a R tal que sen(a) = a = π + kπ, com k Z.

5 3. Como tg e cotg são contínuas, respectivamente em a π + kπ, e a kπ, k Z, que tg cotg é uma função contínua em D = R \ {k π : k Z}. Sendo f uma função contínua em 0, então que g() = f(tg cotg ) é contínua em cada a D satisfazendo tg a cotg a = 0. Como, tg a cotg a = tg a tg a = tg a, tg a e, portanto, tg a cotg a = 0 equivale a tg a = ±, ou seja a = ± π 4 + kπ, com k Z, concluimos que a função dada é necessariamente contínua nestes pontos. 4. Temos f() = d() = { 0, se Q,, se R \ Q. Para a 0: se a Q, podemos definir n = a +, y n n = a + e n n a, y n a, n Q f( n ) = 0 = f(a), y n R \ Q f(y n ) = y n = a + a 0. n Logo f não é contínua em a (usando a definição no sentido de Heine). Para a / Q, a demonstração é semelhante. (Alternativamente, usando a definição no sentido de Cauchy, eiste δ > 0, por eemplo, δ = a, tal que em qualquer vizinhança de a eistem pontos tais que f() f(a) > δ: se a Q, toma-se R \ Q, se a R \ Q, toma-se Q.) Para a = 0: se ( n ) é uma sucessão arbitrária tal que n 0, então f( n ) = n d( n ). Como d é limitada, d( n ) é uma sucessão limitada. Logo, como n 0, f( n ) = d( n ) n 0 = f(0). Logo f é contínua em 0. (Alternativamente, usando a definição no sentido de Cauchy, f() f(0) = f(). Logo, dado δ > 0, eiste ɛ > 0, por eemplo, ɛ = δ tal que Logo f é contínua em 0. ) 0 < ɛ f() f(0) < δ. 5. a) lim 0 = + : de mostrar que dado δ > 0 arbitrário, eiste ɛ > 0 tal que 0 < ɛ > δ.

6 Então, dado δ > 0, > δ < δ < δ. Tomando, por eemplo, ɛ = δ, mostramos que lim 0 = +. c) lim + = + : de mostrar que dado δ > 0 arbitrário, eiste ɛ > 0 tal que > ɛ > δ. Dado δ > 0, > δ > δ. Tomando, por eemplo, ɛ = δ, mostramos que lim + = a) lim = ; b) lim 3 + = lim ( )+ ( )(+) = lim + + = ; e c) lim 0 = lim 0 e e = 0 = 0, dado que lim 0 =. [ d) lim 0 ( cos )] = 0 (como g)). e) lim 0 sen não eiste: se n =, e y nπ n = π que +nπ n 0, y n 0, sen = sen(nπ) = 0, e sen = sen( π +nπ) =. n y n Como lim sen n lim sen y n e ( n ), (y n ) são sucessões convergente para 0, que lim 0 sen não eiste. f) lim + sen = sen(0) = 0; g) lim 0 sen = 0: dada uma sucessão arbitrária ( n) tal que n 0 (e n 0), lim n sen n = 0 uma vez que ( n ) é um infinitésimo e (sen n ) é uma sucessão limitada. 7. a) lim 3+ = lim ( ) ( )( ) = lim tg 5 b) lim 0 = lim sen 5 5 arcos 0 = 5π 5 cos arcos sen lim 0 =. =, ( ) = 0, uma vez que π

3 Funções reais de variável real (Soluções)

3 Funções reais de variável real (Soluções) 3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y

Leia mais

3 Limites e Continuidade(Soluções)

3 Limites e Continuidade(Soluções) 3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEAmb, LEMat, LQ, MEB, MEEC, MEQ o teste / o eame - 7 de Janeiro de 8 duração: o teste: :3 / o eame: 3: Apresente todos os cálculos e justificações relevantes Para resolver

Leia mais

Continuidade de uma função

Continuidade de uma função Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011 Eercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes Introdução Neste teto apresentam-se os enunciados de conjuntos de eercícios para as aulas de problemas do curso

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

3 Cálculo Diferencial

3 Cálculo Diferencial Aula 6 26/0/206 (cont.) 3 Cálculo Diferencial Entramos agora num dos tópicos principais desta cadeira: o Cálculo Diferencial. usar derivadas como ferramentas no estudo de funções, em particular, cálculo

Leia mais

Limites e continuidade

Limites e continuidade Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,

Leia mais

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários Análise Matemática I a data de eame 7 de Janeiro de 00 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial Resolução e alguns comentários I.. a) Para n N temos a n = log (cos(/n) + ) log

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Instituto Superior Técnico - o Semestre 006/007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec a Ficha de eercícios para as aulas práticas 3-4 Novembro de 006. Determine os

Leia mais

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M,

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M, Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I - o Sem 07/8 - LEGM, MEC FICHA - SOLUÇÕES a = f/; b = f; c / = f/ Começe por aplicar o Teorema de Weierstrass a f

Leia mais

5 Cálculo Diferencial Primitivação

5 Cálculo Diferencial Primitivação 5 Cálculo Diferencial Primitivação. Determine uma primitiva de cada uma das funções: a) + 3 3, b) + +, c) +, d) 3 3 +, e) 3, f) 5, 3 e g) h) 3 + 4 + e, i) cos + sen, sen() j) sen(), k) + sen, l) cos, m)

Leia mais

5 Cálculo Diferencial Primitivação (Soluções)

5 Cálculo Diferencial Primitivação (Soluções) 5 Cálculo Diferencial rimitivação Soluções. a + 4 4, b + log, > 0, + c = + = 5 5 + = 5 +, d 4, 5 4 + e = + = +, f 5 5 6 6, g 4 log + 4, h log + e, i log + sen, j sen sen cos cos, k = = log + sen, + sen

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação Soluções. a 3 3 + 3 4 4, b + log, > 0, + c = 3 + = 5 5 3 3 + = 5 3 +, 5 3 d 3 3 3 + 4, e 4 3 = 3 + 3 3 = + 3, 3 f 5 6 5 6, g 4 log3 + 4, h log + e, i log + sen, j tg, k e tg, l sen +, m cose,

Leia mais

A. Funções trigonométricas directas

A. Funções trigonométricas directas A. Funções trigonométricas directas As funções seno, cosseno, tangente e cotangente são contínuas e periódicas nos respectivos domínios. Todas elas são funções não injectivas e, portanto, não possuem inversa.

Leia mais

Análise Matemática III - Turma especial

Análise Matemática III - Turma especial Análise Matemática III - Turma especial Fichas 1 a 5 - Solução parcial 1.3 Seja D E k um conjunto fechado. Uma transformação T : D D diz-se uma contracção se existe c < 1 tal que para todos os x, y D se

Leia mais

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI)

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Análise Matemática I o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Campus da Alameda 5 de Janeiro de 2003 LEC, LET, LEN, LEM, LEMat, LEGM Apresente todos os cálculos e justificações

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I 2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua

Leia mais

Matemática Computacional I

Matemática Computacional I Universidade da Beira Interior Departamento de Matemática Matemática Computacional I CURSO: ENGENHARIA INFORMÁTICA Alberto Simões asimoes@ubi.pt 204/205 Conteúdo Funções Reais de Variável Real. O Conjunto

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

Capítulo 1 Funções reais de uma variável 1.2 Funções trigonométricas inversas

Capítulo 1 Funções reais de uma variável 1.2 Funções trigonométricas inversas As funções trigonométricas seno, coseno, tangente e cotangente não são funções injetivas, não sendo portanto invertíveis nos respetivos domínios. Para definir as respetivas funções inversas tem de se considerar

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação 4. rimitivação Soluções. a + 4 4, b + ln, > 0, + c = + = 5 5 + = 5 +, 5 d + 4, e 4 = + = +, f e, g ln +, h, e i + ln, j 4 cosh/4, k cos, l tg, m cotg, n arctg, o arctg/, p = = 4 arcsen, q

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Funções reais de variável real.

Funções reais de variável real. Capítulo 3 Funções reais de variável real. Continuidade. Diferenciabilidade. Este capítulo tem como primeiro objectivo desenvolver as bases da teoria da continuidade de funções reais de variável real.

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Istituto Superior Técico - o Semestre 006/007 Cálculo Diferecial e Itegral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Soluções da 6 a Ficha de Eercícios. Determie, se eistirem em R, os seguites ites.

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

2.1 Sucessões. Convergência de sucessões

2.1 Sucessões. Convergência de sucessões Capítulo 2 Sucessões reais Inicia-se o capítulo introduzindo os conceitos de sucessão limitada, sucessão monótona, sucessão convergente e relacionando estes conceitos entre si. A análise da convergência

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II Tarefa Intermédia nº 6 1. No referencial da figura está representada graficamente uma função h, de domínio IR, e as assímptotas do gráfico. Dê eemplo de uma sucessão ( u n ) tal que: 1.1. lim( h( un 1..

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

MAT Cálculo I - POLI Gabarito da P2 - A

MAT Cálculo I - POLI Gabarito da P2 - A MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos

Leia mais

Cálculo Diferencial e Integral I/MEEC 2011/2012 Resolução do 1 o Teste

Cálculo Diferencial e Integral I/MEEC 2011/2012 Resolução do 1 o Teste Cálculo Diferencial e Integral I/MEEC 0/0 Resolução do o Teste Problema Seja f(x) = log( x 4x+3 ). (a) Determine o domínio de f, que designamos D. Resolução: O domínio D é dado por log( x 4x+3 ) 0 x 4x+3

Leia mais

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas

Leia mais

OUTRAS TÉCNICAS DE INTEGRAÇÃO

OUTRAS TÉCNICAS DE INTEGRAÇÃO 8 OUTRAS TÉCNICAS DE INTEGRAÇÃO Gil da Costa Marques 8. Integração por partes 8. Integrais de funções trigonométricas 8.3 Uso de funções trigonométricas 8.4 Integração de Quociente de Polinômios 8.5 Alguns

Leia mais

Departamento de Matemática do Instituto Superior Técnico

Departamento de Matemática do Instituto Superior Técnico Exercícios de Análise Matemática I/II Departamento de Matemática do Instituto Superior Técnico 8 de Março de 3 Índice Números Reais. Sucessões. 5 Séries 7. Séries numéricas elementares..............................

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

Cálculo Diferencial e Integral II 1 o Teste (Versão A)

Cálculo Diferencial e Integral II 1 o Teste (Versão A) Cálculo Diferencial e Integral II 1 o Teste (ersão A) LEIC-TP, LETI, LEE, LEGI 11 de Abril de 015 Justifique adequadamente todas as respostas. (5,0) 1. Seja = {(, y, z) [ 1, 1] [0, 1] R 3 : 0 z, 0 y 1}

Leia mais

Análise Matemática I 1 o Semestre de 2002/03 LEBM, LEFT, LMAC Exercícios para as aulas práticas

Análise Matemática I 1 o Semestre de 2002/03 LEBM, LEFT, LMAC Exercícios para as aulas práticas Análise Matemática I o Semestre de 2002/03 LEBM LEFT LMAC Eercícios para as aulas práticas I Elementos de Lógica e Teoria dos Conjuntos (30/9/2002-4/0/2002) (Eercício 2 de [3]) Prove que quaisquer que

Leia mais

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R . Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

Universidade do Algarve, Portugal

Universidade do Algarve, Portugal Universidade do Algarve, Portugal Faculdade de Ciências e Tecnologia ANÁLISE MATEMÁTICA I Cursos de EI, ESI, I, B, EA, EB Professor Stefan Samko Pontos fundamentais do programa da disciplina Análise Matemática

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

TESTE N.º 3 Proposta de resolução

TESTE N.º 3 Proposta de resolução TESTE N.º 3 Proposta de resolução Caderno 1 1. 1.1. Opção (D) 5! 8! 4! 3! 696 79 600 1.. Número de casos possíveis Corresponde ao número de números naturais com seis algarismos (note-se que o algarismo

Leia mais

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata CAPITULO I PRIMITIVAS. Generalidades. Primitivação imediata e quase imediata Sendo f () uma função real de variável real definida no intervalo não degenerado I, chama-se primitiva de f () em I a qualquer

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Cálculo II Sucessões de números reais revisões Mestrado Integrado em Engenharia Aeronáutica António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2012/2013 António Bento

Leia mais

7.3 Diferenciabilidade

7.3 Diferenciabilidade CAPÍTULO 7. INTRODUÇÃO À ANÁLISE EM RN 7.18 Estude quanto a continuidade a função f de R 2 com valores em R definida por: x 2, se x 2 + y 2 < 2y, f(x, y) = x, se x 2 + y 2 = 2y, y 2, se x 2 + y 2 > 2y.

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

Análise Matemática I 1 o Semestre de 2004/05 LEAero, LEBiom, LEFT e LMAC Exercícios para as aulas práticas

Análise Matemática I 1 o Semestre de 2004/05 LEAero, LEBiom, LEFT e LMAC Exercícios para as aulas práticas Análise Matemática I o Semestre de 2004/05 LEAero LEBiom LEFT e LMAC Eercícios para as aulas práticas I Elementos de Lógica e Teoria dos Conjuntos (20-24/9/2004) (Eercício 2 de [3]) Prove que quaisquer

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

LIMITE DE UMA FUNÇÃO II

LIMITE DE UMA FUNÇÃO II LIMITE DE UMA FUNÇÃO II Nice Maria Americano Costa Pinto LIMITES À ESQUERDA E À DIREITA Se a função f() tende ao ite b, quando tende ao valor a por valores inferiores a a, diz-se que b éo ite à esquerda

Leia mais

Matemática I - 2 a Parte: Cálculo Diferencial e Integral real

Matemática I - 2 a Parte: Cálculo Diferencial e Integral real Matemática I - 2 a Parte: Cálculo Diferencial e Integral real Ana Rita Martins Católica Lisbon 1 o Semestre 2012/2013 1 / 99 Funções Uma função é uma correspondência f entre dois conjuntos A e B, que a

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Juliana Pimentel juliana.pimentel@ufabc.edu.br Propriedades das Funções Contínuas Seguem das propriedades do limite, as seguintes propriedades das funções contínuas.

Leia mais

matemática Antes de chegarmos a uma definição precisa deste conceito vamos observar alguns exemplos simples:

matemática Antes de chegarmos a uma definição precisa deste conceito vamos observar alguns exemplos simples: Matemática I 1 Limites O conceito de limite é fundamental para o estudo de funções de variável real. Uma das situações em que ele aparece naturalmente é o do estudo do comportamento assintótico de uma

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos NOVA SCHOOL OF BUSINESS AND ECONOMICS CÁLCULO I 1º Semestre 2011/2012 EXAME 2ª ÉPOCA 23 Janeiro 2012 Duração: 2 horas e 30 minutos Não é permitido o uso de calculadoras. Não pode desagrafar as folhas do

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es Capítulo 4 Complementos de Funções SUMÁRIO Estrutura e cardinalidade em R Topologia Limites e continuidade de unções num ponto pela deinição (vizinhanças Teorema de Bolzano e Teorema de Weierstrass Teorema

Leia mais

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb) Cálculo Diferencial e Integral I o Exame - MEMec; MEEC; MEAmb) 7 de Julho de - 9 horas I val.). i) Sendo u n n do teorema das sucessões enquadradas, dado que n, tem-se u n. Como a sucessão u n é convergente,

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

Capítulo Topologia e sucessões. 7.1 Considere o subconjunto de R 2 : D = {(x, y) : xy > 1}.

Capítulo Topologia e sucessões. 7.1 Considere o subconjunto de R 2 : D = {(x, y) : xy > 1}. Capítulo 7 Introdução à Análise em R n 7. Topologia e sucessões 7. Considere o subconjunto de R 2 : D = {(x, y) : > }.. Indique um ponto interior, um ponto fronteiro e um ponto exterior ao conjunto D e

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Teste de Aferição de Competências

Teste de Aferição de Competências UNIVERSIDADE DE SANTIAGO Departamento de Ciências da Saúde, Ambiente e Tecnologias Teste de Aferição de Competências Matemática Escola Superior de Tecnologias e Gestão Praia Tlf. +38 6 96 50 Fa: +38 6

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

24 a Aula AMIV LEAN, LEC Apontamentos

24 a Aula AMIV LEAN, LEC Apontamentos 24 a Aula 2004.11.10 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 24.1 Método de Euler na aproximação de EDO s Métodos numéricos para a determinação de soluções de EDO s podem ser analisados

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções do grupo III das resoluções dos grupos IV e V

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções do grupo III das resoluções dos grupos IV e V Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 2 - versão A Duração: 50 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

ANÁLISE MATEMÁTICA 1 EXERCíCIOS

ANÁLISE MATEMÁTICA 1 EXERCíCIOS ANÁLISE MATEMÁTICA EXERCíCIOS Maria do Rosário de Pinho e Maria Margarida Ferreira Julho 00 Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica e de Computadores

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais