( 2.3) 2. Optimização

Tamanho: px
Começar a partir da página:

Download "( 2.3) 2. Optimização"

Transcrição

1 Sistea para verificação Lógica do Cotrolo Dezebro 3. Optiização A teoria de optiização, é costituída por u couto de resultados e étodos uéricos co o obectivo de ecotrar e idetificar a elhor solução de etre ua colecção de alterativas, se ter que euerar e resolver eplicitaete todas as alterativas. O processo de optiização está a base da egeharia visto que visa proectar ovos sisteas, elhores ais eficietes e eos caros. U problea de optiização é a geeralidade dos casos u problea de decisão. A partir do valor de ua fução, a que chaaos fução obectivo, obteos valores para u certo uero de variáveis, relacioadas etre si ediate epressões ateáticas, de fora a que iiize ou aiize essa fução obectivo, e tedo e cota, regra geral, ua serie de restrições que liita a escolha desses valores. U problea geérico de optiização cosiste e ecotrar certos valores para deteriadas variáveis de fora que cuprido u couto de requisitos, represetados ediate equações e iequações algébricas (restrições do problea), proporcioa-os o elhor (aior ou eor) valor possível para a fução utilizada para edir o redieto do sistea. Resuido, procuraos valores que cupra uas codições e iiize ou aiize ua fução descritiva do sistea. A fora geral para resolver este tipo de probleas, vai ser a seguite: Optiizar f () Sueito a Re strições O eprego do tero Optiizar, iclui os obectivos de aiização e/ou iiização da fução f (), quado os potos cupre u couto de Restrições. E qualquer caso, sepre se pode trasforar u problea co obectivo de aiização u equivalete co obectivo de iiização, e vice versa. Para aplicar os resultados ateáticos e técicas uéricas ecessárias a teoria de optiização e probleas cocretos de egeharia, é ecessário defiir os liites do sistea que se pretede optiizar, ou sea, deve-se odelar previaete o sistea de fora adequada... Forulação de u Problea Básico de Cotrolo Óptio A forulação do problea Básico de Cotrolo Óptio é apresetada co a versão ais siples possível, ou sea, ( ) ( ) P Miiizar g () através da escolha de u cotrolo u :[,] R à qual correspode :[,] R satisfazedo:, abos! () t = f ( t, () t, u() t ) L q.s.e[,] (.) () = (.) u() t Ω() t L q.s.e[,] (.3) - -

2 Sistea para verificação Lógica do Cotrolo Dezebro 3 Alguas oções básicas: Sistea diâico Sistea cua resposta depede ão só de estíulos ( iputs ) eteros as tabé do valor do seu estado. raectória Solução da equação diferecial (.) co a codição de froteira (.) dada fução de cotrolo que satisfaz (.3). Processo de cotrolo adissível Par (, u) que satisfaz as restrições (.), (.) e (.3) Couto de Estados atigíveis Deota-se ( ; (,)) para ua. A e defie-se coo sedo o couto de potos do espaço dos estados que é possível atigir co estratégias de cotrolo adissíveis, ou sea, ( ; (, ): { ( ) : as codições (. ), (.) são satisfeitas para toda a fução de cotrolo u e (.3) } A = Processo de froteira processo de cotrolo e que a traectória (ou ua dada fução dela) peraece a froteira do couto de estados adissíveis (ou a referida fução deste). Míios global/local Equato, o prieiro caso, o valor da fução obectivo para o processo de referêcia é iferior ao associado a qualquer outro, o segudo, são cosiderados a coparação apeas os processos de cotrolo ua dada vizihaça. No setido de ligar esta atéria co outras de optiização estática, é de aior utilidade reforular este Problea de Cotrolo Óptio Básico coo u Problea de Prograação Não Liear da fora. ( P' ) Miiizar { () z : z A( ; (, )} ode ( ; (,)) g A é o couto de estados atigíveis o istate a partir de o istate. Ebora a aparêcia foral etreaete ais siples, faz-se otar que, o caso geral de diâica ão liear, as dificuldades fora trasferidas para a caracterização do couto de estados atigíveis A ;,, que poderá ser substacialete coplea. o istate fial, ( ( )).. Questões da eoria de Cotrolo Óptio O obectivo últio da eoria de Cotrolo óptio cosiste e peritir o cálculo eficiete da solução ou soluções deste tipo de probleas. Geericaete a eoria estabelece coutos de codições que caracteriza de fora ecessária e/ou suficiete a solução e que apoia o ais eficieteete possível o seu cálculo. Estas codições oferece apoio a procedietos de carácter quer qualitativo quer quatitativo. - -

3 Sistea para verificação Lógica do Cotrolo Dezebro 3... Codições Necessárias de Optialidade edo e vista perspectivar a utilização da eoria de Cotrolo Óptio, apreseta-se a seguir as codições Necessárias de Optialidade, a fora de u Pricípio do Máio de Potryagui para ( P ) e eplica-se o seu papel o cálculo da solução. Sea * ua traectória óptia para o problea ( P. ) Etão, eiste ua fução absolutaete cotiua :[,] R p, satisfazedo p! () t = p () t f ( t, *() t, u *() t ) [,] q.s. (.4) p () = g ( * () ). (.5) Ode *:[,] R v u é ua estratégia de cotrolo tal que u * () t aiiza a fução p () t f ( t, *() t, v) e Ω () t [,] q.s.. (.6) Observe-se que a codição (.6) costitui u processo de eliiação do cotrolo ua vez que, sedo u*: [,] R tal que p () t f ( t, * () t, u * () t ) p () t f ( t, * () t, v) para todo v Ω() t, [,] q.s., te-se defiida iplicitaete a estratégia de cotrolo () t u( * () t, p() t ) u * = equivaledo, ediate deteriadas codições, a resolução de ( P ) à resolução do seguite sistea de equações difereciais: p! () t = p () t f ( t, *() t, u( *() t, p() t ) p () g ( * () )! * () t = f ( t, * () t, u( * () t, p() t ), ()... Eistêcia de solução =. =, As codições que assegura a eistêcia se solução do problea, ou sea, de que, e certo, setido, o problea está be forulado, são uito iportates para garatir a coerêcia das codições de optialidade. Para torar óbvia esta iportâcia, atede-se ao seguite eeplo: Sea N o aior úero Natural, ou sea, N : = {,,... } N. Etão, te-se que: N para todo N. E particular, a desigualdade atê-se para = N. Dividido-se abos os ebros da desigualdade N N por N, te-se que N. A forulação das codições de optialidade e a lógica da sua utilização são irrepreesíveis. Este absurdo deve-se soete ao facto de, à partida, se assuir a eistêcia do aior uero atural

4 Sistea para verificação Lógica do Cotrolo Dezebro 3 O caso de optiização de ua fução u couto de espaço fiito é geralete edereçado pelo eorea de Weierstrass. Este cosiste o facto de que a cotiuidade da fução obectivo e do couto das restrições ser fechado e liitado costituíre codições suficietes para eistêcia de íio/áio. Ou sea, estas codições garate a eistêcia de solução. A situação coplica-se substacialete para os probleas de cotrolo óptio, ua vez que, agora, a iiização te lugar u espaço de fuções (estratégias de cotrolo) que é tipicaete de diesão ifiita. Eiste vários coutos de codições que poderão ser vistas coo geeralização do caso de diesão fiita referido. Ua das etesões para diesão ifiita ais siples cosiste e cosiderar u couto de hipóteses tais que as codições para diesão fiita se verifica quado se cosidera a versão ( P '), ou sea, a fução obectivo g é cotiua e o couto de estados atigíveis é fechado e liitado. Codições típicas são: [H] - () t [H] - f é cotíua e todo os seu arguetos Ω é fechado e liitado para todo o t e [,] [H3] - f é K-Lipschitz cotíua o segudo argueto, ou sea f ( t,, u) f ( t, y,u) K y [H4] - f ( t,,u) K( + ) para todo os valores dos arguetos de f. [H5] - ( t,, () t ),. f Ω é coveo para todo o e t e [ ] Estas codições garate que as traectórias adissíveis costitue ua faília de fuções uiforeete liitada e equi-cotíua, cocluído-se pelo eorea de Ascoli que qualquer sucessão de traectórias iiizate cote ua sub-sucessão uiforeete covergete que tabé é adissível. Por outras palavras, prova-se que o couto de estados atigíveis é fechado (o facto de ser liitado coclui-se de iediato do Lea de Bela-Growall)...3. Codições Suficiete de Optialidade Codições suficietes de optialidade típicas para o problea ( P ) poderão ter a seguite fora: Supoha que V : [,] R R é ua fução difereciável que, ua vizihaça de * satisfaz (,z ) g( z) (, ) g( *( ) ( t, *() t ) Sup{ V ( t, *( t ) f ( t, *( t), u) : u Ω( t) } q.s. e [,], (.7) V =, V e V t = ode *. correspodete a u * (fução esta cuos valores o tepo atige o áio a igualdade acia) co *() =, etão o processo de cotrolo ( *,u *) e óptio para ( P. ) é solução de ( ) - 4 -

5 Sistea para verificação Lógica do Cotrolo Dezebro 3, referida coo a equação de Hailto-Jacobi-Bella, desiga-se de fução de verificação e, ediate certas codições, coicide co a fução valor defiida coo sedo o íio custo a partir do par (estado, istate de tepo) idicado os seus arguetos. As versões discretizadas o tepo e/ou o espaço desta equação estão a base das diversas variates do étodo cohecido por Prograação Diâica. Ebora, as codições do resultado acia referido sea de carácter local, eiste resultados que, ediate deteriadas codições, defie codições de atureza global. Estas codições pode ser utilizadas a defiição de "algoritos" de pesquisa de soluções de probleas evolvedo estruturas de elevada copleidade e eleetos de atureza diversa. A fução V solução da equação (.7) Ebora de grade iteresse coceptual, as codições de validade deste resultado a fora siplificada acia idicada geericaete ão se verifica para a grade aioria dos probleas de Cotrolo Óptio. O cálculo ão difereciável veio peritir u grade progresso o setido de geeralização destas codições. Mediate deteriadas hipóteses sobre os dados do problea, estas codições perite a defiição de estratégias de cotrolo a fora de ua realietação ãoliear. Muito receteete tê sido ivestigadas as evetuais relações etre as codições ecessárias e as suficietes de optialidade. E particular, ediate deteriadas codições de regularidade, foi á deostrado o facto da variável aduta das codições ecessárias de optialidade a fora do Pricípio do Máio de Potryagui coicidir co gradiete da fução valor e relação ao estado..3. Coveidade O coceito de coveidade é uito iportate para o estudo dos probleas de optiização. Os coutos coveos, os poliedros, e a separação de coutos coveos distitos, são utilizados frequeteete a aálise de probleas de prograação ateática, e a caracterização das suas soluções óptias. A oção de coveidade é uito útil sob poto de vista da sua aplicação prática, visto que podese garatir, e algus casos, que a partir de u óptio local de u deteriado problea, coseguios ecotrar o óptio global desse eso problea, que é ao fi ao cabo o que realete os iteressa. Vaos defiir este poto, algus coceitos idispesáveis para o desevolvieto de prograação ateática. Podeos defiir coveidade para qualquer espaço topológico, as para siplificar vaos cosiderar apeas o espaço vectorial R..3.. Coutos coveos e evoltura covea Defiição. Dados dois potos { y R / } [, y] = + ( ), y R, o segeto liear fechado que os ue é o couto - 5 -

6 Sistea para verificação Lógica do Cotrolo Dezebro 3 de igual fora, o segeto liear aberto que ue e y é o couto { y R / < < } (, y) = + ( ) Defiição. U couto Ω R diz-se coveo se verifica: [,] + ( ) Ω Ω, Esta defiição iterpreta-se da fora que u couto será coveo se o segeto liear fechado que ue qualquer par de potos do couto, tabé pertece ao couto. Por coveção u couto vazio, é coveo. Figura. : Coveidade e R Na figura. são represetados coutos, coveos e ão coveos de R. t Os coutos da fora, H = { : p = α} são chaados hiperplaos de R, ode p é u vector ão ulo e R, deoiado oral ao hiperplao, e α u escalar. Pode-se deostrar facilete que os hiperplaos são coutos coveos. t Os coutos da fora, S = { : p b}, são sei espaços de R, e tabé são coutos coveos. Geralete os coutos da fora, P = { : A b} co A ua atriz, e b u vector, são coutos coveos. Este couto é a itercepção de sei espaços e deoiase usualete poliedro. O lea seguite é ua cosequêcia iediata da defiição de coveidade. Estabelece que a itercepção de dois coutos coveos é coveo e que a soa algébrica de dois coutos coveos tabé é covea

7 Sistea para verificação Lógica do Cotrolo Dezebro 3 Lea.3 - Sea Ω e Ω coutos coveos de R. Etão:. Ω Ω é coveo.. Ω + Ω = { + : Ω, Ω } é coveo. 3. Ω Ω = { : Ω, Ω } é coveo. 4. O fecho (ou aderêcia) de Ω k, Ω k, é u couto coveo. Vereos agora coo a partir de u couto arbitrário Ω R coveo, e particular vereos o caso da evoltura covea de Ω., pode-se gerar u couto Proposição.4 - A iage de u couto coveo ediate ua aplicação liear ão ula é u couto coveo. Defiição.5 - Sea R direos que é ua cobiação covea dos potos quado eistire úeros reais,..., R, que cupra,..., R = = = = = Está claro que,..., R é cobiação covea de se, e só se, [, ], R Proposição.6 U subcouto ão vazio covea de potos de Ω pertece a Ω. Ω R é coveo se, e só se, toda a cobiação Ω. Defie-se evoltura covea de Ω, que deotaos H ( Ω) Defiição.7 Sea R couto de todas as cobiações coveas de Ω. H k ( Ω) = = k = =,,...,k = ode k é u iteiro positivo e {,..., } Ω Ω =, é ua cobiação covea, logo Ω coveo. Lea.8 Sea Ω R, etão ( Ω). Esta claro que ( Ω), por costrução ( Ω), ao Ω H, visto que se H é u couto H é o couto coveo ais pequeo que cote Ω, ou sea, H ( Ω) é a itercepção de todos os coutos coveos que cotê Ω

8 Sistea para verificação Lógica do Cotrolo Dezebro 3 Por defiição, u poto da evoltura covea de u couto pode-se represetar co ua cobiação covea de u úero fiito de potos do couto. O teorea seguite ostra que qualquer poto da evoltura covea do couto Ω pode represetar-se coo ua cobiação covea de pelo eos, + potos de Ω. O teorea é certo trivialete se Ω. Ω, e ( ), etão H(,..., ) eorea.9 (eorea Carathéodory) Sea R H Ω ode Ω, =,..., +. Por outras palavras, pode represetar-se coo : +, = + = + = = =,..., + Ω =,..., + Podeos observar a figura. u couto ão coveo e sua evoltura covea. Figura. : Evoltura covea de u couto - 8 -

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita?

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita? Cálculo A fução iplícita Abril 9 O que é ua fução a fora iplícita e geral desigada por fução iplícita? Cálculo A fução iplícita Abril 9 Coeceos ao cotrário. Ua fução real de variável real coo 4se está

Leia mais

Lista 7.3 Optimização com Restrições de Igualdade

Lista 7.3 Optimização com Restrições de Igualdade Faculdade de Ecooia da Uiversidade Nova de Lisboa Apotaetos Cálculo II Lista 7.3 Optiização co Restrições de Igualdade. Problea de optiização de ua ução escalar, de variáveis reais, co restrições de igualdade:

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

O MÉTODO DE VARIAÇÃO DAS CONSTANTES

O MÉTODO DE VARIAÇÃO DAS CONSTANTES O MÉTODO DE VARIAÇÃO DAS CONSTANTES HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos. E o eso

Leia mais

GRÁFICOS DE CONTROLE PARA X e S

GRÁFICOS DE CONTROLE PARA X e S Setor de Tecologia Departaeto de Egeharia de Produção Prof. Dr. Marcos Augusto Medes Marques GRÁFICOS DE CONTROLE PARA X e S E duas situações os gráficos de cotrole X e S são preferíveis e relação aos

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

Equações Recorrentes

Equações Recorrentes Filipe Rodrigues de S oreira Graduado e Egeharia ecâica Istituto Tecológico de Aeroáutica (ITA) Julho 6 Equações Recorretes Itrodução Dada ua seqüêcia uérica, uitas vezes quereos deteriar ua lei ateática,

Leia mais

META: Apresentar o conceito de módulo de números racionais e sua representação

META: Apresentar o conceito de módulo de números racionais e sua representação Racioais META: Apresetar o coceito de ódulo de úeros racioais e sua represetação decial. OBJETIVOS: Ao fi da aula os aluos deverão ser capazes de: Idetificar a fora decial de u úeros racioal. Idetificar

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Matrizes e Polinômios

Matrizes e Polinômios Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) =

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log 0 IME "A ateática é o alfabeto co que Deus escreveu o udo" Galileu Galilei Questão 0 Cosidere log b a 4, co a e b úeros reais positivos. Deterie o valor de, úero real, para que a equação x 8 x log b ab

Leia mais

Distribuição dos Números Primos

Distribuição dos Números Primos Distribuição dos Núeros Prios Rafael Afoso Barbosa, Atôio Carlos Nogueira Bolsista do PET-Mateática da Uiversidade Federal de Uberlâdia Docete da Faculdade de Mateática da Uiversidade Federal de Uberlâdia

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess Jorge Pealva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 1.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES

Leia mais

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações. obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

4 SÉRIES DE POTÊNCIAS

4 SÉRIES DE POTÊNCIAS 4 SÉRIES DE POTÊNCIAS Por via da existêcia de um produto em C; as séries adquirem a mesma relevâcia que em R; talvez mesmo maior. Isso deve-se basicamete ao facto de podermos ovamete formular as chamadas

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Hidráulica Geral (ESA024A)

Hidráulica Geral (ESA024A) Faculdade de Egeharia epartaeto de Egeharia Saitária e Abietal Hidráulica Geral (ESA04A) Prof Hoero Soares º seestre 0 Terças de 0 às h Quitas de 08 às 0 h Uiversidade Federal de Juiz de Fora - UFJF Faculdade

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

ASPECTOS DE AMOSTRAGEM - Pesquisa Padrões de Vida O PLANEJAMENTO DA AMOSTRA

ASPECTOS DE AMOSTRAGEM - Pesquisa Padrões de Vida O PLANEJAMENTO DA AMOSTRA ASECTOS DE AMOSTRAGEM - esquisa adrões de Vida - 996-997. O LAEJAMETO DA AMOSTRA O deseo aostral da V - esquisa sobre adrões de Vida - foi discutido co os técicos do Baco Mudial e a diesão da aostra foi

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

AÇÕES E COMBINAÇÕES DAS AÇÕES

AÇÕES E COMBINAÇÕES DAS AÇÕES AÇÕES E COMBINAÇÕES DAS AÇÕES 1. INTRODUÇÃO As oras brasileiras para projetos de estruturas especifica que u projeto é coposto por eorial justificativo, desehos e, tabé por plao de execução quado há particularidades

Leia mais

Limite, Continuidade e

Limite, Continuidade e Módulo Limite, Cotiuidade e Derivação Este módulo é dedicado, essecialmete, ao estudo das oções de limite, cotiuidade e derivabilidade para fuções reais de uma variável real e de propriedades básicas a

Leia mais

Resolução do problema de atribuição de células a centrais de telefonia celular através de um método baseado no beam search

Resolução do problema de atribuição de células a centrais de telefonia celular através de um método baseado no beam search Resolução do problea de atribuição de células a cetrais de telefoia celular através de u étodo baseado o bea search Cassilda Maria Ribeiro (UNESP) cassilda@feg.uesp.br Rodolfo Florece Teieira Jr. (UNESP)

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

ANÁLISE DINÂMICA DE PLACAS DELGADAS UTILIZANDO ELEMENTOS FINITOS TRIANGULARES E RETANGULARES

ANÁLISE DINÂMICA DE PLACAS DELGADAS UTILIZANDO ELEMENTOS FINITOS TRIANGULARES E RETANGULARES UNIVERSIAE ESTAUAL PAULISTA "JÚLIO E MESQUITA FILHO" FACULAE E ENGENHARIA - CAMPUS E ILHA SOLTEIRA EPARTAMENTO E ENGENHARIA CIVIL Prograa de Pós Graduação e Egeharia Civil ANÁLISE INÂMICA E PLACAS ELGAAS

Leia mais

n n ...

n n ... 6. Álgebra Matricial Defiição : Um couto de ( m, ) úmeros (reais ou complexos) arraados em uma forma retagular de m lihas e coluas: a a a. a a a a. a..... a a a. a 2 3 2 22 23 2 m m2 m3 m é chamada de

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Cap. 5-Trasformada de Z Uiversidade de Coimbra Aálise e Processameto de BioSiais Mestrado Itegrado em Egeharia Biomédica Faculdade de Ciêcias e Tecologia Uiversidade de Coimbra Slide Aálise e Processameto

Leia mais

Derivadas Cálculo Diferencial e Integral I

Derivadas Cálculo Diferencial e Integral I Uidade G Derivadas Cálculo Diferecial e Itegral I Tecologia em Costrução de Edifícios IFRS CAMPUS RIO GRANDE PROFª DÉBORA BASTOS 4. Taa de variação Muitos coceitos e feômeos físicos, ecoômicos, biológicos,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer Cojutos Ifiitos Teorema (Cator) Se A é cojuto qualquer, #A #P(A). Mais precisamete, qualquer f : A P(A) ão é sobrejetora. Cosequêcia. Existe uma herarquia de cojutos ifiitos. Obs. Existe uma bijeção etre

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações.

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações. Novas perações com atrizes: lgumas de Suas ropriedades e plicações toiel Nogueira da Silva e Valdair Bofim Itrodução: presete trabalho origiou-se durate o desevolvimeto de um projeto do rograma Istitucioal

Leia mais

HEURÍSTICAS E EQUAÇÕES DIOFANTINAS

HEURÍSTICAS E EQUAÇÕES DIOFANTINAS HEURÍSTICAS E EQUAÇÕES DIOFANTINAS Michelle Crescêcio de Mirada Programa Istitucioal de Iiciação Cietífica e Moitoria da Faculdade de Matemática PROMAT michellemirada_8@hotmail.com Luiz Alberto Dura Salomão

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Bases para o projecto de estruturas segundo o EC0

Bases para o projecto de estruturas segundo o EC0 Bases para o projecto de estruturas segudo o EC0 Luciao Jacito Área Departaetal de Egeharia Civil Istituto Superior de Egeharia de Lisboa Dezebro 2013 Ídice 1 Itrodução... 2 2 Requisitos... 3 3 Pricípio

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Sinais de Tempo Discreto

Sinais de Tempo Discreto Siais de Tempo Discreto Siais defiidos em istates discretos do tempo t 0, t 1, t 2,..., t,... são siais de tempo-discreto, deotados pelos símbolos f(t ), x(t ), y(t )... (sedo um iteiro). x(t )... t 1

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (IV ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice 4 4 Defiição e exemplos 4 Subespaços4 4 Cojutos

Leia mais

Faculdades Adamantinenses Integradas (FAI)

Faculdades Adamantinenses Integradas (FAI) Faculdades Adamatieses Itegradas (FAI) www.fai.com.br BAZÃO, Vaderléa Rodrigues; MEIRA, Suetôio de Almeida; NOGUEIRA, José Roberto. Aálise de Fourier para o estudo aalítico da equação da oda. Omia Exatas,

Leia mais

Massa atômica, molecular e mol

Massa atômica, molecular e mol assa atôica, olecular e ol Gabarito: Resposta da questão 1: [A] Tereos: O bóso de Higgs, apesar de ser ua partícula fudaetal da atureza, te assa da orde de 16 vezes aior que a do próto, etão: etade da

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

Física IV para a Escola Politécnica (Engenharia Elétrica) TURMA 3

Física IV para a Escola Politécnica (Engenharia Elétrica) TURMA 3 Física IV para a Escola Politécica (Egearia Elétrica) 43093 TURMA 3 Professor: Dr. Marcos A. G. Alvarez Departaeto de Física Nuclear (DFN) IFUSP Edifício Oscar Sala (sala 46) Escaio alvarez@if.usp.br IVRO:

Leia mais

4 Modelagem Numérica. φ φ

4 Modelagem Numérica. φ φ 4 Modelagem Numérica O modelo matemático apresetado o capítulo aterior foi resolvido com o código comercial FLUENT, o ual é baseado o método de Volumes Fiitos (Patakar, 1980). Para resolver umericamete

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIAE O ALGARVE ESCOLA SUPERIOR E TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime iuro/nocturo isciplia de COMPLEMENTOS E MATEMÁTICA Ao lectivo de 7/8 - º Semestre Cosidere a ução :

Leia mais

Autovalores na Análise de Modelos Matriciais Utilizando o Matlab

Autovalores na Análise de Modelos Matriciais Utilizando o Matlab Autovalores a Aálise de odelos atriciais Utilizado o atlab Alessadra Fabia Sostisso 1 Eliete Biasotto Hauser 2 RESUO O pricipal objetivo deste trabalho é aalisar o comportameto de sistemas modelados matricialmete

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

CAPÍTULO III SUCESSÕES DE TERMOS REAIS

CAPÍTULO III SUCESSÕES DE TERMOS REAIS CAPÍTULO III SUCESSÕES DE TERMOS REAIS. Geeralidades Chama-se sucessão de termos reais a qualquer aplicação de N em R. O real u que correspode ao atural é o primeiro termo da sucessão o real u que correspode

Leia mais

(x a) f (n) (a) (x t) n dt. (x t) f (n) (t)

(x a) f (n) (a) (x t) n dt. (x t) f (n) (t) . Aula Resto e Teorema de Taylor revisitado. Seja f : D R uma fução e p,a (x) o seu poliómio de Taylor de grau. O resto de ordem foi defiido ateriormete como sedo a fução: R,a (x) := f(x) p,a (x). O resultado

Leia mais

VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE

VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 3. VIBRAÇÃO LIVRE Cofore ostrao o apítulo aterior, uitos sisteas iâios poe ser represetaos por ua equação ifereial e segua ore, liear, o oefiietes ostates

Leia mais

Sucessões Reais. Ana Isabel Matos DMAT

Sucessões Reais. Ana Isabel Matos DMAT Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS rof Me Arto Barboi SUMÁRIO INTRODUÇÃO EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO) Ordem de uma Equação Diferecial Ordiária Grau de uma Equação Diferecial Ordiária Solução geral e particular

Leia mais

Bernstein. Medeiros, Heloisa Menezes, M. Lucia

Bernstein. Medeiros, Heloisa Menezes, M. Lucia Uiversidade Estadual de Marigá - Departameto de Matemática Cálculo Diferecial e Itegral: um KIT de Sobrevivêcia 20 aos c Publicação Eletrôica do KIT http://www.dma.uem.br/kit Aproximação de fuções: poliômios

Leia mais

MÓDULO VIII. EP.01) Simplifique (100 2 ) EP.02) (Vunesp) Calcule o valor de m, sabendo que. EP.03) Encontrando o valor de

MÓDULO VIII. EP.01) Simplifique (100 2 ) EP.02) (Vunesp) Calcule o valor de m, sabendo que. EP.03) Encontrando o valor de MÓDULO VIII. Potêcias de NOTAÇÃO CIENTÍFICA Ua potêcia cuja base é u úero últiplo de é deoiado de potêcia de. Veja algus exeplos de potêcias de :.000.000.000 =.000.000.000 = 9 0.000.000 = 8.000.000 = 7.000.000

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Inclusão do Efeito Corona em Modelos de Linhas de Transmissão Bifásica Utilizando a Técnica de Variáveis de Estado

Inclusão do Efeito Corona em Modelos de Linhas de Transmissão Bifásica Utilizando a Técnica de Variáveis de Estado Capus de Ilha Solteira PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA EÉTRICA Iclusão do Efeito Coroa e Modelos de ihas de Trasissão Bifásica Utilizado a Técica de Variáveis de Estado GERMANO FERREIRA WEDY Orietador:

Leia mais

Exercícios Propostos

Exercícios Propostos Exercícios Propostos Ateção: Na resolução dos exercícios cosiderar, salvo eção e cotrário, ao coercial de 360 dias. 1. Calcular o otate de ua aplicação de $3.500 pelas seguite taxas de juros e prazos:

Leia mais