META: Apresentar o conceito de módulo de números racionais e sua representação

Tamanho: px
Começar a partir da página:

Download "META: Apresentar o conceito de módulo de números racionais e sua representação"

Transcrição

1 Racioais META: Apresetar o coceito de ódulo de úeros racioais e sua represetação decial. OBJETIVOS: Ao fi da aula os aluos deverão ser capazes de: Idetificar a fora decial de u úeros racioal. Idetificar o iteiros ais próxio de u racioal. PRÉ-REQUISITOS Núeros Racioais, iteiros e idução fiita.

2 Racioais. Itrodução Prezado Aluo, esta aula estudareos o porquê de u úero decial fiito ou periódico ser u úero racioal e o porquê de u úero racioal ser fiito ou periódico. Ates apresetareos a você alguas propriedades odulares dos úeros racioais e a fução aior iteiro... Valor Absoluto de u Núero Racioal Defiios a co a Q coo: a, sea 0 a = a, sea <0 Propriedades: (a) a a a (b) a + b a + b (c) ab = a b (d) Se a 0,etão a = a As deostrações são deixadas coo exercício (basta seguir o que foi feito co os úeros iteiros) Questões. Mostre que (a ) =(a ) = a,paratodoa Q e Z. 2. Se a, b Q + etão ab Q Mostre que = Seja K u corpo. Ua aplicação bijetora f : K K éu autoorfiso de K se f(x + y) =f(x) +f(y) e f(xy) = f(x)f(y), paratodox, y K. Mostre, através das seguites etapas que o úico autoorfiso de Q é a idetidade: 96

3 Mateática para o Esio Fudaetal (a) f() = Soluções: (b) f( a) = f(a) (c) f() =, paratodo Z. (d) f ( ) = para todo N (e) f ( ) = para todo Z eparatodo Z. Para =teos que (a ) = a ( ) = a. Supohaos o resultado válido para e proveos que o eso é válido para +: a (+) = a + =a ( ) = a ( ) a.( ) = a ().a. = a ()+( ). = a (+) =(a ) +. (a ) = a,paratodo, Z. Etão(a ) ( )=a. = a. 2. toe a = s e b = t. Etão s > 0, t > 0. Seja s,,, t Z +. Seja s,,, t Z Seja s, Z + e, t Z Seja s, Z e, t Z + 3. (a) (Exercício) ab = s t > 0. ab = s t > 0. ab = s t > 0. ab = s t > 0. (b) Coo f(0) = f(0 + 0) = f(0) + f(0), pela lei do cacelaeto, f(0) = 0. Assi, para todo a Q f( a)+f(a) =f(( a)+a) =f(0) = 0 97

4 Racioais (c) (Exercício) (d) = f() = f ( ) ( = f ) = f ( ) = ) = f ( ) f ( ) = f ( ) f ( (e) Aditido >0, o que sepre é possível, f ( ) = f ( ) ( = f() f ) = =...2 A Fução Maior Iteiro Defiição.. Seja a Q. Deotaos por [a] oaioriteiro eor ou igual a a. istoé, [a] =ax{ Z; a} A fução f : Q Z defiida por f(a) =[a] é chaada fução aior iteiro. Exeplo.. [5/4] = ; [8] = 8; [ /2] =. Proposição.9. Seja a, b Q. Etão (a) [a] a<[a]+ (b) a b [a] [b] (c) [a + ] =[a]+, paratodo Z (d) [a]+[b] [a + b] [a]+[b]+ Deostração. (a) Fica coo exercício. (b) Supoha a b e [a] > [b]. Assi [b] + [a]. Por (a), [b]+>b>[b]. b<[b]+ [a] a, ou seja b<a,oqueé ua cotradição. Logo [a] [b]. 98

5 Mateática para o Esio Fudaetal (c) Do ite (a), 0 a [a] <. Seja a = a [a]. Assi a =[a]+a.noteque [a + ] =[[a]+ + a ]=[a]+. (d) Faça a = a [a] e b = b [b] e c = a + b [a + b]. Noteque 0 a <, 0 b < e 0 c<. a+b =[a]+[b]+(a +b ), ode 0 a + b < 2. [a + b] =[[a] +[b] +(a + b )] = [a]+[b]+[a + b ],as[a + b ]=0ou [a + b ]=. Logo [a + b] [a] +[b] +. Coo 0 a + b < 2, teos que [a + b ] 0. Logo [a + b] [a] +[b]. Portato,[a] +[b] [a + b] [a]+[b]+. Exercício.. Seja q u iteiro positivo o qual é quociete da divisão de por ( >0). Mostre que q = [ ]. Solução: Teos = q + r, ode0 r<. Logo = q + r = q + r = q + r. Logo [ ] =[q + r [ r ] ]=q + Mas, 0 r <. Assi [ [ r ] =0,eportatoq = ]. Exercício.2. O expoete de u úero prio p que aparece e! é [ ] [ ] + p p Solução: Se p>, teos que! ão possui fatores de p, logo o expoete é zero. as <p r para todo r N. Assi [ ] [ ] + p p =0 [ ] Se p, o quociete da divisão de por p é p. Etão p é divisor de u dos seguites fatores de!: [ ] p, 2p, 3p,..., p p 99

6 Racioais [ ].! =( )..., p é divisor desses p fatores. De aeira [ ] aáloga, desses p fatores, os que são últiplos de p 2 totaliza [ ]. Logo o expoete de p e! é p 2 [ ] [ ] + p p Exeplo.2. Qual o expoete de 3 e 20!? [ ] [ ] =6+2=8..3 Represetação Decial Seja o racioal positivo a b, b>, a Z. Teos a = q 0 b + r 0, 0 r 0 <b Assi, r 0 = q b + r, 0 r <b Coo r 0 <b,teosr 0 < b. Logo q <. Se r =0,etão r 0 = q b a = q 0b + q b a b = q 0 + q. Assi escreveos a b = q 0,q e chaareos q 0,q de represetação decial de a b Se r 0, r = q 2 b + r 2, 0 r 2 <b se r 2 =0, teos que r = q 2b r 0 = q b+ q 2 2 b a = q 0b+ q b b+ q 2b 2 a b = q 0+ q + q 2 2 Assi escreveos Se r 2 0, repete-se o processo. a b = q 0,q q 2 0

7 Mateática para o Esio Fudaetal Se r 2 = r, teos que a b = q 0,q q 2 q 2 q 2,... (Dízia periódica siples). Os restos são eleetos do cojuto {0,, 2,..., b }. De odo que rb deve ser algu r,..., r b, digaos r c. A represetação este caso é a b = q 0,q q 2...q b q c+ q c+2...q b q c+ q c+2... Logo cada racioal pode ser expresso coo u decial exato ou periódico. Exeplo.3. (a) 5 4 =, 25. (b) 3 8 =0, 375 (c) 6 =, 83 (d) 85 7 =3, OBS.. Note que todo decial exato é u úero racioal ( por exeplo, a b = q 0,q = q 0 + q ) Teorea.. Cada decial periódico é u úero racioal Deostração. Cosidere o decial periódico x, yzdefdef... = x, yz +0, 00def +0, 00000def +... Teos que x, yz é u úero racioal e 0, 00def +0, 00000def +... é a soa de ua PG ode a =0, 00def e r =0, 00 Assi A = a r 0, 00def 0, 00def = = 0, 00 0, 999 = def Logo A é racioal. Cocluíos assi que x, yzdef é racioal.

8 Racioais.2 Coclusão Desta aula cocluíos que todo úeros racioais e úeros deciais (fiitos ou periódicos) são equivaletes. E os deciais ãoperiódicos? Até a proxia aula. RESUMO Represetação decial Todo decial exato é u úero racioal Todo decial periódico é u úeros racioal Todo racioal é u úero periódico (exato ou fiito). PRÓXIMA Na próxia aula iiciareos a saga da costrução dos úeros reais via cortes de Dedekid. ATIVIDADES ATIV... Dados a, b Q ostre que: (a) a a a (b) a + b a + b (c) ab = a b (d) Se a 0,etão a = a 2

9 Mateática para o Esio Fudaetal ATIV..2. Mostre que 00! teria e 249 zeros ATIV..3. Ecotre a represetação decial dos seguites úeros racioais: (a) 5 33 (b) 5 (c) (d) 9 ATIV..4. Se a, b Q +,etão[a][b] [ab] LEITURA COMPLEMENTAR LIMA, Elo L., Aálise a Reta Vol., IMPA, Projeto Euclides, 5.ed., Rio de Jaeiro, DOMINGUES, H. Fudaetos de Aritética, Atual Editora, São Paulo, 200. LIPSCHUTZ, S. Teoria dos Cojutos - Coleção Schau 3

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS 2017-2018, NÚMERO 1 VOLUME 5 ISSN 2319-023X A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS Roald Siões de Mattos Pito Colégio Pedro II Liliaa Mauela G. C. da Costa Colégio

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) A ) C ) B ) A ) E ) C ) E ) D ) E ) D ) A ) E ) B ) D ) B ) A ) E ) E ) B ) Aulada ) A 0) D ) A 0) B )

Leia mais

Aluno: Daniel de la Riva Massaad Orientador: Edgard Pimentel

Aluno: Daniel de la Riva Massaad Orientador: Edgard Pimentel Departaeto de Mateática Aálise Mateática Aluo: Daiel de la Riva Massaad Orietador: Edgard Pietel Itrodução Este projeto que se iiciou coo u estudo ais aprofudado de Aálise Coplexa, torouse u passeio pela

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil Ciêcia e Natura ISSN: 000-807 cieciaeaturarevista@gailco Uiversidade Federal de Sata Maria Brasil Dattori da Silva, Paulo Leadro; Gálio Spolaor, Silvaa de Lourdes U irracioal: oúero de Euler Ciêcia e Natura,

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS C/007/MATEMATICA/ITAIME/MAT599ita(res)/ Cleo 5607 o Esio Médio Prova de Mateática (SIMULADO ITA/007) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Coo e y são iteiros, só podeos ter ( ) é u

Leia mais

Teorema Chinês dos Restos

Teorema Chinês dos Restos Teorea Chinês dos Restos Sauel Barbosa 22 de arço de 2006 Teorea 1. (Bézout) Seja a e b inteiros não nulos e d seu dc. Então existe inteiros x e y tais que d = ax + by. Se a e b são positivos podeos escolher

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis,

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis, 0/0/0 Máio divisor cou e ínio últiplo cou: Dados dois núeros naturais e n, chaareos de aior divisor cou entre n e o núero natural dc (,n) que é otido pelo produto dos fatores couns entre e n. Assi podeos

Leia mais

Distribuição dos Números Primos

Distribuição dos Números Primos Distribuição dos Núeros Prios Rafael Afoso Barbosa, Atôio Carlos Nogueira Bolsista do PET-Mateática da Uiversidade Federal de Uberlâdia Docete da Faculdade de Mateática da Uiversidade Federal de Uberlâdia

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

Problemas fundamentais da teoria da aproximação funcional

Problemas fundamentais da teoria da aproximação funcional . 24 GAZETA DE MATEM ATIÇA Cosequêcias : ) Caso b>a. a É claro que o acotecieto A 2 Ai é -0 a certeza, isto é, j?(.í4) =. Coo para é AiAj = 0, podeos escrever: * a F- p(a) ^ ou ou aida &

Leia mais

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3.

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3. BM&F Câara de Ativos s de Referêcia e Seus Liites de Variação Para a Deteriação do Túel de s do Sisbex - Versão 3.0-1 Itrodução. Neste docueto apresetaos u procedieto pelo qual as taxas de referêcia da

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012 Prova Parcial Aluo(a): Data: 8/2/202. (,5p) Use regras de iferêcia para provar que os argumetos são válidos. (usar os símbolos proposicioais idicados): A Rússia era uma potêcia superior, e ou a Fraça ão

Leia mais

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log 0 IME "A ateática é o alfabeto co que Deus escreveu o udo" Galileu Galilei Questão 0 Cosidere log b a 4, co a e b úeros reais positivos. Deterie o valor de, úero real, para que a equação x 8 x log b ab

Leia mais

Universidade do Estado do Amazonas

Universidade do Estado do Amazonas Uiversidade do Estado do Amazoas Professor Alessadro Moteiro 6 de Julho de 08 PROJETO DE EXTENSÃO Resoluções de Problemas de Aálise Real I 5º Ecotro/Parte I: Limites de Fuções 5. O Limite de uma Fução

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

Número de regressores do Método DFA

Número de regressores do Método DFA Núero de regressores do Método DFA Raquel Roes Lihares 1 Sílvia Regia Costa Lopes 2 1 Itrodução O étodo da aálise de flutuações destedeciadas (Detreded Fluctuatio Aalysis - DFA), proposto por Peg et al.

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas Resolução das Questões Objetivas Questão : Seja f : R R dada por f ( x) = µ x + 0x + 5, ode µ 0 Teos que f ( x ) > 0 para todo x R, se e soete se, i) µ > 0 ; ii) A equação µ x + 0x + 5 = 0 ão possui solução

Leia mais

Matrizes e Polinômios

Matrizes e Polinômios Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) =

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Ajuste de Curvas Itrodução No capítulo aterior vios ua fora de trabalhar co ua fução defiida por ua tabela de valores, a iterpolação polioial. Cotudo, e sepre a iterpolação

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011 Campus Pato Braco Prova Parcial Matemática Discreta para Computação 20 Aluo(a): Data: 08/04/20. (,5p) Explicar o Paradoxo de Cator. Use como base o seguite: Teorema de Cator: Para qualquer cojuto A, a

Leia mais

Sumário. 2 Índice Remissivo 21

Sumário. 2 Índice Remissivo 21 i Suário 1 Pricipais Distribuições Discretas 1 1.1 A Distribuição Beroulli................................ 1 1.2 A Distribuição Bioial................................ 2 1.3 A Distribuição Geoétrica...............................

Leia mais

1 o SIMULADO NACIONAL AFA - SISTEMA SEI

1 o SIMULADO NACIONAL AFA - SISTEMA SEI Istruções 1. Para a realização das provas do Siulado Nacioal AFA Sistea SEI, o usuário deverá estar cadastrado, e o seu cadastro, ativado.. E cojuto co esse arquivo de questões, está sedo dispoibilizado

Leia mais

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T.

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T. Capítulo 4 CONDUÇÃO BI-DIMENSIONAL REGIME PERMANENE ρc p t =! # x k " x $ &! # % y k " y $ &! % z k $ # &!q " z % < q Equação de calor (k cte e se geração coordeadas cartesiaas): x y = 4.- Método de separação

Leia mais

Massa atômica, molecular e mol

Massa atômica, molecular e mol assa atôica, olecular e ol Gabarito: Resposta da questão 1: [A] Tereos: O bóso de Higgs, apesar de ser ua partícula fudaetal da atureza, te assa da orde de 16 vezes aior que a do próto, etão: etade da

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

O Teorema Fundamental da Aritm etica

O Teorema Fundamental da Aritm etica 8 O Teorema Fudametal da Aritm etica Vimos, o cap ³tulo 5, o teorema 5.1, que estabelece que os primos positivos s~ao os blocos usados para costruir, atrav es de produtos, todos os iteiros positivos maiores

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

Sumário. 1 Introdução 2. 2 Tópicos em Álgebra Linear Matrizes Produto de Matrizes Matrizes Transpostas 5. 2.

Sumário. 1 Introdução 2. 2 Tópicos em Álgebra Linear Matrizes Produto de Matrizes Matrizes Transpostas 5. 2. Suário Itrodução Tópicos e Álgebra Liear 4. Matrizes 4. Produto de Matrizes. Matrizes Traspostas.4 Fução Traço 6. Escaloaeto de Matrizes e Posto de ua Matriz 6.6 Matrizes Ivertíveis 7.7 Deteriates 8.8

Leia mais

2. POTÊNCIAS E RAÍZES

2. POTÊNCIAS E RAÍZES 2 2. POTÊNCIAS E RAÍZES 2.. POTÊNCIAS COM EXPOENTES INTEIROS Vios teriorete lgus sectos históricos ds otêcis e dos logritos, e coo lgus rocessos ue levr à costrução dos esos. Pssreos seguir u desevolvieto

Leia mais

O teorema de Poincaré-Hopf para superfície com bordo

O teorema de Poincaré-Hopf para superfície com bordo Acta Scietiaru (4):89-896 999 ISSN 45-684 O teorea de Poicaré-Hof ara suerfície co bordo Nelso Martis Garcia Deartaeto de Mateática Uiversidade Estadual de Marigá Av Colobo 579 87-9 Marigá-Paraá Brazil

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mateática para Ecooia Les Aulas 4 e 5 Márcia Azaha Ferraz Dias de Moraes 5 e 3//6 (co restrição) Otiização Não Codicioada: Métodos de otiização dos extreos relativos da fução objetivo: Todas as variáveis

Leia mais

ESTIMAÇÃO INTERVALAR. O intervalo aleatório [T 1,T 2 ] é chamado um intervalo de 100(1 α)% de confiança para

ESTIMAÇÃO INTERVALAR. O intervalo aleatório [T 1,T 2 ] é chamado um intervalo de 100(1 α)% de confiança para SUMÁRIO Estiação Itervalar. Quatidade ivotal................................... Método da Quatidade ivotal....................... 3.. Itervalos para opulações Norais - ua aostra............ 4..3 Itervalos

Leia mais

Monografia de Especialização Demonstrações Combinatórias 2

Monografia de Especialização Demonstrações Combinatórias 2 Uiversidade Federal de Mias Gerais - UFMG Istituto de Ciêcias Exatas - ICEx Departaeto de Mateática Moografia de Especialização Deostrações Cobiatórias 2 Aluo: Júlio César de Sousa Mariho julioariho@gail.co

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012 Bases e dimesão Roberto Imbuzeiro Oliveira 22 de Março de 2012 1 Defiições básicas Nestas otas X é espaço vetorial com mais de um elemeto sobre o corpo F {R, C}. Uma base (ão ecessariamete LI) de X é um

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Modelo vetorial: análise de redes. Análise de redes. Algoritmos de análise de redes. Análise de redes. Análise de redes

Modelo vetorial: análise de redes. Análise de redes. Algoritmos de análise de redes. Análise de redes. Análise de redes Sisteas de Iforação Geográfica II ula lexadre Goçalves DECivil - IST alexg@civil.ist.utl.pt Modelo vetorial: aálise de redes 1. : probleas 1. Caihos de eor custo. Árvores. lgoritos. valiação da rede 1.

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 4

Análise Complexa Resolução de alguns exercícios do capítulo 4 Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

Considerações finais

Considerações finais Cosiderações fiais Bases Matemáticas Defiições prelimiares Defiição 1 Dizemos que y é uma cota superior para um cojuto X se, para todo x X é, verdade que y x. Exemplo 1 os úmeros 2, 3, π e quaisquer outros

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações. obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos

Leia mais

Equações Recorrentes

Equações Recorrentes Filipe Rodrigues de S oreira Graduado e Egeharia ecâica Istituto Tecológico de Aeroáutica (ITA) Julho 6 Equações Recorretes Itrodução Dada ua seqüêcia uérica, uitas vezes quereos deteriar ua lei ateática,

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

Problemas e Soluções

Problemas e Soluções FAMAT e Revista Revista Cietífica Eletôica da Faculdade de Mateática - FAMAT Uivesidade Fedeal de Ubelâdia - UFU - MG Pobleas e Soluções Núeo 09 - Outubo de 007 www.faat.ufu.b Coitê Editoial da Seção Pobleas

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia SALVADOR-BA Forado pessoas para trasforar o udo. Tarefa: RESOLUÇÃO DA ª AVALIAÇÃO DE MATEMÁTICA ALUNOA: ª série do esio édio Elaboração: Prof. Octaar Marques Resolução: Profa. Maria Atôia Gouveia Tura:

Leia mais

Cálculo III - SMA 333. Notas de Aula

Cálculo III - SMA 333. Notas de Aula Cálculo III - SMA 333 Notas de Aula Sumário 1 Itrodução 2 2 Seqüêcias Numéricas 6 2.1 Defiição, Exemplos e Operações........................ 6 2.2 Seqüêcias Limitadas e Ilimitadas........................

Leia mais

A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA

A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA A oção de fução hoogéea surge logo o prieiro ao dos cursos de liceciatura ode ua disciplia de Aálise Mateática esteja presete. Tal coo é apresetada, trata-se

Leia mais

Numeração de funções computáveis. Nota

Numeração de funções computáveis. Nota Numeração de fuções computáveis 4.1 Nota Os presetes acetatos foram baseados quase a sua totalidade os acetatos realizados pela Professora Teresa Galvão da Uiversidade de Porto para a cadeira Teoria da

Leia mais

Problema de transporte

Problema de transporte Departaeto de Egeharia de Produção UFPR 38 Problea de trasporte Visa iiizar o custo total do trasporte ecessário para abastecer cetros cosuidores (destios) a partir de cetros forecedores (origes) a1, a2,...,

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte I). Ativadades IV Profa. Dra. Letícia Maria Bolzai Poehls /0/00 Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação

Leia mais

Construção do anel de polinômios em uma indeterminada utilizando módulos

Construção do anel de polinômios em uma indeterminada utilizando módulos Costrução do ael de poliômios em uma idetermiada utilizado módulos Costructio of the rig of polyomials i oe idetermiate usig modules ISSN 2316-9664 Volume 12, jul. 2018 Christia José Satos Goçalves Uiversidade

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

Gabarito do Simulado da Primeira Fase - Nível Beta

Gabarito do Simulado da Primeira Fase - Nível Beta Gabarito do Simulado da Primeira Fase - Nível Beta Questão potos Serão laçados dois dados: um dado azul de 4 faces, umeradas de a 4, e um dado vermelho de 8 faces, umeradas de a 8 a Determie a probabilidade

Leia mais

A exponencial. Praciano-Pereira, Tarcisio

A exponencial. Praciano-Pereira, Tarcisio A expoecial Praciao-Pereira, Tarcisio 25 de jaeiro de 206 préprits da Sobral Matemática o. 206.0 Editor Tarcisio Praciao-Pereira tarcisio@member.ams.org Resumo Estou resolvedo, este artigo, a equação y

Leia mais

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x MATEMATICA APLICADA A NEGÓCIOS 4,?? 200) Cálculo Cálculo Diferencial e Integral I TEOREMA DO SANDUICHE LIMITES FUNDAMENTAL Jair Silvério dos Santos * Teorea 0 Dadas f, g, h : A R funções e 0 ponto de acuulação

Leia mais

ALGUMAS CONSIDERAÇÕES PRÁTICAS E CONCEITUAIS SOBRE A RAIZ QUADRADA DE DOIS

ALGUMAS CONSIDERAÇÕES PRÁTICAS E CONCEITUAIS SOBRE A RAIZ QUADRADA DE DOIS ALGUMAS CONSIDERAÇÕES PRÁTICAS E CONCEITUAIS SOBRE A RAIZ QUADRADA DE DOIS Ricardo Fajardo Uiversidade Federal de Sata Maria rfaj@sail.ufs.br Resuo: Este artigo surgiu da iteção de coetar sobre o por quê

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

TEORIA E PRÁTICA NA BUSCA DE NÚMEROS PRIMOS DE MERSENNE

TEORIA E PRÁTICA NA BUSCA DE NÚMEROS PRIMOS DE MERSENNE TEORIA E PRÁTICA NA BUSCA DE NÚMEROS PRIMOS DE MERSENNE Coissão Técnica: Prof. Dr. Edival de Morais Prof. M. Sc. Eduardo Quadros da Silva Profa. Dra. Maria da Conceição Pinheiro Autores: Prof. M. Sc. Leonardo

Leia mais

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial.

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS Rafael Afoso Barbosa Bolsista do programa PETMAT - Faculdade de Matemática - Uiversidade Federal de Uberlâdia Atoio Carlos Nogueira Professor Doutor da Faculdade

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

FGV - 1 a Fase 21/10/2001

FGV - 1 a Fase 21/10/2001 FGV - a Fase /0/00 Mateática 0. dotando-se os valores log 0,0 e log 0,48, a raiz da equação 0 vale aproiadaente:,,8 4,4,7 log 0,0 log 0,48 0. log log 0 (.. ) log 0 log 0 0,0 + 0,48 + 0,0 log + log + log0

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Geometria Aalítica (o espaço). Cosidera, um referecial o.. do espaço, os plao defiidos pelas seguites equações: x yz e xyz A iterseção dos dois plaos é: (A)

Leia mais

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2 Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

2.2 Alguns Exemplos de Funções Elementares

2.2 Alguns Exemplos de Funções Elementares Capítulo II: Fuções Reais de Variável Real 3. Algus Eeplos de Fuções Eleetares Fução afi (liear) São as fuções ais siples que aparece: os us gráficos repreta rectas. y + b f () y + b b y declive b ordeada

Leia mais

Capítulo III TRANSFORMAÇÕES LINEARES

Capítulo III TRANSFORMAÇÕES LINEARES Capítlo III RANSFORAÇÕES LINEARES Capítlo III rasforações Lieares Capítlo III rasforações o Aplicações Seja dois cojtos A e B Se a cada eleeto a A for associado e só eleeto b B dir-se-á qe foi defiida

Leia mais

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita?

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita? Cálculo A fução iplícita Abril 9 O que é ua fução a fora iplícita e geral desigada por fução iplícita? Cálculo A fução iplícita Abril 9 Coeceos ao cotrário. Ua fução real de variável real coo 4se está

Leia mais