Estudo da Função Exponencial e Função Logarítmica
|
|
|
- Eric de Carvalho da Costa
- 9 Há anos
- Visualizações:
Transcrição
1 Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira Estudo da Fução Expoecial e Fução Logarítmica 1. Recordado algumas características da fução liear Seja f: R R, f(x) = ax; a 0, f estritamete moótoa (f estritamete crescete ou f estritamete decrescete), temos que f(x + y) = f(x) + f(y) (Propriedade Distributiva da Multiplicação em relação à Adição) Daí, temos que: De modo semelhate temos que: f(1) = a f(x) = ax f() = f ( ) = f(1) + f(1) + f(1) + + f(1) = f(1) = a Desta forma fica demostrada formalmete a multiplicação dos úmeros iteiros a e. Pode-se utilizar a mesma estratégia para provar que a multiplicação etre úmeros racioais. Para isto basta utilizar o lugar do úmero iteiro o úmero racioal r, escrito da forma m/ com m, iteiros. 2. Recordado algumas características da fução afim Seja f: R R, f(x) = ax + b. Esta fução possui uma propriedade importate que é: f(x + h) f(x) = ah Em outras palavras isto sigifica afirmar que f(x + h) f(x) ão depede de x mas somete de h. Geometricamete falado podemos represetar esta situação da seguite forma: Isto ão ocorre, por exemplo, a fução quadrática, coforme pode-se observar a figura a seguir:
2 3. Um pouco sobre a fução expoecial Durate esta seção utilizaremos os seguites resultados: que é válida obviamete para todo a, x e y aturais e a x+y = a x a y para as codições ideais de a, m e. a m = a m Seja f: R R, f(x) = a x, a > 0 e a 1. Chamado f(x) de y tem-se que: y = a x ode y é chamado de expoecial de x ou de outra forma o x é o logaritmo de y. Caso a > 1 a fução expoecial é crescete e o caso de 0 < a < 1 a fução expoecial é decrescete. A pricipal caraterística da fução expoecial é que ela trasforma somas em produtos. Se f: R R é moótoa ijetiva (estritamete crescete ou estritamete decrescete) tal que f(x + y) = f(x) f(y) etão podo a = f(1) tem-se que f(x) = a x, x R (Teorema de caracterização da fução expoecial) A propriedade descrita ateriormete (f(x + y) = f(x) f(y)) acarreta que a fução expoecial admite apeas valores positivos. Uma cosequêcia desta afirmação é que se a fução expoecial zera em um de seus potos, ela acaba zerado em todos seus demais potos. Supoha que haja algum x 0 tal que f(x 0 ) = 0. Etão para todo x R ter-se-ia que: f(x) = f(x 0 + (x x 0 )) = f(x 0 ) f(x x 0 ) = 0 f(x x 0 ) = 0
3 Além disso se a fução expoecial ão é ideticamete ula tem-se que: f(x) = f ( x 2 + x 2 ) = f (x 2 ) f (x 2 ) = f (x 2 ) 2 > 0 Desta forma a fução expoecial possui f: R R +. Poto f(1) = a tem-se que: Em particular quado = 1 tem-se que: f( x) = f(x) f(x) f(x) f() = a = f(x) De forma aáloga pode-se mostrar que se r = m/, tem-se que f(r) = a r. Seja r = m/. Etão r = m. Logo Etão a m = f(m) = f( r) = f() r f(r) = f( a m ) = a m Desta forma fica provado que a fução expoecial é válida para todos os úmeros iteiros e racioais, sedo que também pode ser provada para úmeros reais. 4. A fução de tipo expoecial Da mesma forma que existe uma aalogia etre a fução afim e a fução liear, existe uma aalogia semelhate etre a fução de tipo expoecial e a fução expoecial. A fução de tipo expoecial possui diversas aplicações o cotidiao como, por exemplo, a desitegração radioativa e o cálculo de juros o sistema de capitalização composta. Seja f: R R, f(x) = b a x, ode b é o valor iicial e f(0) = b. A pricipal característica da fução de tipo expoecial é f(x + h) = φ(h) f(x) ou seja, a razão etre f(x + h) e f(x) ão depede de x mas apeas de h. 5. Um exemplo de utilização da fução de tipo expoecial Um idivíduo deve tomar um atibiótico (via ijetável) de 12 em 12 horas. Na bula da ijeção estava escrito que após 24 horas, 90% do pricípio ativo era expelido do orgaismo. Após 12 horas qual a cocetração do pricípio ativo da ijeção o orgaismo? Chamemos de f(x) a cocetração da substâcia que aida resta o orgaismo após x horas. Supoha que esta fução seja de tipo expoecial. Logo temos: Etão a fução pode ser escrita a forma f(x + h) = f(x) φ(h) f(x) = b a x Se após 24 horas 90% da substâcia foi elimiada do orgaismo, temos que restam aida % da substâcia o corpo. Logo, temos que:
4 A perguta deseja saber o valor de f(12). Substituido os valores a fução temos: Motado a igualdade temos: Etão o valor de a 12 é dado por: f(24) = 1 f(24) = b a 24 b a 24 = b = 1 a 12 2 = a 24 2 = 1 0,315 = 31,5% Resposta: Após 12 horas restam 31,5% da substâcia o orgaismo do idivíduo. 6. Um pouco sobre a fuções logarítmicas A fução logarítmica é a fução iversa da fução expoecial ou seja log a : R + R. Iicialmete devemos ter em mete que todo úmero real positivo pode ser escrito a forma y = a x. Em otação simbólica, temos: O gráfico da fução logarítmica é do tipo: y R + x R; y = a x Observado o gráfico da fução logarítmica é fácil ver que o cojuto imagem é formado por todo semieixo positivo dos úmeros reais Comparado os gráficos da fução expoecial e da fução logarítmica percebemos que os gráficos são simétricos em relação ao gráfico da fução idetidade f(x) = x.
5 A defiição de logaritmo é: Substituido uma relação a outra temos: y = a x x = log a y a log a y = y ou seja a fução composta da fução logarítmica com a fução expoecial é a fução idetidade. Uma propriedade da fução logarítmica é: log x y = log x + log y com log xy : R + R e f estritamete crescete. Tal propriedade é historicamete relevate pois foi dela que origiou os logaritmos. 7. A iterpretação geométrica dos logaritmos Seja f: R R, f(x) = 1. A área delimitada etre o itervalo [1, x] é log x. x Tais logaritmos são comumete chamados de logaritmos eperiaos (em homeagem a Joh Napier). Cotudo é mais adequada chama-los de logaritmos aturais. Caso a área delimitada este caso seja igual a 1 temos que x = e. Outra defiição par ao úmero e é: e = lim (1 + 1 )
Cálculo II Sucessões de números reais revisões
Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto [email protected] Departameto de Matemática Uiversidade
Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.
Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta
FUNÇÕES CONTÍNUAS Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos [email protected] Vamos estudar aqui uma ova classe de
Função Logarítmica 2 = 2
Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
Análise Matemática I 2 o Exame
Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e
( 7) ( 3) Potenciação
Poteciação Defiição: Calcular a potêcia de um úmero real a equivale a multiplicar a, por ele mesmo, vezes. A otação da operação de poteciação é equivalete a: Eemplos: 6; 7 9 a a. a. a... a vezes Propriedades:
Estudando complexidade de algoritmos
Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade
Capítulo 3. Sucessões e Séries Geométricas
Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre
(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:
Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo
(def) (def) (T é contração) (T é contração)
CAPÍTULO 5 Exercícios 5 (def) (T é cotração) a) aa Ta ( ) Ta ( 0) aa0, 0 Portato, a a aa0 (def) (def) (T é cotração) b) a3a Ta ( ) Ta ( ) TTa ( ( ) TTa ( ( 0)) (T é cotração) Ta ( ) Ta ( ) 0 aa0 Portato,
Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas
Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de
Provas de Matemática Elementar - EAD. Período
Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas
Séquências e Séries Infinitas de Termos Constantes
Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Fundamentos de Análise Matemática Profª Ana Paula. Números reais
Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO
Ajuste de Curvas pelo Método dos Quadrados Mínimos
Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Desigualdades Aritméticas
Projecto Delfos: Escola de Matemática Para Joves Desigualdades Aritméticas. Mostra que a + b a + b, para todos os úmeros reais a e b (desigualdade triagular). Quado é que se tem a igualdade? Geeraliza
1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1
Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética
CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS
Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie
1. Revisão Matemática
Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete
S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números
S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,
SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica
CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre
... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.
DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari [email protected] O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE
CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas
Elementos de Matemática
Elemetos de Matemática Números Complexos e Biomiais: Exercícios - 2007 Versão compilada o dia de Outubro de 2007. Departameto de Matemática - UEL Prof. Ulysses Sodré: ulysses(auel(ptbr Matemática Essecial:
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
Análise Infinitesimal II LIMITES DE SUCESSÕES
-. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +
UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática
UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x
2.2. Séries de potências
Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise
DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:
48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa
Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1
Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões
1. Revisão Matemática
Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica
FEUP - MIEEC - Análise Matemática 1
FEUP - MIEEC - Aálise Matemática Resolução do exame de Recurso de 6 de Fevereiro de 9 Respostas a pergutas diferetes em folhas diferetes Justifique cuidadosamete todas as respostas. Não é permitida a utilização
Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.
Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe
Universidade Federal Fluminense - UFF-RJ
Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios
Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.
Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo
Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb)
Soluções da prova. Cálculo Diferecial e Itegral I o Eame - MEMec; MEEC; MEAmb de Juho de 00-9 horas I val.. i!! u!! do teorema das sucessões equadradas vem u 0 dado que ±!! 0. v / + l + / + l + /6 l Para
Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos
Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos
TEOREMA DE BAIRE. 1. Conceitos Preliminares Exemplos de Aplicações do Teorema de Baire 5 Referências 8
TEOREMA DE BAIRE JONAS RENAN MOREIRA GOMES BOLSISTA SANTANDER-USP Sumário 1. Coceitos Prelimiares 1 2. Defiição de Espaço de Baire 2 3. Exemplos de Aplicações do Teorema de Baire 5 Referêcias 8 Esse texto
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
Capítulo II - Sucessões e Séries de Números Reais
Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,
2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES
CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações
MATEMÁTICA A PREPARAR O EXAME. 12.º ano Ensino Secundário Ana Martins Helena Salomé Liliana dos Prazeres Silva José Carlos da Silva Pereira
MATEMÁTICA A PREPARAR O EXAME 12.º ao Esio Secudário Aa Martis Helea Salomé Liliaa dos Prazeres Silva José Carlos da Silva Pereira 4 ÍNDICE CAPÍTULO I CONTEÚDOS DE 10.º E 11.º ANOS LÓGICA E TEORIA DOS
1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.
1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),
1 Formulário Seqüências e Séries
Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam
Séries e aplicações15
Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor
ESCOLA BÁSICA DE ALFORNELOS
ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r
b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça
Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem
DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012
DILMAR RICARDO MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS Teoria e Seleção das Questões: Prof. Dilmar Ricardo Orgaização e Diagramação: Mariae dos Reis ª Edição DEZ 0 TODOS OS DIREITOS
Análise Complexa Resolução de alguns exercícios do capítulo 4
Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática
Miistério da Educação Uiversidade Tecológica Federal do Paraá Campus Curitiba Gerêcia de Esio e Pesquisa Departameto Acadêmico de Matemática Dispositivo Prático de Briot-Ruffii: Poliômios O Dispositivo
Exercícios de exames e provas oficiais
limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual
Exercícios de exames e provas oficiais
Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,
A letra x representa números reais, portanto
Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da
