Desigualdades Aritméticas
|
|
|
- Salvador Macedo Martini
- 8 Há anos
- Visualizações:
Transcrição
1 Projecto Delfos: Escola de Matemática Para Joves Desigualdades Aritméticas. Mostra que a + b a + b, para todos os úmeros reais a e b (desigualdade triagular). Quado é que se tem a igualdade? Geeraliza a desigualdade aterior mostrado que x + + x x + + x, e discute em que codições é que a igualdade ocorre. 2. Mostra que a b a b. 3. Mostra que as médias harmóica, geométrica e aritmética de dois úmeros a, b > 0 estão relacioadas da forma seguite: 2 a + b ab a + b 2 (desigualdade MH MG MA). Geeraliza a desigualdade aterior mostrado que para x,..., x > Para x, y, z 0, mostra que x + + x x... x x + + x, (x + y)(y + z)(x + z) 8xyz. 5. Para x, y, z > 0, mostra que 6. Para x, y, z 0, mostra que x + y + z xy + yz + zx. x 2 + y 2 + z 2 x y 2 + z 2 + y x 2 + z Sedo a,..., a > 0 e b,..., b uma permutação de a,..., a, mostra que a b + + a b.
2 Projecto Delfos: Escola de Matemática Para Joves 2 8. Para IN, seja H = , o -ésimo úmero harmóico. Mostra que + < + H, Se a, b, c > 0 são tais que a + b + c =, mostra que ( a + )( b + )( c + ) Dados x,..., x úmero reais positivos, mostra que ( (x + + x ) + + ) 2. x x. Dados úmeros reais com a a 2 a e b b 2 b, cosidera uma qualquer permutação b, b 2,..., b de b, b 2,..., b. Mostra que (desigualdade do rearrajo). a b + + a b a b + + a b a b + + a b 2. Estabelece a desigualdade do Problema 7 usado a desigualdade do rearrajo. 3. Para qualquer permutação a,..., a de a,..., a mostra que 4. Dados a, b, c > 0, prova que a a 2 a a + + a a. a b + c + b a + c + c a + b Teta obter a desigualdade MH MG MA (ver Exercício 3) a partir da desigualdade do rearrajo. 6. Se a a e b b, mostra que a b + + a b (desigualdade de Tchebyshev). a + + a b + + b
3 Projecto Delfos: Escola de Matemática Para Joves 3 7. Mostra que a média aritmética e a média quadrática estão relacioadas pela desigualdade x + + x 8. Se x,..., x, y,..., y são úmeros reais, mostra que x y + + x y (desigualdade de Cauchy Schwarz). x x 2. x x 2 y y 2 9. Mostra que a 2 + b 2 + c 2 ab + bc + ca. 20. Se a, b, c são úmeros positivos com a + b + c =, mostra que ab + bc + ca Mostra que a + b 2 a 2 + b Se a,..., a são úmeros positivos com a + + a =, mostra que a a a + + a + +. a a 23. Sejam x,..., x úmeros reais tais que a soma de quaisquer deles é maior do que o úmero deixado de fora da soma. Sedo s = x + + x, mostra que 24. Para x > e IN mostra que (desigualdade de Beroulli). x 2 s 2x + + x2 s 2x ( + x) + x s 2. Uma fução f : [a, b] IR diz-se covexa se para todo o x, y [a, b] e para todo o α [0, ] se tem f(αx + ( α)y) αf(x) + ( α)f(y).
4 Projecto Delfos: Escola de Matemática Para Joves Se f é uma fução covexa em [a, b], etão para todo o x,..., x [a, b] e α,..., α [0, ] com α + + α =, mostra que ( ) f α i x i (desigualdade de Jese). 26. Retoma o Problema 22 à luz da desigualdade de Jese. α i f(x i ) 27. Se x,..., x são úmeros positivos maiores ou iguais a, prova que x + x x x Sejam x, y úmeros positivos e p, q > com p + q =. Mostra que xy p xp + q yq (desigualdade de Youg). 29. Se x,..., x, y,..., y são úmeros positivos e p, q > com p + q =, mostra que ( x i y i ) /p ( x p i y q i ) /q (desigualdade de Hölder). 30. Se x,..., x, y,..., y são úmeros positivos e p, mostra que (desigualdade de Mikowski). ( ) /p ( ) /p ( (x i + y i ) p x p i + y p i ) /p
5 Projecto Delfos: Escola de Matemática Para Joves 5 Pistas de Resolução Problemas, 2: Recorda que o módulo de um úmero real x, que represetamos por x, é defiido por x = x, quado x 0, e x = x, quado x < 0. Assim, é verdade que x 2 = x 2, para todo o úmero real x. Problema 3: Verifica que basta provar a seguda desigualdade. Para geeralizar a desigualdade a úmeros, usa o pricípio de idução matemática. Num primeiro passo, verifica que a desigualdade é válida para = 2. Depois, mostra que se a desigualdade é válida para o úmero atural também é válida ão só para o úmero atural 2 como também é válida para o úmero atural. Neste último caso, faz g = a... a e aplica a desigualdade aos úmeros a,..., a, g. Relativamete à ocorrêcia da igualdade, basta aalisar os passos da demostração por iduão. Problema 4: Usa a desigualdade MG MA para cada um dos factores do primeiro membro. Problema 5: Usa a desigualdade MH MG para cada par de parcelas do primeiro membro. Problema 6: Usa a desigualdade MG MA... Problema 7: Aplica a desigualdade MG MA aos úmeros a b,..., a b. Problema 8: Verifica que a soma + H pode ser escrita a forma e aplica a desigualdade MG MA. Problema 9: Desevolve o primeiro membro da desigualdade e usa a desigualdade MH MG para mostrar que ele é maior ou igual que ( + 3 abc ) 3. A seguir usa a desigualdade MG MA e mostra que 3 abc 3. Problema 0: Usa as desigualdades MH MG e MG MA... Problema : Verifica que basta aalisar o caso em que a permutação troca apeas dois dos úmeros iiciais. roblemas 2, 3: Sem perda de geeralidade, verifica que podes admitir que 0 < a a. Problema 4: Sem perda de geeralidade, podes assumir que a b c o que implica que b+c a+c a+b... Problema 5: Toma a = x /G, a 2 = x x 2 /G 2,..., a = x... x /G com G = x... x. Problema 6: Usa várias vezes a desigualdade do rearrajo... Problema 7: Olha bem para a desigualdade de Tchebyshev...
6 Projecto Delfos: Escola de Matemática Para Joves 6 Problema 8: Começa por verificar que se todos os x i s ou todos os y i s forem iguais a zero, a desigualdade é válida. A seguir, aplica o Problema 3 aos úmeros x X,..., x X, y Y,..., y Y, ode X = x2 i e Y = y2 i. Problema 9: Usa a desigualdade de Cauchy Schwarz... Problema 20: Desevolve o quadrado (a + b + c) 2. Problema 2: Repara que (a + b) 2 = (a + b ) 2... Problema 22: Represeta por A o primeiro membro da desigualdade e verifica que A = ai ai. Usa agora a desigualdade MG MA o primeiro somatório e a desigualdade de Cauchy Schwarz o segudo. Problema 23: Começa por provar que s > 2x k para todo o k =,...,. A seguir cosidera a decomposição x k x k = s 2x k. s 2xk Problema 24: Aplica a desigualdade MG MA aos úmeros,...,, + x. Problema 25: Usa de forma apropriada a defiição de fução covexa. Problema 26: Usa o facto da fução f(x) = x x ser covexa para x ]0, [. Problema 27: Usa o facto da fução f(x) = +e x ser covexa para x > 0. Problema 28: Verifica que xy = e p log(xp )+ q log(yq) e usa o facto da fução expoecial ser covexa em IR. Problema 29: Começa por verificar que basta aalisar o caso em que xp i = e yp i =. A seguir aplica a desigualdade de Youg aos produtos x i y i. Problema 30: Começa por verificar que (x i +y i ) p = x i (x i +y i ) p +y i (x i +y i ) p e a seguir usa a desigualdade de Hölder. Bibliografia: Mafrio, R.B., Ortega, J.A.G., Delgado, R.V. (2005). Iequalities. Cuaderos de Olimpiadas de Matemáticas, Istituto de Matemáticas, Uiversidad Nacioal Autóoma de México.
Desigualdades Matemáticas e Aplicações
Uiversidade Estadual Paulista Júlio de Mesquita Filho Istituto de Geociêcias e Ciêcias Exatas Campus de Rio Claro Desigualdades Matemáticas e Aplicações Rebeca Cristia Boelli Dissertação apresetada ao
Estudo da Função Exponencial e Função Logarítmica
Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Estudo da Fução Expoecial
Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2
Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
Provas de Matemática Elementar - EAD. Período
Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova
UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONALIZANTE EM MATEMÁTICA
UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONALIZANTE EM MATEMÁTICA O Uso de Desigualdades a Resolução de Problemas Alessadro
SUCESSÕES DE NÚMEROS REAIS. Sucessões
SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas
Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de
1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.
1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),
(def) (def) (T é contração) (T é contração)
CAPÍTULO 5 Exercícios 5 (def) (T é cotração) a) aa Ta ( ) Ta ( 0) aa0, 0 Portato, a a aa0 (def) (def) (T é cotração) b) a3a Ta ( ) Ta ( ) TTa ( ( ) TTa ( ( 0)) (T é cotração) Ta ( ) Ta ( ) 0 aa0 Portato,
Universidade Federal Fluminense - UFF-RJ
Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão
Análise Infinitesimal II LIMITES DE SUCESSÕES
-. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +
Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...
Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo
Fundamentos de Análise Matemática Profª Ana Paula. Números reais
Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,
(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:
Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS
Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.
Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FUNÇÕES CONTÍNUAS Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos [email protected] Vamos estudar aqui uma ova classe de
Séquências e Séries Infinitas de Termos Constantes
Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates
Exercícios de Cálculo III - CM043
Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das
TEMA 3 SUCESSÕES FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 3 SUCESSÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
Jorge Pealva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA 3 SUCESSÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 3 SUCESSÕES
Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb)
Soluções da prova. Cálculo Diferecial e Itegral I o Eame - MEMec; MEEC; MEAmb de Juho de 00-9 horas I val.. i!! u!! do teorema das sucessões equadradas vem u 0 dado que ±!! 0. v / + l + / + l + /6 l Para
Ajuste de Curvas pelo Método dos Quadrados Mínimos
Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas
( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:
Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:
Capítulo I Séries Numéricas
Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...
Números primos, números compostos e o Teorema Fundamental da Aritmética
Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética
Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.
Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo
Aula 5 de Bases Matemáticas
Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas
Induzindo a um bom entendimento do Princípio da Indução Finita
Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)
CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE
CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas
Proposta de teste de avaliação
Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: Cadero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva, a folha de respostas,
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório
Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)
2Parte. Soluções das Fichas de trabalho. FICHa De trabalho 1 Resolução de triângulos
Soluções das FICHa De trabalho Resolução de triâgulos Aretâgulo 9 = A 0 68. 0, círculo. a =,. ta a =. 78 m a) V A.,7 ; B U., e a. 8,9 cm b) B U. 99, ; C V.,6 e b.,8 cm ou B U = 0,6 ; C V., e b.,8 cm c)
Análise Matemática I 2 o Exame
Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e
M23 Ficha de Trabalho SUCESSÕES 2
M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere
2.2. Séries de potências
Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise
Elementos de Matemática
Elemetos de Matemática Números Complexos e Biomiais: Exercícios - 2007 Versão compilada o dia de Outubro de 2007. Departameto de Matemática - UEL Prof. Ulysses Sodré: ulysses(auel(ptbr Matemática Essecial:
BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO
BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Geometria Aalítica (o espaço). Cosidera, um referecial o.. do espaço, os plao defiidos pelas seguites equações: x yz e xyz A iterseção dos dois plaos é: (A)
Matemática I. Licenciatura em Economia. Exercícios. (1 + a) n 1 + na. n!, e que desta igualdade se tira imediatamente que p!(n p)! + p.
Matemática I 1 o semestre - 2012/13 Liceciatura em Ecoomia Eercícios Aálise Matemática 2 Números reais. Breves Noções toológicas 2.1. Demostre elo ricíio de idução matemática: a 1 + 2 + 3 +... + (+1 2,
1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1
Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular
Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,
XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes
XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes
Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta
Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,
Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica
Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a
Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)
Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO
UMA ABORDAGEM SOBRE DESIGUALDADES E SUAS APLICAÇÕES
UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS MESTRADO EM MATEMÁTICA UMA ABORDAGEM SOBRE DESIGUALDADES E SUAS APLICAÇÕES GABRIEL CARVALHO VELAME CRUZ DAS ALMAS 014
INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP
Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros
ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003
ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma
Séries e aplicações15
Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor
UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática
UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari [email protected] O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores
FICHA DE TRABALHO 11º ANO. Sucessões
. Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus
Desigualdades (por Iuri de Silvio ITA-T11)
Desigualdades (por Iuri de Silvio ITA-T) Apresetação O objetivo desse artigo é apresetar as desigualdades mais importates para quem vai prestar IME/ITA, e mostrar como elas podem ser utilizadas a resolução
S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números
S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim
