Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica
|
|
|
- Gustavo Davi Brás Barreto
- 9 Há anos
- Visualizações:
Transcrição
1 Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a é uma progressão geométrica; II. b é uma progressão geométrica; III. c é uma progressão aritmética; IV. d é uma progressão geométrica. São verdadeiras apeas a) I, II e III. b) I, II e IV. c) I e III. d) II e IV. e) III e IV.. (Uicamp 05) Se ( α, α,..., α ) é uma progressão aritmética (PA) cuja soma dos termos é 78, etão α 7 é igual a a) 6. b) 7. c) 8. d) 9.. (Espcex (Ama) 05) Na figura abaixo temos uma espiral formada pela uião de ifiitos semicírculos cujos cetros pertecem ao eixo das abscissas. Se o raio do primeiro semicírculo (o maior) é igual a e o raio de cada semicírculo é igual à metade do semicírculo aterior, o comprimeto da espiral é igual a a) π. b) π. c) π. d) 4 π. e) 5 π. 4. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por exemplo, # é uma palavra de comprimeto e #* * # é uma palavra de comprimeto 4. Usado esse alfabeto miimalista, a) quatas palavras de comprimeto meor do que 6 podem ser formadas? b) qual é o meor valor de N para o qual é possível formar de palavras de tamaho meor ou igual a N? Págia de
2 Exercícios de Aprofudameto Matemática Progressão Aritmética e 5. (Ita 05) Seja (a,a,a,...) a sequêcia defiida da seguite forma: a, a e a a a para. Cosidere as afirmações a seguir: I. Existem três termos cosecutivos, a p, ap, a p, que, esta ordem, formam uma progressão geométrica. II. a 7 é um úmero primo. III. Se é múltiplo de, etão a é par. É (são) verdadeira(s) a) apeas II. b) apeas I e II. c) apeas I e III. d) apeas II e III. e) I, II e III. 6. (Uesp 05) Para cada atural, seja o úmero vezes K vezes Se, para que valor se aproxima K? 7. (Uicamp 05) Seja (a,b,c,d) uma progressão geométrica (PG) de úmeros reais, com razão q 0 e a 0. a) Mostre que x é uma raiz do poliômio cúbico p(x) a bx cx dx. q b) Sejam e e f úmeros reais quaisquer e cosidere o sistema liear as variáveis x e y, a c x e. Determie para que valores da razão q esse tem solução úica. d b y f 8. (Uicamp 04) O perímetro de um triâgulo retâgulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triâgulo é igual a a),0 m. b),0 m. c),5 m. d),5 m. 9. (Uicamp 04) Dizemos que uma sequêcia de úmeros reais ão ulos (a, a, a, a 4,...) é uma progressão harmôica se a sequêcia dos iversos,,,,... é uma a a a a4 progressão aritmética (PA). 4 a) Dada a progressão harmôica,,,..., 5 9 ecotre o seu sexto termo. b) Sejam a, b e c termos cosecutivos de uma progressão harmôica. Verifique que ac b. a c 0. (Ita 04) Uma pirâmide de altura h cm e volume V 50 cm tem como base um polígoo covexo de lados. A partir de um dos vértices do polígoo traçam-se Págia de
3 Exercícios de Aprofudameto Matemática Progressão Aritmética e diagoais que o decompõem em triâgulos cujas áreas S, i i,,...,, costituem uma progressão aritmética a qual S cm e S6 cm. Etão é igual a a). b) 4. c) 6. d) 8. e).. (Espcex (Ama) 04) Os úmeros aturais ímpares são dispostos como mostra o quadro ª liha ª liha 5 ª liha 7 9 4ª liha ª liha O primeiro elemeto da 4ª liha, a horizotal, é: a) 807 b) 007 c) 07 d) 507 e) (Ita 04) Cosidere os poliômios em x da forma p(x) x a x a x a x. As raízes de p(x) 0 igual a 5 a), 0, b),, c), 0, d), 0,. 4 4 e),,. 4 4 a, a, a é costituem uma progressão aritmética de razão quado. (Espm 04) Dois irmãos começaram jutos a guardar diheiro para uma viagem. Um deles guardou R$ 50,00 por mês e o outro começou com R$ 5,00 o primeiro mês, depois R$ 0,00 o segudo mês, R$ 5,00 o terceiro e assim por diate, sempre aumetado R$ 5,00 em relação ao mês aterior. Ao fial de um certo úmero de meses, os dois tiham guardado exatamete a mesma quatia. Esse úmero de meses correspode a: a) pouco mais de um ao e meio. b) pouco meos de um ao e meio. c) pouco mais de dois aos. d) pouco meos de um ao. e) exatamete um ao e dois meses. 4. (Espm 04) A figura abaixo mostra a trajetória de um móvel a partir de um poto A, com BC CD, DE EF, FG GH, HI IJ e assim por diate. Págia de
4 Exercícios de Aprofudameto Matemática Progressão Aritmética e Cosiderado ifiita a quatidade desses segmetos, a distâcia horizotal AP alcaçada por esse móvel será de: a) 65 m b) 7 m c) 80 m d) 96 m e) 00 m 5. (Fuvest 04) Cosidere o triâgulo equilátero Δ A0OB0 de lado 7cm. a) Sedo A o poto médio do segmeto A0B 0, e B o poto simétrico de A em relação à reta determiada por O e B, 0 determie o comprimeto de OB. b) Repetido a costrução do item a), tomado agora como poto de partida o triâgulo Δ AOB, pode se obter o triâgulo Δ AOB tal que A é o poto médio do segmeto AB, e B o poto simétrico de A em relação à reta determiada por O e B. Repetido mais uma vez o procedimeto, obtém se o triâgulo Δ AOB. Assim, sucessivamete, pode se costruir uma sequêcia de triâgulos Δ AOB tais que, para todo, A é o poto médio de AB, e B, o poto simétrico de A em relação à reta determiada por O e B, coforme figura abaixo. Deotado por a, para, o comprimeto do segmeto A A, verifique que a,a,a,... é uma progressão geométrica. Determie sua razão. c) Determie, em fução de, uma expressão para o comprimeto da liha poligoal A A A...A,. 0 O poto P é simétrico ao poto P em relação à reta r se o segmeto PP' é perpedicular à reta r e a iterseção de PP' e r é o poto médio de PP'. 6. (Fgv 04) a) Um sábio da Atiguidade propôs o seguite problema aos seus discípulos: Págia 4 de
5 Exercícios de Aprofudameto Matemática Progressão Aritmética e Uma rã parte da borda de uma lagoa circular de 7,5 metros de raio e se movimeta saltado em liha reta até o cetro. Em cada salto, avaça a metade do que avaçou o salto aterior. No primeiro salto avaça 4 metros. Em quatos saltos chega ao cetro? b) O mesmo sábio faz a seguite afirmação em relação à situação do tem A: Se o primeiro salto da rã é de metros, ela ão chega ao cetro. Justifique a afirmação. Págia 5 de
6 Exercícios de Aprofudameto Matemática Progressão Aritmética e Gabarito: Resposta da questão : [E] [I] Falsa. Tem-se que a ( ). Logo, como a razão a ( ) a ( ) ão é costate, segue que a ão é uma progressão geométrica. [II] Falsa. De fato, a razão ( ) b b ão é costate. Daí, podemos cocluir que b ão é uma progressão geométrica. [III] Verdadeira. A difereça etre quaisquer dois termos cosecutivos da sequêcia c é a a ( ) 4( ) 4 ( 4 4) Desse modo, c é uma progressão aritmética de primeiro termo e razão igual a. [IV] Verdadeira. De (II), temos 8 e razão igual a 4. d, que é uma progressão geométrica de primeiro termo Resposta da questão : [A] Como α 7 é o termo médio da progressão aritmética, segue-se que 78 α7 e, portato, temos α7 6. Resposta da questão : [B] Comprimeto de uma semicircuferêcia de raio Logo, a soma pedida será dada por: S π π π 4 π 8... S π ( ) S π S π πr r : π r Págia 6 de
7 Exercícios de Aprofudameto Matemática Progressão Aritmética e Resposta da questão 4: a) palavras com uma letra: palavras com duas letras: palavras com três letras: E assim sucessivamete. Portato, o úmero de palavras de comprimeto meor do que 6 será dado por: b) Utilizado a fórmula da soma dos primeiros termos de uma P.G, temos: N 6 0 N 6 0 N 6 0 N Logo, N 0 N 9. Resposta da questão 5: [D] [I] Falsa. Cosiderado a existêcia dos termos da sequêcia a codição dada, temos: 5 x q x q x q q 0 q (irracioal) Portato, ão existem termos desta sequêcia que formam uma P.G, pois os termos são todos positivos e ão ulos. [II] Verdadeira. Determiado o sétimo termo da sequêcia, temos a7, que é um úmero primo. [III] Verdadeira. Aalisado a paridade da sequêcia (ímpar, ímpar, par, ímpar, ímpar, par,...) percebemos que os termos de ordem, 6, 9,,... são pares. Portato, apeas as afirmações [II] e [III] são verdadeiras. Resposta da questão 6: Tem-se que K 4 4. Págia 7 de
8 Exercícios de Aprofudameto Matemática Progressão Aritmética e Se, etão 0 e, portato, segue que K. Resposta da questão 7: a) Tem-se que b aq, c aq e d aq. Logo, vem p a aq aq aq q q q q a a a a 0. Por coseguite, x é uma raiz do poliômio p(x). q b) De (a), obtemos a c x e a aq x e. d b y f aq aq y f Sabedo que a 0, q 0 e q, o sistema terá solução úica se, e somete se, a aq aq aq 5 0 a q a q 0 a q( q )( q ) 0. Portato, além de q 0, deve-se ter q. Resposta da questão 8: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triâgulo, com x, r 0. Aplicado o Teorema de Pitágoras, ecotramos x r. Logo, os lados do triâgulo medem r, 4r e 5r. Sabedo que o perímetro do triâgulo mede 6,0 m, vem r 4r 5r 6 r. Portato, a área do triâgulo é igual a r 4r 6,5 m. Resposta da questão 9: 4 a) Se a progressão,,, 5 9 é harmôica, etão a sequêcia 5 9,,, 4 é uma Págia 8 de
9 Exercícios de Aprofudameto Matemática Progressão Aritmética e progressão aritmética de razão 9 5. Daí, seu sexto termo é dado por a Em cosequêcia, o resultado pedido é 4. 5 b) Sabedo que em toda progressão aritmética cada termo é igual à média aritmética do seu atecessor e do seu sucessor (exceto o primeiro e o último), tem-se a c a c b b ac ac b. a c Resposta da questão 0: [C] Se a altura da pirâmide mede cm e seu volume 50cm, etão a área da base é tal que 50 S Si 50cm. i i i Além disso, temos S6 S r r r cm. Logo, S S r S S cm. Por coseguite, o valor de é Si [ S ( ) r] 50 ( ) i ( ) ( ) Resposta da questão : [E] Até a 4 a liha, temos: Págia 9 de
10 Exercícios de Aprofudameto Matemática Progressão Aritmética e (4) termos. Portato, o primeiro elemeto da 4ª liha será o 904º úmero atural ímpar. Etão: a Resposta da questão : [C] Sejam,,, e as raízes de p(x). Podemos escrever p(x) sob a forma p(x) x 0x a x a x a x a. Assim, das Relações de Girard, tem-se Portato, p(x) x(x ) x x (x ) x(x ) x x x x implica em (a, a, a ), 0,. 4 4 Resposta da questão : [A] Seja o úmero de meses decorridos até que os dois irmãos veham a ter o mesmo capital. Tem-se que, , ou seja, um ao e sete meses, o que equivale a pouco mais de um ao e meio. Resposta da questão 4: [C] Pelo Teorema de Pitágoras aplicado o triâgulo ABC, ecotramos facilmete AC 0 m. Págia 0 de
11 Exercícios de Aprofudameto Matemática Progressão Aritmética e Os triâgulos ABC, CDE, EFG, são semelhates por AA. Logo, como a razão de semelhaça é igual a CD, segue-se que AC 0 m, CE 5 m, AB EG m, costituem uma 4 0 progressão geométrica cujo limite da soma dos primeiros termos é dado por 80 m. 4 Resposta da questão 5: a) Como OB0 AB, AA AB e OA é comum aos triâgulos OAA e OBA, segue-se que os triâgulos OAA e OBA são cogruetes por LAL. Além disso, OAB 0 OAA 90 e AB0 A 60 implicam em OAB 60. Portato, o triâgulo OA B é equilátero. Desse modo, o resultado pedido correspode à altura do triâgulo A0OB 0, ou seja, 7 cm. b) Raciociado de forma iteiramete aáloga ao item (a), cocluímos que OA OA, com. Daí, como OA a A A, temos OA a, a OA para todo e, portato, a, a, a, é uma progressão geométrica de primeiro termo 7 a cm e razão. c) O comprimeto da poligoal A0AA A, com, correspode à soma dos primeiros termos da progressão geométrica a, a, a,, ou seja, 7 7( ) cm. Resposta da questão 6: a) As distâcias percorridas pela rã costituem uma progressão geométrica de primeiro termo igual a 4 e razão. alcace o cetro, etão Logo, se é o úmero de saltos ecessários para que a rã Págia de
12 Exercícios de Aprofudameto Matemática Progressão Aritmética e 7,5 4 7, b) Supodo que a rã pudesse dar tatos saltos quato quisesse, teríamos lim S 6. Portato, como 6 7,5, cocluímos que a rã ão chegaria ao cetro. Págia de
Imersão Matemática PA e PG. c) 3 + d) 3 - e) 3-3. soma a1 + a2 + a3 + a4 + a5 é igual a a) 24 + b) c) d) e)
. (Uifesp) Em um eperimeto, uma população iicial de 00 bactérias dobra a cada horas. Sedo o úmero de bactérias após horas, segue que y y 00. c) + d) - e) - a) Depois de um certo úmero de horas a partir
Matemática Revisão MASTER I
Matemática Revisão MASTER I Professor Luiz Amaral. (Uerj 009) Maurre Maggi foi a primeira brasileira a gahar uma medalha olímpica de ouro a modalidade salto em distâcia. Em um treio, o qual saltou vezes,
Whats: PROGRESSÃO GEOMÉTRICA
Questões Vídeos 1. As áreas dos quadrados a seguir estão em progressão geométrica de razão 2. Podemos afirmar que os lados dos quadrados estão em a) progressão aritmética de razão 2. b) progressão geométrica
ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.
ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)
PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999
PG apostila. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por
26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.
6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A
CPV O cursinho que mais aprova na fgv
CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se
NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.
R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate
PROGRESSÃO GEOMÉTRICA
PROGRESSÃO GEOMÉTRICA 9º ANO MATEMÁTICA PROF. ALDO 4º BIM Questão A sequêcia umérica c é defiida como c = a b, com, em que a e b são progressões aritmética e geométrica, respectivamete. Sabedo-se que a
COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA
Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir
A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21
Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da
FICHA DE TRABALHO 11º ANO. Sucessões
. Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus
Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...
Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo
Matemática E Extensivo V. 1
Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)
GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010
GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +
de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.
0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão
Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.
Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação
PROVA DE MATEMÁTICA 2 a FASE
PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um
01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a:
01 Um triâgulo isósceles tem os lados cogruetes medido 5 cm, a base medido 8 cm. A distâcia etre o seu baricetro é, aproximadamete, igual a: (A) 0,1cm (B) 0,3cm (C) 0,5cm (D) 0,7cm (E) 0,9cm 02 2 2 5 3
Rua 13 de junho,
NOME: 1. (Cefet MG 013) Durate o mesmo período, dois irmãos depositaram, uma vez por semaa, em seus respectivos cofrihos, uma determiada quatia, da seguite forma: o mais ovo depositou, a primeira semaa,
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)
Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,
Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]
Proposta de Teste [outubro - 017] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Elevando ao quadrado (o que pode criar raízes estranhas),
A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(
MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =
MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 1 Matemática A Duração do Teste (Cadero 1+ Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos: Cadero
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
Proposta de Exame de Matemática A 12.º ano
Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,
3. Seja C o conjunto dos números complexos. Defina a soma em C por
Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos
CPV O cursinho que mais aprova na FGV
O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia
( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x
Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versões 1/3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versões / Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
Considerando que os triângulos são todos semelhantes, os perímetros formam uma PG de razão 1.
Resposta da questão : [B] Tem-se que t at = habitates e bt Resposta da questão : [D] PA a; a + r; a + r; a + 3r; a + 4r; a + 5r; a + 6r ( ) ( ) PG a; a + r; a + 6r; q = a + 6r a + r = a + r a + 4ar + 4r
Proposta de teste de avaliação
Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: Cadero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva, a folha de respostas,
BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO
BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Geometria Aalítica (o espaço). Cosidera, um referecial o.. do espaço, os plao defiidos pelas seguites equações: x yz e xyz A iterseção dos dois plaos é: (A)
( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...
Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada
Duração: 90 minutos 5º Teste, Junho Nome Nº T:
Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões
[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]
[Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação
Sequências, PA e PG material teórico
Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:
XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes
XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares
Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda
Módulo Elemetos Básicos de Geometria - Parte 3 Diagoais de Poĺıgoos. 8 ao/e.f. Professores Cleber Assis e Tiago Mirada Elemetos Básicos de Geometria - Parte 3. Diagoais de Polígoos. 1 Exercícios Itrodutórios
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 01 GABARITO COMENTADO 1) a + b + c + d + 4 + + = 1 a + b + c + + + 4 = 1 a + b + c + d + 9 = 1 a + b + c +
Espaço Amostral = todas as possibilidades de se formar dois conjuntos com 5 elementos cada.
Dez cartões estão umeradas de 1 a 10. Depois de embaralhados, são formados dois cojuto de 5 cartões cada. Determie a probabilidade de que os úmeros 9 e 10 apareçam um mesmo cojuto. C, C,..., C 1 10 Espaço
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X
MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada:
MATEMÁTICA 0000 Questão 0 Determie o cojuto-solução da equação se x + cos x = se x cos x Fatorado a equação dada: se x + cos x= se x cos x ( sex + cos x)( se x sexcos x+ cos x) = ( sexcos x) ( x x)( x
PROVA DE RACIOCÍNIO MATEMÁTICO
)Uma prova costa de testes de múltipla escolha, cada um com 5 alterativas e apeas uma correta Se um aluo ``chutar`` todas as respostas: a)qual a probabilidade dele acertar todos os testes? b)qual a probabilidade
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Séries e Equações Diferenciais Lista 02 Séries Numéricas
Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.
Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m
Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações
Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.
Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,
Teorema Fatoração Única. Todo inteiro pode ser representado de modo único como o produto de números primos distintos, a menos da ordem dos fatores.
Pricipio de Dirichlet ou da casa dos pombos. Se mais de objetos (pombos) são dispostos em classes (casas de pombo), pelo meos uma das classes (casas de pombo) possui mais de um objeto (pombo). Pricípio
Séries e aplicações15
Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor
11 Aplicações da Integral
Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos
GRUPO I Duração: 50 minutos
Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora
NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.
MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto
Números primos, números compostos e o Teorema Fundamental da Aritmética
Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética
Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta
Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,
Fundamentos de Análise Matemática Profª Ana Paula. Números reais
Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,
Novo Espaço Matemática A 12.º ano Proposta de Teste Intermédio [Novembro 2015]
Novo Espaço Matemática A.º ao Proposta de Teste Itermédio [Novembro 05] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. Para
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 5 Matemática A Duração do Teste (Cadero 1 + Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos:
Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais.
Progressões Aritméticas Itrodução Chama-se sequêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais. Exemplo: 7; 0; 3;... ; 34 Uma seqüêcia pode ser iita ou iiita. 7; 0; 3; 6;... esta sequêcia
Exercícios de Matemática Polinômios
Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.
Questão 02. é (são) verdadeira(s) A) apenas I. B) apenas II. C) apenas III. D) apenas I e II. E) Nenhuma. Questão 03 8 A) 9 B) C)
0 ITA "A matemática é o alfabeto com que Deus escreveu o mudo" Galileu Galilei Notações : cojuto dos úmeros aturais;,,,... i z : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
PG Progressão Geométrica
PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ao Versão /4 Nome: Nº Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias Quado, para
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari [email protected] O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,
FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS
145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo
Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio
Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto
MATEMÁTICA APLICADA RESOLUÇÃO
GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 05/06/06 Para a costrução de uma jaela a sala de um teatro, eiste a dúvida se ela deve ter a forma de um retâgulo, de um círculo ou etão da figura formada pela
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
