Colégio FAAT Ensino Fundamental e Médio
|
|
|
- Lara Canela Pais
- 9 Há anos
- Visualizações:
Transcrição
1 Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial. Lista de exercícios. (PUC-SP) Um aluo prestou vestibular em apeas duas Uiversidades. Supoha que, em uma delas, a probabilidade de que ele seja aprovado é de 30%, equato a outra, pelo fato de a prova ter sido mais fácil, a probabilidade de sua aprovação sobe para 40%. Nessas codições, a probabilidade deque esse aluo seja aprovado em pelo meos uma dessas Uiversidades é de: A) 70% B) 68% C) 60% D) 58% E) 5%. (PUC-RIO) Quatro moedas são laçadas simultaeamete. Qual é a probabilidade de correr coroa em uma só moeda? A) /8 B) /9 C) /4 D) /3 E) 3/8 3. (PUC-RIO) Jogamos dois dados comus. Qual a probabilidade de que o total de potos seja igual a 0? A) / B) / C) /0 D) /3 E) /6 4. (PUC-RIO) A probabilidade de um dos cem úmeros,, 3, 4,..., 00 ser múltiplo de 6 e de 0 ao mesmo tempo é: A) 3% B) 6% C) % D) 0% E) 60% 5. (UFMG) Cosidere uma prova de Matemática costituída de quatro questões de múltipla escolha, com quatro alterativas cada uma, das quais apeas uma é correta. Um cadidato decide fazer essa prova escolhedo, aleatoriamete, uma alterativa em cada questão. Etão, é CORRETO afirmar que a probabilidade de esse cadidato acertar, essa prova, exatamete uma questão é: A) 7/64 B) 7/56 C) 9/64 D) 9/56 E) 9/56
2 6. Dois dados cúbicos, ão viciados, com faces umeradas de a 6, serão laçados simultaeamete. A probabilidade de que sejam sorteados dois úmeros cosecutivos, cuja soma seja um úmero primo, é de: A) /9 B) /3 C) 4/9 D) 5/9 E) /3 7. O quadro fucioal de uma empresa é composto de 35 pessoas efetivas e 5 pessoas prestadoras de serviços. Do pessoal efetivo 0 são homes e do pessoal prestador de serviço 5 são mulheres. Escolhedo aleatoriamete uma pessoa dessa empresa, a probabilidade dessa pessoa ser homem ou prestar serviço é: A) /5 B) 7/0 C) 9/0 D) 3/5 E) 4/5 8. Em uma população de aves, a probabilidade de um aimal estar doete é /5. Quado uma ave está doete, a probabilidade de ser devorada por predadores é /4, e, quado ão está doete, a probabilidade de ser devorada por predadores é /40. Portato, a probabilidade de uma ave dessa população, escolhida aleatoriamete, ser devorada por predadores é de: A),0% B),4% C) 4,0% D) 3,4% E),5% 9. (Uesp) Após uma partida de futebol, em que as equipes jogaram com as camisas umeradas de a e ão houve substituições, procede-se ao sorteio de dois jogadores de cada equipe para exame atidopig. Os jogadores da primeira equipe são represetados por bolas umeradas de a de uma ura A e os da seguda, da mesma maeira, por bolas de uma ura B. Sorteia-se primeiro, ao acaso e simultaeamete, uma bola de cada ura. Depois, para o segudo sorteio, o processo deve ser repetido com as 0 bolas restates de cada ura. Se a primeira extração foram sorteados dois jogadores de úmeros iguais, a probabilidade de que acoteça o mesmo a seguda extração é de: A) 0,09 B) 0, C) 0, D) 0, E) 0,5. 0. (Uicamp) Cosidere o cojuto dos dígitos {,, 3,..., 9} e forme com eles úmeros de ove algarismos distitos. a) Quatos desses úmeros são pares? b) Escolhedo-se ao acaso um dos úmeros do item (a), qual a probabilidade de que este úmero teha exatamete dois dígitos ímpares jutos?
3 . (Uicamp) Em uma festa para calouros estão presetes 50 calouros e 350 calouras. Para daçar, cada calouro escolhe uma caloura ao acaso formado um par. Perguta-se: a) Quatos pares podem ser formados? b) Qual a probabilidade de que uma determiada caloura NÃO ESTEJA daçado o mometo em que todos os 50 calouros estão daçado?. (Uicamp) Um dado é jogado três vezes, uma após a outra. Perguta-se: a) Quatos são os resultados possíveis em que os três úmeros obtidos são diferetes? b) Qual a probabilidade da soma dos resultados ser maior ou igual a 6? 3. (Uesp) Um baralho tem cartas, das quais 4 são ases. Retiram-se 3 cartas ao acaso. Qual a probabilidade de haver pelo meos um ás etre as cartas retiradas? 4. (Uesp) Escolhem-se aleatoriamete três dos seis vértices de um hexágoo regular. Qual a probabilidade de que os vértices escolhidos formem um triâgulo equilátero? A soma é igual a: A) 9 3 B) C). D) E) O termo idepedete de x o desevolvimeto de A) 70 B) C) 8 D) E) 70 3 x 8 x é:
4 7. Sedo um úmero biomial, etão p p p é: A) B) C) D) E) p 8. No desevolvimeto de 6 A) 60 B) 0 C) 40 D) 480 E) 960 x 9. Calcular p, p 3, sedo dado:, o coeficiete p p 3 p p 8 x é: Sabe-se que o desevolvimeto de do termo em 3 x x x tem 7 termos. Determie assim o coeficiete GABARITO:. D. C 3. A 4. A 5. A 6. A 7. B 8. D 9. B 0. A) 680 úmeros B) 4. A) pares B) 7 5. A) 0 B) B 6. C 7. A 8. C 9. p
5 Colégio FAAT Esio Fudametal e Médio Recuperação do 4 Bimestre Matemática Zabeu Coteúdo: 4º Bimestre Esferas; Sólidos iscritos e circuscritos Lista de exercícios ) (PUC-RS) Um reservatório tem a forma de uma semiesfera. A base, que está assetada o solo, possui área itera de 36 π m². O volume de gás que comporta o reservatório, em m³, é de: a) 44π b) 08π c) 7π d) 36π e) 8π ) (UEPB) Uma esfera de raio cm é iscrita em um cubo. O volume delimitado pela superfície esférica e pelas faces do cubo, em cm 3, é: a) /3 (6 π) b) /3 (6 π) c) 4/3 (6 π) d) 5/3 (6 π) e) 4/3 (6 + π) 3) (ENEM - Adaptado) Um artista plástico costruiu, com certa quatidade de massa modeladora, um cilidro circular reto cujo diâmetro da base mede 4 cm e cuja altura mede 5 cm. Ates que a massa secasse, ele resolveu trasformar aquele cilidro em uma esfera. Aalisado as características das figuras geométricas evolvidas, coclui-se que o raio R da esfera assim costruída é igual a: 4) (UNESP) Um troféu para um campeoato de futebol tem a forma de uma esfera de raio R = 0cm, cortada por um plao situado a uma distâcia de 5 3cm do cetro da esfera, determiado uma circuferêcia de raio r cm, e sobreposta a um cilidro circular reto de 0 cm de altura e raio r cm, como a figura a seguir (ão em escala). O volume do cilidro, em cm³, é: 5) (PUC-SP) A tira seguite mostra o Ceboliha tetado levatar um haltere, que é um aparelho feito de ferro, composto de duas esferas acopladas a um bastão cilídrico.
6 Supoha que cada esfera teha 0,5cm de diâmetro e que o bastão teha 50cm de comprimeto e diâmetro da base medido,4cm. Se a desidade do ferro é 7,8g/cm³, quatos quilogramas, aproximadamete, o Ceboliha tetava levatar? (Use: π = /7) 6) Uma esfera está iscrita em um cilidro cuja altura mede 0 cm. Calcule o volume compreedido etre o cilidro e a esfera. 7) Se um cilidro de 0 cm de altura está iscrito em um coe reto cuja geratriz mede 5 cm e o raio da base 0 cm, calcule o volume do cilidro. 8) Um coe circular reto com altura 8 cm e raio de base cm está iscrito uma esfera que, por sua vez, está iscrita um cilidro. A razão etre as áreas das superfícies totais do cilidro e do coe é igual a: 9) Calcule a área total de um cubo que está iscrito uma esfera cujo raio mede 3 cm. 0) Cosidere uma esfera e um coe reto de altura cm. Sabedo que a esfera está iscrito o coe e tem volume igual a 43 π cm³, determie o volume do coe e divida a resposta por π. ) E ) C 3) R,75 4) V = 500π 5) 0,06 kg 6) 6,67 cm³ 7) 395,5 cm³ 8),365 9) 96 cm² 0) 34 cm³
ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.
ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)
Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]
Proposta de Teste [outubro - 017] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações
A B C A e B A e C B e C A, B e C
2 O ANO EM Matemática I RAPHAEL LIMA Lista 6. Durate o desfile de Caraval das escolas de samba do Rio de Jaeiro em 207, uma empresa especializada em pesquisa de opiião etrevistou 40 foliões sobre qual
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 1 Matemática A Duração do Teste (Cadero 1+ Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos: Cadero
Novo Espaço Matemática A 12.º ano Proposta de Teste Intermédio [Novembro 2015]
Novo Espaço Matemática A.º ao Proposta de Teste Itermédio [Novembro 05] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. Para
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares
MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =
MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0 - Probabilidades - 12º ano Metas (C.A.)
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho º 0 - Probabilidades - 1º ao Metas (C.A.) 1. Um cojuto X tem 10 elemetos. Quatos subcojutos de X, com 3 elemetos, é possível formar?. Exprima cada uma
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução
CPV O cursinho que mais aprova na FGV
O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia
Espaço Amostral = todas as possibilidades de se formar dois conjuntos com 5 elementos cada.
Dez cartões estão umeradas de 1 a 10. Depois de embaralhados, são formados dois cojuto de 5 cartões cada. Determie a probabilidade de que os úmeros 9 e 10 apareçam um mesmo cojuto. C, C,..., C 1 10 Espaço
( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x
Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,
Proposta de teste de avaliação
Matemática A. O ANO DE ESOLARIDADE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva, a folha de respostas, o
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias
CPV O cursinho que mais aprova na fgv
CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se
26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.
6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A
Proposta de prova-modelo
Proposta de prova-modelo Matemática A. AN DE ESCLARIDADE Duração: (Cadero + Cadero ): 0 miutos. Tolerâcia: 0 miutos Cadero : 7 miutos. Tolerâcia: miutos (é permitido o uso de calculadora) Na resposta aos
NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.
R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate
Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica
Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a
Análise Combinatória (Regras de Contagem) 2 Princípio Fundamental da Multiplicação
Uiversidade Federal Flumiese INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Egeharia Prof. Mariaa Albi Material de Apoio Assuto: Aálise Combiatória Aálise Combiatória
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +
Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.
Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,
República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências
Abuso Seual as escolas Não dá para aceitar Por uma escola livre do SIDA República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG / 04 Eame de Matemática Etraordiário
Proposta de Exame de Matemática A 12.º ano
Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,
Análise Combinatória
1 Módulo VI Fote: http://postcards.ig.com.br/idex.php?step=sedcard&ec_id=184 álise Combiatória Itrodução aálise Combiatória é a parte da Matemática que estuda os problemas, escolhedo os elemetos de um
UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X
NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.
MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto
BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:
07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,
MATEMÁTICA APLICADA RESOLUÇÃO
GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 05/06/06 Para a costrução de uma jaela a sala de um teatro, eiste a dúvida se ela deve ter a forma de um retâgulo, de um círculo ou etão da figura formada pela
Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]
Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]
Novo Espaço Matemática A.º ao Proposta de Teste [otbro - 07] Nome: Ao / Trma: N.º: Data: / / Não é permitido o so de corretor. Deves riscar aqilo qe pretedes qe ão seja classificado. A prova icli m formlário.
( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)
Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes
XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são
, respectivamente, pode-se afirmar que 5 x
00 ITA "A matemática é o alfabeto com que Deus escreveu o mudo" Galileu Galilei NOTAÇÕES ` ^,,!` \ : cojuto dos úmeros reais > a, b @ ^ \; a d d b` > a, b> ^ \; a d b` @a, b> ^ \; a b` A\B ^ ; A e B` k
11 Aplicações da Integral
Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos
Matemática Revisão MASTER I
Matemática Revisão MASTER I Professor Luiz Amaral. (Uerj 009) Maurre Maggi foi a primeira brasileira a gahar uma medalha olímpica de ouro a modalidade salto em distâcia. Em um treio, o qual saltou vezes,
Teorema Fatoração Única. Todo inteiro pode ser representado de modo único como o produto de números primos distintos, a menos da ordem dos fatores.
Pricipio de Dirichlet ou da casa dos pombos. Se mais de objetos (pombos) são dispostos em classes (casas de pombo), pelo meos uma das classes (casas de pombo) possui mais de um objeto (pombo). Pricípio
Prova 3 Matemática ... GABARITO 4 NOME DO CANDIDATO:
Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada
( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...
Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada
Séries e Equações Diferenciais Lista 02 Séries Numéricas
Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,
Prof. Rafael A. Rosales 24 de maio de Exercício 1. De quantas maneiras é possível ordenar um conjunto formado por n elementos?
USP-FFCLRP Fudametos de Matemática DCM Iformática Biomédica Prof. Rafael A. Rosales 24 de maio de 20 Combiatória Exercício. De quatas maeiras é possível ordear um cojuto formado por elemetos? Exercício
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
Matemática E Extensivo V. 1
Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)
Questão 01) Na equação matricial, , calcule x e y. Questão 02) , determine o valor do módulo do elemento. Dadas as matrizes A = (3-4 6) e
Questão ) Na equação matricial, y, calcule e y. Questão ) Dadas as matrizes A = ( - 6) e B, determie o valor do módulo do elemeto a da matriz produto A por B. Questão ) Cosidere uma matriz A, de ordem,
COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x
Matemática aula COMENTÁRIOS ATIVIDADES PARA SALA. Pelo algoritmo da divisão, temos: I. q + r II. + ( + 3) q + r + q+ r+ 3q + + 3q q 7 5. N 5. 8 x N 5. 3x Número de divisores ( + )(3x + ) 3x + 7 x um úmero
PROVA DE MATEMÁTICA 2 a FASE
PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um
01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a:
01 Um triâgulo isósceles tem os lados cogruetes medido 5 cm, a base medido 8 cm. A distâcia etre o seu baricetro é, aproximadamete, igual a: (A) 0,1cm (B) 0,3cm (C) 0,5cm (D) 0,7cm (E) 0,9cm 02 2 2 5 3
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta
Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,
ESCOLA BÁSICA DE ALFORNELOS
ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r
Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...
Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º B1. Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º B Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro
Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda
Módulo Elemetos Básicos de Geometria - Parte 3 Diagoais de Poĺıgoos. 8 ao/e.f. Professores Cleber Assis e Tiago Mirada Elemetos Básicos de Geometria - Parte 3. Diagoais de Polígoos. 1 Exercícios Itrodutórios
Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio
Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto
Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio
Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto
GRUPO I Duração: 50 minutos
Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora
Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo.
Matemática Prof.: Joaquim Rodrigues ESTUDO DOS POLINÔMIOS Questão 0 Dê o grau de P em cada caso: a) P() = 7 + b) P () = + + 7 c) P () = + d) P () = + e) P () = 0 f) P () = 0 Questão 0 Dado o poliômio P()
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
PROVA DE RACIOCÍNIO MATEMÁTICO
)Uma prova costa de testes de múltipla escolha, cada um com 5 alterativas e apeas uma correta Se um aluo ``chutar`` todas as respostas: a)qual a probabilidade dele acertar todos os testes? b)qual a probabilidade
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Um teste de múltipla escolha e composto de 12 questões, com 5 alternativas de resposta, sendo que somente uma, é correta. Qual a probabilidade de uma pessoa, marcando aleatoriamente
de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.
0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.
ESG / 2013 Exame de Matemática 2ª Época 12ª Classe 120 Minutos
buso Seual as escolas Não dá para aceitar Por uma escola livre do SID República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG 01 Eame de Matemática ª Época
PROBABILIDADE. prof. André Aparecido da Silva. 1
NOÇÕES DE PROBABILIDADE prof. Adré Aparecido da Silva [email protected] 1 TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chaces de ocorrer um determiado acotecimeto. É um ramo
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação
Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química
Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza
3ª Lista de Exercícios de Programação I
3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros
