INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
|
|
|
- Neusa Arruda da Fonseca
- 9 Há anos
- Visualizações:
Transcrição
1 OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias (icluido esta págia de capa) e 30 problemas. Verifique se existe alguma págia ou exercício faltado e, em caso afirmativo peça ao APLICADOR(A) para trocar sua prova. Esta prova é idividual e sem cosulta à qualquer material. O uso de aparelhos eletrôicos, como celular, tablet, otebook e calculadora, ão são permitidos o decorrer da prova. A duração da prova é de horas e 30 miutos. Após esse tempo você terá 10 miutos extras para o preechimeto do gabarito oficial. Após o térmio do preechimeto, etregue ao APLICADOR(A) o gabarito oficial com as respostas. Esta prova ão precisa ser etregue ao APLICADOR(A). BOA PROVA! Págia 1 de 7
2 OPRM 016 Seguda Fase - Nível 3 /09/16 1. Os potos L, M e N são potos médios de arestas do cubo, como mostra a figura abaixo. Quato mede o âgulo LMN? (A) 90 (B) 105 (C) 10 (D) 135 (E) 150. Na figura, a reta P Q toca em N o círculo que passa por L, M e N. A reta LM corta a reta P Q em R. Se LM = LN e a medida do âgulo P NL é α, α > 60, quato mede o âgulo LRP? (A) 3α 180 (B) 180 α (C) 180 α (D) 90 α (E) α 3. Em um trapézio retâgulo circuscritível, a soma dos dois lados paralelos é igual a 18cm e a difereça dos dois outros lados é igual a cm. Se r é o raio da circuferêcia iscrita e a é o comprimeto do meor lado do trapézio, etão a soma a r (em cm) é: (A) 1 (B) 11 (C) 10 (D) 9 (E) 8. A figura mostra três circuferêcias de raios 1, e 3, tagetes duas a duas os potos destacados. Qual é o comprimeto do segmeto AB? (A) 1 (B) (C) 1 5 (D) 3 (E) 3 Págia de 7
3 OPRM 016 Seguda Fase - Nível 3 /09/16 5. Para um iteiro positivo cosidere a fução f() = Calcule o valor de f(1) f()... f(0) (A) 6 (B) 13 (C) 1 (D) 36 (E) 8 6. Na figura temos dois semicírculos de diâmetros P S, de medida, e QR, paralelo a P S. Além disso, o semicírculo meor é tagete a P S em O. Qual é o valor da área destacada? (A) π 1 (B) π (C) π (D) π 3 (E) π 7. Uma tira de papel retagular, braca de um lado e ciza do outro, foi dobrada como a figura abaixo. Qual é a medida do âgulo α? (A) 110 (B) 115 (C) 10 (D) 15 (E) (QUESTÃO ANULADA. Motivo: faltou especifcar que os algarismos que Tiago escreveu são todos distitos. Dessa forma ão há ehuma alterativa correta) Tiago escreve todos os úmeros de quatro dígitos tais que os algarismos destes úmeros são ão ulos e possuem a mesma paridade. Qual a probabilidade de que, ao escolhermos um desses úmeros que Tiago escreveu, ele seja par? (A) 1 (B) 1 3 (C) 1 (D) 1 5 (E) Se 3 e 1 3 são as raízes da equação ax 6x c = 0, qual o valor de a c? (A) 1 (B) 0 (C) 9 5 (D) 18 5 (E) O úmero 8 1 é divisível por dois úmeros compreedidos etre 60 e 70. Quais são esses úmeros? Págia 3 de 7
4 OPRM 016 Seguda Fase - Nível 3 /09/16 (A) 61 e 63 (B) 61 e 65 (C) 63 e 65 (D) 63 e 67 (E) 67 e Quatos zeros existem o fial do úmero ? (A) Nehum (B) Um (C) Dois (D) Três (E) Quatro 1. Sofia foi levar us docihos para sua avó; são 7 docihos de amora, 6 de coco e 3 de chocolate. Durate o camiho, a gulosa Sofia come docihos. Qual das situações abaixo é possível? (A) Vovó ão recebeu docihos de chocolate. (B) Vovó recebeu meos docihos de coco do que de chocolate. (C) Vovó recebeu o mesmo úmero de docihos de cada uma das 3 variedades. (D) Existem variedades de docihos das quais vovó recebeu o mesmo úmero. (E) O úmero de docihos de amora que vovó recebeu é maior que o dos outros somados. 13. Uma moeda viciada, quado jogada 5 vezes, dá a mesma probabilidade de obter cara exatamete uma vez e de obter cara exatamete duas vezes. A probabilidade de obter cara é diferete de zero. A probabilidade de a moeda dar cara 3 vezes em 5 laçametos é (A) 0 (B) 5 (C) 0 (D) 7 (E) Na terra Brasilis, há 100 seadores, cada um com auxiliares. Os seadores e os auxiliares participam de comissões. Uma comissão tem 5 seadores, ou seadores e auxiliares, ou seadores e 1 auxiliares. Cada seador está em 5 comissões e cada auxiliar está em 3 comissões. Quatas são as comissões? (A) 100 (B) 10 (C) 10 (D) 160 (E) O úmero complexo z = 1 cos a se a cos a ( cos a se a i1, a 0; π ) se a tem argumeto π. Assim, o valor de a é: (A) π 6 (B) π 3 (C) π (D) π 5 (E) π No desevolvimeto de (ax bx c 1) 5 obtém-se um poliômio cujos coeficietes somam 3. Se 0 e 1 são raízes de p(x), etão a soma a b c é (A) 1 (B) 1 (C) 1 (D) 1 (E) Calcule ( ) (A) (B) ( 1 5 ) 10 (C) 76 (D) 13 (E) Uma escada de 5m está ecostada a parede vertical de um edifício, de forma que o pé de escada está a 7m da base do prédio. Se o topo da escada escorrega m, quato o pé da escada escorregará? (A) 6 (B) 7 (C) (D) 5 (E) 8 Págia de 7
5 OPRM 016 Seguda Fase - Nível 3 /09/ Se um triâgulo tem lados 3, 7 e 8; podemos afirmar sobre estre triâgulo. (A) Uma das alturas é iteira (B) A área é um úmero racioal (C) Todos os âgulos iteros do triâgulo são agudos (D) Os âgulos deste triâgulo formam uma P.A. (E) Não podemos afirmar ehuma das alterativas acima. 0. Qual é o úmero míimo de voltas completas que a meor das egreages deve realizar para obtermos a mesma foto da figura abaixo? (A) 1 voltas (B) 1 voltas (C) 57 voltas (D) 60 voltas (E) 30 voltas 1. A soma é igual a: ( ) (A) 0 S = (B) ( ) 0 ( ) ( ) 1 (C) ( ) ( ) 6 ( ) ( ) ( ) ( ) ( 1 (D) (E) ). Ludmilso descobriu hoje que o produto da idade que tiha há 55 aos atrás pela idade que terá daqui a 55 aos é igual ao cubo de um úmero primo. Podemos dizer da idade atual de Ludmilso: (A) Que é um úmero primo (B) Que tem mais de 70 aos (C) Que é um múltiplo de 6 (D) Que é divisível por 13 (E) Desde que asceu já se passaram mais de 18 Copas do Mudo 3. Sejam x 1 e x as raízes da equação x (m 15)x m = 0. Sabedo que x 1 e x são úmeros iteiros, etão m pode assumir quatos valores? (A) 6 (B) 7 (C) (D) (E) 3. No meu carro, uma marca particular de peu dura quilômetros se utilizado a frete ou quilômetros se utilizado atrás. Itercambiado os peus traseiros e diateiros, a maior distâcia que posso adar a partir de um cojuto de quatro peus ovos é: (A) (B) (C) (D) (E).000 Págia 5 de 7
6 OPRM 016 Seguda Fase - Nível 3 /09/16 5. Um quadrado de área 5 é dividido em quatro quadrados iguais. O quadrado superior esquerdo é de cor ciza; a parte iferior direita do quadrado é de ovo dividida em quatro quadrados iguais, e assim por diate. O padrão cotiua idefiidamete (ifiitas vezes). Qual é a área total da área cizeta do quadrado? (A) 15 (B) 18 (C) 1 (D) (E) 7 6. Quatos triâgulos retâgulos ão cogruetes existem de lados com medidas iteiras tais que a área tem valor umérico igual ao do perímetro? (A) (B) (C) 6 (D) 8 (E) Nehum 7. O valor de é igual a: (A) (B) (C) (D) (E) =1 8. Na figura abaixo ABCD é um quadrado e CEF é um triâgulo equilátero. Cosiderado que a área do triâgulo equilátero CEF é igual a 3 metros quadrados, determie a área do quadrado.. (A) 3 (B) 5 3 (C) 3 (D) (E) 3 9. (QUESTÃO ANULADA. Motivo: a alterativa correta era o item b). Porém faltou o sial de raiz quadrada a valor do úmero 6. Sedo assim ão há alterativa correta.) Usado a figura do problema 8) aterior, ou por qualquer outro meio, podemos dizer que se 15 é (A) 6 (B) 6 (C) (D) (E) Págia 6 de 7
7 OPRM 016 Seguda Fase - Nível 3 /09/ Quatos pares (x; y) com x e y iteiros são soluções da equação 9xy x 8y = 005 (A) 0 (B) 1 (C) (D) 3 (E) Págia 7 de 7
NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.
R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate
01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a:
01 Um triâgulo isósceles tem os lados cogruetes medido 5 cm, a base medido 8 cm. A distâcia etre o seu baricetro é, aproximadamete, igual a: (A) 0,1cm (B) 0,3cm (C) 0,5cm (D) 0,7cm (E) 0,9cm 02 2 2 5 3
CPV O cursinho que mais aprova na fgv
CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se
ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.
ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)
MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =
MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab
Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica
Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a
26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.
6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares
CPV O cursinho que mais aprova na FGV
O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução
Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta
Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,
de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.
0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão
Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.
Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.
MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada:
MATEMÁTICA 0000 Questão 0 Determie o cojuto-solução da equação se x + cos x = se x cos x Fatorado a equação dada: se x + cos x= se x cos x ( sex + cos x)( se x sexcos x+ cos x) = ( sexcos x) ( x x)( x
ESCOLA BÁSICA DE ALFORNELOS
ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
PROVA DE MATEMÁTICA 2 a FASE
PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
Teorema Fatoração Única. Todo inteiro pode ser representado de modo único como o produto de números primos distintos, a menos da ordem dos fatores.
Pricipio de Dirichlet ou da casa dos pombos. Se mais de objetos (pombos) são dispostos em classes (casas de pombo), pelo meos uma das classes (casas de pombo) possui mais de um objeto (pombo). Pricípio
Proposta de Exame de Matemática A 12.º ano
Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 1 Matemática A Duração do Teste (Cadero 1+ Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos: Cadero
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada
[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]
[Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação
Prova 3 Matemática ... GABARITO 4 NOME DO CANDIDATO:
Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada
NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.
MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,
ESG / 2013 Exame de Matemática 2ª Época 12ª Classe 120 Minutos
buso Seual as escolas Não dá para aceitar Por uma escola livre do SID República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG 01 Eame de Matemática ª Época
Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.
Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação
XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes
XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes
Duração: 90 minutos 5º Teste, Junho Nome Nº T:
Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões
Séries e Equações Diferenciais Lista 02 Séries Numéricas
Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências
Abuso Seual as escolas Não dá para aceitar Por uma escola livre do SIDA República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG / 04 Eame de Matemática Etraordiário
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versões 1/3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versões / Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.
Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 016 Nível Segunda Fase 4/09/16 Duração: 4 Horas e 30 minutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR(A) nos campos acima. Esta prova contém
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0 - Probabilidades - 12º ano Metas (C.A.)
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho º 0 - Probabilidades - 1º ao Metas (C.A.) 1. Um cojuto X tem 10 elemetos. Quatos subcojutos de X, com 3 elemetos, é possível formar?. Exprima cada uma
Matemática E Extensivo V. 1
Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 01 GABARITO COMENTADO 1) a + b + c + d + 4 + + = 1 a + b + c + + + 4 = 1 a + b + c + d + 9 = 1 a + b + c +
Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]
Proposta de Teste [outubro - 017] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações
Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...
Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Questão 02. é (são) verdadeira(s) A) apenas I. B) apenas II. C) apenas III. D) apenas I e II. E) Nenhuma. Questão 03 8 A) 9 B) C)
0 ITA "A matemática é o alfabeto com que Deus escreveu o mudo" Galileu Galilei Notações : cojuto dos úmeros aturais;,,,... i z : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros
Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]
Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,
Matemática Revisão MASTER I
Matemática Revisão MASTER I Professor Luiz Amaral. (Uerj 009) Maurre Maggi foi a primeira brasileira a gahar uma medalha olímpica de ouro a modalidade salto em distâcia. Em um treio, o qual saltou vezes,
( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...
Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada
COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA
Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 2017 Nível 2 (8 o e 9 o ensino fund.) Primeira Fase 09/06/17 ou 10/06/17 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR(A) nos campos
( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x
Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,
FICHA DE TRABALHO 11º ANO. Sucessões
. Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus
Fundamentos de Análise Matemática Profª Ana Paula. Números reais
Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,
( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)
Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
Grupo I. Proposta de Resolução do Exame de Matemática A Cód ª Fase de Junho
Proposta de Resolução do Eame de Matemática A Cód. 65-1ª Fase 01 1 de Juho Grupo I Questões 1 4 5 6 7 8 Versão 1 B D C B A C A C Versão C B D B C A D A 1. 7 A 10 P 7 P A 1 10 10 A B A B A B P P P P PB
Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m
Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de
UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale
PROGRESSÃO GEOMÉTRICA
PROGRESSÃO GEOMÉTRICA 9º ANO MATEMÁTICA PROF. ALDO 4º BIM Questão A sequêcia umérica c é defiida como c = a b, com, em que a e b são progressões aritmética e geométrica, respectivamete. Sabedo-se que a
CADERNO DE QUESTÕES. Nível 3. 1ª Olimpíada de Matemática do Distrito Federal. Segunda Fase - 20 de agosto de º, 2º e 3º Anos do Ensino Médio
CADERNO DE QUESTÕES 1ª Olimpíada de Matemática do Distrito Federal Nível 3 1º, º e 3º Aos do Esio Médio Nome completo Seguda Fase - 0 de agosto de 017 Edereço completo Complemeto (casa, apartameto, bloco)
Novo Espaço Matemática A 12.º ano Proposta de Teste Intermédio [Novembro 2015]
Novo Espaço Matemática A.º ao Proposta de Teste Itermédio [Novembro 05] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. Para
GRUPO I Duração: 50 minutos
Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ao Versão /4 Nome: Nº Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias Quado, para
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas
Prova-Modelo de Matemática
Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros
Matemática Aplicada. Uma solução: Sejam x e y as quantidades de melancias e melões no início da manhã. No final da manhã as quantidades eram
Matemática Aplicada 1 Maoel vede melacias e melões em sua barraca o mercado de frutas. Certo dia, iiciou seu trabalho com a barraca cheia de frutas e, durate a mahã, vedeu 1 melacias e 16 melões. Maoel
05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio.
BINÔMIO DE NEWTON 0 - (UNIFOR CE) No desevolvimeto do biômio 4 ( ) 4 8 4, o termo idepedete de é 0 - (PUC RJ) O coeficiete de o desevolvimeto 7 0 5 5 0 0 - (PUC RJ) No desevolvimeto do biômio 4 8 ( ),
MATEMÁTICA APLICADA RESOLUÇÃO
GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 05/06/06 Para a costrução de uma jaela a sala de um teatro, eiste a dúvida se ela deve ter a forma de um retâgulo, de um círculo ou etão da figura formada pela
