Aula 5: Autômatos Finitos Remoção de Não-Determinismo

Tamanho: px
Começar a partir da página:

Download "Aula 5: Autômatos Finitos Remoção de Não-Determinismo"

Transcrição

1 Teori d Computção Primeiro Semestre, 25 DAINF-UTFPR Aul 5: Autômtos Finitos 3 Prof. Rirdo Dutr d Silv 5. Remoção de Não-Determinismo As lsses de utômtos definids nteriormente são tods equivlentes. Vmos mostrr um lgoritmo que onverte um λ-nfa em um DFA. Teorem 5.. Pr todo λ-nfa M existe um DFA M equivlente. Demonstrção. Sejm o λ-nfa M = (Q, Σ, δ, q, F ) e o DFA M = (Q, Σ, δ, q, F ).. Q = P(Q). 2. q = λ-feho(q ). 3. F = {S Q S ontém um estdo finl de F }. 4. δ (S, ), pr todo Σ e S Q, é ddo por () Sej S = {p, p 2,..., p m }. m () {r, r 2,..., r n } = δ(p i, ) i= n () δ (S, ) = λ-feho(r j ). j= Note que prov de equivlêni entre λ-nfa s DFA s present muito ds ideis que usmos pr definir o proessmento de um string em um λ-nfa. Os estdos Q do DFA podem ser vistos omo o onjunto dos estdos lnçdo em um determindo ponto n árvore de proessmento. Não é neessário rir todos os suonjuntos de Q no psso, podemos pen rir os estdos lnçáveis. Exemplo 5. Ddo o utômto M = ({q, q, q 2, q 3 }, {, }, δ, q, {q 3 }), om função de trnsição P(Q) é o onjunto de suonjuntos de Q. Conjunto potêni.

2 2 Aul 5: Autômtos Finitos 3 δ λ q {q, q } {q } q {q 2 } {q 2 } q 2 {q 3 } q 3 {q 3 } {q 3 } Suponh Q iniilmente vzio. Iniimos o DFA om o estdo que é o feho lmd de q, que são os estdos. O onjunto de estdos de Q pss ser Q = Q = {}. O digrm de estdos ixo mostr o efeito do que foi feito. strt Um estdo de um DFA preis ter um trnsição pr d símolo do lfeto. A prtir de, lendo um, otemos δ(q, ) δ(q, ) δ(q 2, ) = {q 2 } = {q, q 2 }. Então, ˆδ(, ) = λ-feho(q ) λ-feho(q 2 ) = {q 2 } =. Ms esse é justmente o estdo iniil, o que signifi que trnsição do estdo iniil lendo um lev pr ele mesmo. O digrm ixo reflete idei. strt A prtir de, lendo um, otemos δ(q, ) δ(q, ) δ(q 2, ) = {q, q } {q 3 } = {q, q, q 3 }. Então, ˆδ(, ) = λ-feho(q ) λ-feho(q ) λ-feho(q 3 ) = {q, q 2 } {q 3 } = {q, q, q 2, q 3 }. Como {q, q, q 2, q 3 } não pertene Q, rimos o estdo (Q = Q {q, q, q 2, q 3 } = {, {q, q, q 2, q 3 }}). strt {q, q, q 2, q 3 } Pr d novo estdo, repetimos o proesso. () S = {q, q, q 2, q 3 }.

3 5.. REMOÇÃO DE NÃO-DETERMINISMO 3 () δ(q, ) δ(q, ) δ(q 2, ) δ(q 3, ) = {q 2 } {q 3 } = {q, q 2, q 3 }. () δ (S, ) = λ-feho(q ) λ-feho(q 2 ) λ-feho(q 3 ) = {q 2 } {q 3 } = {q, q, q 2, q 3 }. O estdo já existe. strt {q, q, q 2, q 3 } () S = {q, q, q 2, q 3 }. () δ(q, ) δ(q, ) δ(q 2, ) δ(q 3, ) = {q, q } {q 3 } {q 3 } = {q, q, q 3 }. () δ (S, ) = λ-feho(q ) λ-feho(q ) λ-feho(q 3 ) = {q, q 2 } {q 3 } = {q, q, q 2, q 3 }. strt {q, q, q 2, q 3 }, Chegmos o finl do proesso rindo M = (Q, Σ, δ, q, F ), onde ˆ Q = {, {q, q, q 2, q 3 }} ˆ Σ = {, } ˆ q =, feho lmd de q. ˆ F = {{q, q, q 2, q 3 }}, estdos que ontém um estdo finl de F.

4 4 Aul 5: Autômtos Finitos 3 ˆ δ δ {q, q, q 2, q 3 } {q, q, q 2, q 3 } {q, q, q 2, q 3 } {q, q, q 2, q 3 } Digrm de estdos. strt {q, q, q 2, q 3 }, Exemplo 5.2 Considere o λ-nfa M = (, Σ = {,, }, δ, q, {q }), om função de trnsição e digrm de estdos δ λ q q {q } q 2 {q 2 } {q } q strt q λ q 2 Os fehos lmd dos estdos são λ-feho(q ) =, λ-feho(q ) = {q } e λ-feho(q 2 ) = {q, q 2 }. Iniimos o DFA M = (Q, Σ = {,, }, δ, q, F ) om o feho lmd de q. Então, Q = {} e q =.

5 5.. REMOÇÃO DE NÃO-DETERMINISMO 5 strt A prtir de q omputmos lendo : S = ; δ(q, ) = ; δ (S, ) = λ-feho(q ) λ-feho(q ) λ-feho(q 2 ) = {q } {q, q 2 } = ; Q = Q. strt Lendo o símolo prtir de q : S = ; δ(q, ) = ; δ (S, ) = λ-feho() = ; Q = Q. O onjunto vzio deve ser rido pr simulr proessmentos que prrim. Como veremos dinte, qundo o estdo do onjunto vzio é lnçdo ele grnte que string será proessd ms não hegrá em um estdo finl. strt O símolo tmém lev o estdo vzio qundo proessdo em q : S = ; δ(q, ) = ; δ (S, ) = λ-feho() = ; Q = Q. strt, Continumos o proesso prtir de outros estdos que ind não possuem trnsições pr todos os símolos do lfeto. Sej S =, temos

6 6 Aul 5: Autômtos Finitos 3. δ(q, ) δ(q, ) δ(q 2, ) = = δ (S, ) = λ-feho(q ) λ-feho(q ) λ-feho(q 2 ) = {q } {q, q 2 } = Q = Q. 2. δ(q, ) δ(q, ) δ(q 2, ) = {q } = {q } δ (S, ) = λ-feho(q ) = {q } Q = Q {q }. 3. δ(q, ) δ(q, ) δ(q 2, ) = {q 2 } = {q 2 } δ (S, ) = λ-feho(q 2 ) = {q, q 2 } Q = Q {q, q 2 }. strt, {q } {q, q 2 } A prtir de S = {q }:. δ(q, ) = δ (S, ) = Q = Q. 2. δ(q, ) = {q } δ (S, ) = λ-feho(q ) = {q } Q = Q {q }. 3. δ(q, ) = δ (S, ) = λ-feho() = Q = Q.

7 5.. REMOÇÃO DE NÃO-DETERMINISMO 7 strt,, {q } {q, q 2 } De S = {q, q 2 }:. δ(q, ) δ(q 2, ) = = δ (S, ) = λ-feho() = Q = Q. 2. δ(q, ) δ(q 2, ) = {q } = {q } δ (S, ) = λ-feho({q }) = {q } Q = Q {q }. 3. δ(q, ) δ(q 2, ) = {q 2 } = {q 2 } δ (S, ) = λ-feho({q 2 }) = {q, q 2 } Q = Q {q, q 2 }. strt,, {q } {q, q 2 }

8 8 Aul 5: Autômtos Finitos 3 O únio estdo que ind não tem tods s trnsições é o estdo do onjunto vzio. Ele só pode ter trnsições pr ele mesmo pois simul um proessmento que não pode ser eito. Logo, pens rimos tods s trnsições pr ele mesmo.,, strt,, {q } {q, q 2 } Os estdos finis são todos queles que ontém o estdo finl F = {q } de M.,, strt,, {q } {q, q 2 } O DFA pr o λ-nfa é M = (Q, Σ, δ,, F ), onde ˆ Q = {,, {q, q 2 },, {q }}; ˆ F = {, {q, q 2 }, {q }};

9 5.. REMOÇÃO DE NÃO-DETERMINISMO 9 ˆ δ δ {q } {q, q 2 } {q, q 2 } {q } {q, q 2 } {q } {q }

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens:

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens: BCC244-Teori d Computção Prof. Lucíli Figueiredo List de Exercícios DECOM ICEB - UFOP Lingugens. Liste os strings de cd um ds seguintes lingugens: ) = {λ} ) + + = c) {λ} {λ} = {λ} d) {λ} + {λ} + = {λ}

Leia mais

Apostila 02 - Linguagens Regulares Exercícios

Apostila 02 - Linguagens Regulares Exercícios Cursos: Bchreldo em Ciênci d Computção e Bchreldo em Sistems de Informção Disciplins: (1493A) Teori d Computção e Lingugens Formis, (4623A) Teori d Computção e Lingugens Formis e (1601A) Teori d Computção

Leia mais

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação LFA - PARTE 1 Lingugens Regulres e Autômtos de Estdos Finitos Um Modelo Frco de Computção João Luís Grci Ros LFA-FEC-PUC-Cmpins 2002 R. Gregory Tylor: http://strse.cs.trincoll.edu/~rtylor/thcomp/ 1 Lingugens

Leia mais

Gramáticas Regulares. Capítulo Gramáticas regulares

Gramáticas Regulares. Capítulo Gramáticas regulares Cpítulo Grmátics Regulres Ests nots são um complemento do livro e destinm-se representr lguns lgoritmos estuddos ns uls teórics. É ddo um exemplo de plicção de cd conceito. Mis exemplos form discutidos

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

Modelos de Computação -Folha de trabalho n. 2

Modelos de Computação -Folha de trabalho n. 2 Modelos de Computção -Folh de trlho n. 2 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Autômatos determinísticos grandes

Autômatos determinísticos grandes Autômtos determinísticos grndes Arnldo Mndel 27 de outubro de 2009 A construção dos subconjuntos implic n seguinte firmtiv: se um lingugem é reconhecid por um utômto não-determinístico com n estdos, então

Leia mais

Modelos de Computação Folha de trabalho n. 3

Modelos de Computação Folha de trabalho n. 3 Modelos de Computção Folh de trlho n. 3 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1 DCC-UFRJ Lingugens Formis Primeir Prov 28/. Constru um utômto finito determinístico que ceite lingugem L = {w ( ) w contém pelos menos dois zeros e no máximo um }. 2. Use o lgoritmo de substituição pr

Leia mais

Exemplos de autómatos finitos

Exemplos de autómatos finitos Exemplos de utómtos finitos s s 2 reconhece lingugem: {x {, } x termin em e não têm s consecutivos} s s 2 reconhece lingugem {x x {, } e tem como suplvr} Deprtmento de Ciênci de Computdores d FCUP MC Aul

Leia mais

EXEMPLOS DE AUTÓMATOS

EXEMPLOS DE AUTÓMATOS EXEMPLOS DE AUTÓMATOS EXEMPLO 1 (exeíio 4 () d list de exeíios 13): Autómto finito deteminístio ue, de ente s lvs ue se esevem om s lets do lfeto {,,}, eit ens s ue têm elo menos dois s. 0 1 2,,,, Reesentção

Leia mais

Compiladores ANÁLISE LEXICAL.

Compiladores ANÁLISE LEXICAL. Compildores ANÁLISE LEXICAL www.pedrofreire.com Este documento tem lguns direitos reservdos: Atriuição-Uso Não-Comercil-Não Ors Derivds 2.5 Portugl http://cretivecommons.org/licenses/y-nc-nd/2.5/pt/ Isto

Leia mais

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular.

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular. Lingugens Formis Nom Chomsky definiu que s lingugens nturis podem ser clssificds em clsses de lingugens. egundo Hierrqui de Chomsky, s lingugens podem ser dividids em qutro clsses, sendo els: Regulres

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

Hierarquia de Chomsky

Hierarquia de Chomsky Universidde Ctólic de Pelots Centro Politécnico 364018 Lingugens Formis e Autômtos TEXTO 1 Lingugens Regulres e Autômtos Finitos Prof. Luiz A M Plzzo Mrço de 2011 Hierrqui de Chomsky Ling. Recursivmente

Leia mais

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1 Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos 6. Autómtos Mínimos 6 Autómtos mínimos Dd um lingugem regulr L, muitos são os utómtos determinísticos que representm. Sej A L o conjunto dos utómtos tis que (8A)(A 2A L =) L(A) =L). Os utómtos de A L não

Leia mais

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto Construção de Compildores Cpítulo 2 Análise Léxic José Romildo Mlquis Deprtmento de Computção Universidde Federl de Ouro Preto 2014.1 1/23 1 Análise Léxic 2/23 Tópicos 1 Análise Léxic 3/23 Análise léxic

Leia mais

Prof. Rômulo Silva. Teoria. Computação. Maio/2007

Prof. Rômulo Silva. Teoria. Computação. Maio/2007 Prof. Rômulo Silv Teori d Computção Mio/2007 1 Prof. Rômulo Silv Ojetivo dest postil Est postil foi desenvolvid om o ojetivo de filitr o entendimento d Teori d Computção, priniplmente no que se refere

Leia mais

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos 4 Autómtos finitos Neste cpítulo vmos introduzir outrs estruturs que permitem crcterizr s lingugens regulres. A principl vntgem, dests novs estruturs, sore representção com expressões regulres é de terem,

Leia mais

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε)

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε) TRANSIÇÕES POR (AFND-) 43 3.3 Autómtos finitos não determinísticos com trnsições por (AFND-) Vmos gor considerr utómtos finitos que podem mudr de estdo sem consumir qulquer símbolo, isto é, são utómtos

Leia mais

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0}

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0} 1) Dds s seguintes grmátics: UNIVERIDADE ETADUAL DE MARINGÁ UEM ENTRO DE TENOLOGIA T DEPARTAMENTO DE INFORMÁTIA DIN BAHARELADO EM INFORMÁTIA DIIPLINA: LINGUAGEN FORMAI E AUTÔMATO PROFEOR: YANDRE MALDONADO

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid

Leia mais

I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS

I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS Lingugens Formis e Autômtos João Luís Grci Ros 2005 I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS 1.1. A Primeir Lingugem A teori modern ds lingugens formis vem de dus fontes: crcterizção precis d estrutur

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Lingugens Formis e Autômtos - 0 emestre 2006 Professor : ndr Aprecid de Amo List de Exercícios n o - 4/08/2006 Observção : os exercícios

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

Última atualização 03/09/2009

Última atualização 03/09/2009 FACIN-PPGCC 2 1. PANO DE FUNDO Sumário 2. LINGUAGENS Teori d Computilidde Prte I - Teori de Autômtos 3. DEFINIÇÕES RECURSIVAS 4. EXPRESSÕES REGULARES 5. AUTÔMATOS FINITOS Ney Lert Vilr Clzns & Avelino

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação Pontifíci Universidde Ctólic de Cmpins Centro de Ciêncis Exts, Ambientis e de Tecnologis Fculdde de Engenhri de Computção LINGUAGENS FORMAIS E AUTÔMATOS List de Exercícios 1 1. Que lingugem grmátic ger?

Leia mais

Aula 7: Autômatos com Pilha

Aula 7: Autômatos com Pilha Teoria da Computação Segundo Semestre, 2014 Aula 7: Autômatos com Pilha DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos adicionar um memória do tipo pilha ao nossos autômatos para que seja possível aceitar

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) Lingugens Formis e Autômtos (LFA) Aul de 11/09/2013 Conjuntos Regulres, Expressões Regulres, Grmátics Regulres e Autômtos Finitos 1 Conjuntos Regulres Conjuntos regulres sobre um lfbeto finito são LINGUAGENS

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY

Leia mais

CAPÍTULO 2 AUTÓMATOS FINITOS

CAPÍTULO 2 AUTÓMATOS FINITOS Teori d Computção Cpítulo 2. Autómtos Finitos CAPÍTULO 2 AUTÓMATOS FINITOS 2.. Introdução 45 2.2.Aceitdores determinísticos 46 2.3. A rte de construir DFA s 59 2.4. Lingugens regulres 75 2.5. Autómtos

Leia mais

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ;

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ; TÍTULO: NÚMEROS COMPLEXOS INTRODUÇÃO: Os números complexos form desenvolvidos pelo mtemático K Guss, prtir dos estudos d trnsformção de Lplce, com o único ojetivo de solucionr prolems em circuitos elétricos

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 4 Proprieddes ds Lingugens Regulres Estmos no momento de colocr seguinte questão: quão gerl são s lingugens regulres? Seri tod lingugem forml regulr? Tlvez qulquer conjunto que possmos especificr

Leia mais

Aula 3: Autômatos Finitos

Aula 3: Autômatos Finitos Teoria da Computação Segundo Semestre, 24 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor

Leia mais

Aula 3: Autômatos Finitos

Aula 3: Autômatos Finitos Teoria da Computação Primeiro Semestre, 25 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor

Leia mais

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês CAL (00-0) MIEIC/FEUP Algoritmos em Grfos (0-0-0) Algoritmos em Grfos: Circuitos de Euler e Prolem do Crteiro Chinês R. Rossetti, A.P. Roch, A. Pereir, P.B. Silv, T. Fernndes FEUP, MIEIC, CPAL, 00/0 Circuitos

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

Aula 9: Máquinas de Turing

Aula 9: Máquinas de Turing Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a Pros. Soorro Rngel UESP-SJRP, Soni Poltreniere UESP-uru Reerenis: Liner Progrmg - : Introdution, Dntzig. G.b. e Tpp,M.. -, Springer, ; Liner Progrmg - V. Chvátl, 8; Pesquis Operionl - Arenles e outros,.

Leia mais

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos Licencitur em Engenhri Informátic DEI/ISEP Lingugens de Progrmção 26/7 Fich 4 Autómtos Finitos Determinísticos Ojectivos: Vlidção de plvrs utilizndo Autómtos Finitos; Conversão de utómtos finitos não determinísticos

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000) Teori d Computção Unidde 3 Máquins Universis (cont.) Referênci Teori d Computção (Divério, 2000) 1 Máquin com Pilhs Diferenci-se ds MT e MP pelo fto de possuir memóri de entrd seprd ds memóris de trblho

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Solução da Terceira Lista de Exercícios Profa. Carmem Hara

Solução da Terceira Lista de Exercícios Profa. Carmem Hara Exercíco 1: Consdere grmátc G xo: B ǫ ǫ B B Introdução eor d Computção olução d ercer Lst de Exercícos Prof. Crmem Hr. Mostre um dervção ms esquerd d plvr. B B B B B. Quntos pssos de dervção tem o tem

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1 Mteril Teório - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte 1 Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio min M.

Leia mais

II Números reais: inteiros, racionais e irracionais 26

II Números reais: inteiros, racionais e irracionais 26 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 2009-25 Sumário II Números reis: inteiros, rionis e irrionis 26 2 Operções, ioms e proprieddes dos reis 26 2. As operções Som e Produto

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teoria da Computação Primeiro Semestre, 2015 Aula 8: Gramáticas Livres de Contexto DAINF-UTFPR Prof. Ricardo Dutra da Silva Veremos agora maneira de gerar as strings de um tipo específico de linguagem,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 9 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 9 Teoria dos Jogos Maurício Bugarin. Roteiro Teori dos Jogos Prof. Muríio Bugrin Eo/UnB -I Roteiro Cpítulo : Jogos dinâmios om informção omplet. Jogos Dinâmios om Informção Complet e Perfeit. Jogos Dinâmios om Informção Complet ms imperfeit Informção

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturs de Ddos, Análise de Algoritmos e Complexidde Estruturl Crlos Alberto Alonso Snches CT-234 7) Busc de pdrões Knuth-Morris-Prtt, Boyer-Moore, Krp-Rbin Pdrões e lfbetos Pdrões (ptterns ou

Leia mais

Primeira Lista de Exercícios 2004/2...

Primeira Lista de Exercícios 2004/2... UFLA Universidade Federal de Lavras Departamento de Ciênia da Computação COM62 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exeríios 24/2...

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula MAT5711 - Cálulo Avnçdo - Nots de Aul 26 de mrço de 2010 1. INTEGRAL DE RIEMANN EM ESPAÇOS DE BANACH Definição 1.1 (Integrl de Riemnn). Sejm [, b] R e E um espço de Bn. A noção de Riemnn-integrbilidde

Leia mais

TEORIA GEOMÉTRICA DE GRUPOS. Pedro V. Silva

TEORIA GEOMÉTRICA DE GRUPOS. Pedro V. Silva TEORIA GEOMÉTRICA DE GRUPOS Curso de pré-doutordo, Universidde Federl d Bhi 2014 Pedro V. Silv Neste curso, fremos um digressão por lguns dos grndes desenvolvimentos que teori de grupos sofreu nos últimos

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

II Números reais: inteiros, racionais e irracionais 27

II Números reais: inteiros, racionais e irracionais 27 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 200-2 26 Sumário II Números reis: inteiros, rionis e irrionis 27 2 Operções, ioms e proprieddes dos reis 27 2. As operções Som e Produto

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas Análise de Circuitos Trifásicos Desequilibrdos Utilizndo-se Componentes Simétrics Prof. José Rubens Mcedo Jr. Exercício: Um determind crg trifásic, ligd em estrel flutunte, é limentd pels seguintes tensões

Leia mais

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira Dosgem de onreto Prof. M.S. Rirdo Ferreir Regressão liner simples Método dos mínimos qudrdos Prof. M.S. Rirdo Ferreir Fonte: Drio Dfio Regressão liner simples Método dos mínimos qudrdos 3/3 Dd um onjunto

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas Assunto: Integris Dupls UNIVESIDADE FEDEAL DO PAÁ CÁLCULO II - POJETO NEWTON AULA 24 Plvrs-hves: integris dupls,soms de iemnn, teorem de Fubini Integris dupls Sej o retângulo do plno rtesino ddo por {(x,

Leia mais

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene UFF/GMA - Mtemáti Bási I - Prte II Nots de ul - Mrlene - 200-2 6 Sumário II Números reis - operções e ordenção 7 2 Operções, ioms e proprieddes dos reis 7 2. As operções Som e Produto e os Aioms Algérios..................

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x

Leia mais

O Autômato Adaptativo como Modelo de Computação e sua Aplicação em Reconhecimento de Padrões*

O Autômato Adaptativo como Modelo de Computação e sua Aplicação em Reconhecimento de Padrões* O utômto dpttivo como Modelo de Computção e su plicção em econhecimento de Pdrões* I WOPEC Workshop de Pesquis em Engenhri e Computção mury ntônio de Cstro Junior mury@ec.ucd.r Orientdor: Prof. Dr. João

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade Braille, Entrelinha 1,5 sem figuras Critérios de Classificação

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade Braille, Entrelinha 1,5 sem figuras Critérios de Classificação Prov de Aferição de Mtemáti e Estudo do Meio Prov 26 2.º Ano de Esolridde 2017 Dereto-Lei n.º 17/2016, de 4 de ril Brille, Entrelinh 1,5 sem figurs Critérios de Clssifição 12 Págins Prov 26/Adp CC Págin

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Resposta: Basta fazer integração por partes. Seja j = 1 (para j 1, o argumento é o mesmo). Logo. i x 1. lim. lim. (R n ), temos.

Resposta: Basta fazer integração por partes. Seja j = 1 (para j 1, o argumento é o mesmo). Logo. i x 1. lim. lim. (R n ), temos. LISTA DE EXECÍCIOS 5 - TEOIA DAS DISTIBUIÇÕES E ANÁLISE DE OUIE MAP 57-4 PO: PEDO T P LOPES WWWIMEUSPB/ PPLOPES/DISTIBUICOES Os eercícios seguir form seleciondos do livro do Duistermt e Kolk denotdo por

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

CODIAGNOSTICABILIDADE DE SISTEMAS A EVENTOS DISCRETOS COM. Wesley Rodrigues Silveira

CODIAGNOSTICABILIDADE DE SISTEMAS A EVENTOS DISCRETOS COM. Wesley Rodrigues Silveira CODIAGNOSTICABILIDADE DE SISTEMAS A EVENTOS DISCRETOS COM OBSERVAÇÃO DINÂMICA Wesley Rodrigues Silveir Dissertção de Mestrdo presentd o Progrm de Pós-grdução em Engenhri Elétri, COPPE, d Universidde Federl

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo

Leia mais

WWW.escoladoeletrotecnico.com.br

WWW.escoladoeletrotecnico.com.br USOPE USO PEPAATÓIO PAA ONUSOS EM ELETOTÉNIA PE ELETIIDADE (Ligções SÉI E E PAALELA. EDE DELTA E ESTELA) AULA Prof.: Jen WWW.esoldoeletrotenio.om.r 0 de Setemro de 007 LIGAÇÕES SÉIES E PAALELAS USOPE.

Leia mais

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene UFF/GMA - Mtemáti Bási I - Prte II Nots de ul - Mrlene - 20-6 Sumário II Números reis - operções e ordenção 7 2 Operções, ioms e proprieddes dos reis 7 2. As operções Som e Produto e os Aioms Algérios..................

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Conteúdo Progrmático Arquivo em nexo: Conteúdo Progrmático_Fisic

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) PU-Rio Lingugens Formis e Autômtos (LFA) omplemento d Aul de 21/08/2013 Grmátics, eus Tipos, Algums Proprieddes e Hierrqui de homsky lrisse. de ouz, 2013 1 PU-Rio Dic pr responder Pergunts finis d ul lrisse.

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais