Aula 7: Autômatos com Pilha
|
|
|
- Angélica Bennert Lima
- 9 Há anos
- Visualizações:
Transcrição
1 Teoria da Computação Segundo Semestre, 2014 Aula 7: Autômatos com Pilha DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos adicionar um memória do tipo pilha ao nossos autômatos para que seja possível aceitar linguagens como L = {a i b i i 0}. Como nos autômatos anteriores, teremos uma fita infinita e um cabeçote de leitura que armazena o estado atual da máquina. A pilha, como mostra a Figura 7.1, é uma memória infinita. Símbolos são colocados no topo da pilha e retirados do topo da pilha. Sempre que um elemento é colocado no topo ele empurra para baixo elementos já existentes na pilha. Quando um elemento é retirado do topo, os elementos abaixo dele são deslocados para cima, de forma que o elemento que estava imediatamente abaixo do topo passa a ocupar a posição do topo. fita cabeçote pilha p A A. Figura 7.1: Representação de um autômato com pilha. Definição 7.1. Um autômato com pilha (PDA) é uma sêxtupla M = (Q, Σ, Γ, δ, q 0, F ), onde Q é um conjunto finito de estados; Σ é o alfabeto de entrada; Γ é o alfabeto da pilha; q 0 Q é o estado inicial; F é o subconjunto de estados finais de Q; δ é uma função δ : Q (Σ {λ}) (Γ {λ}) P(Q (Γ {λ})), chamada de função de transição. 1
2 2 Aula 7: Autômatos com Pilha O alfabeto da pilha será representado por letras maiúsculas e uma pilha vazia será denotada pela string vazia λ. No início da computação, o PDA começa no estado inicial, com a string de entrada na fita e com a pilha vazia. A função de transição será representada da seguinte maneira: δ(, a, A) = {(, B), (q k, C)}. A transição (, B) δ(, a, A), por exemplo, pode ser interpretada usando a ideia de uma máquina com pilha dada pela Figura 7.1. A transição faz com que a máquina: mude o estado de para ; processe o símbolo a; remova o símbolo A do topo da pilha; coloque o símbolo B no topo da pilha. O diagrama de estados do PDA terá como rótulos das arestas o símbolo de entrada a ser processado e as operações da pilha (qual elemento sai do topo/qual elemento entra no topo). A transição δ(, a, A) = {(, B)}, por exemplo, é representada como mostrado abaixo. a A/B O PDA muda do estado para o estado processando o símbolo a Σ. Ainda, o símbolo A Γ é removido do topo da pilha enquanto o símbolo B Γ, em seguida, é colocado no topo. Na função de transição, podemos ter λ como símbolo de entrada e como símbolo da pilha. Uma transição como (, B) δ(, a, λ) entra o estado e adiciona B no topo da pilha. a λ/b A transição (, λ) δ(, a, A) entra o estado e remove A do topo da pilha. a A/λ Outras transições possíveis são: (, B) δ(, λ, A) (entra estado, remove A da pilha e adiciona B na pilha) λ A/B
3 Aula 7: Autômatos com Pilha 3 (, λ) δ(, λ, A) (entra estado, remove A da pilha) λ A/λ (, λ) δ(, λ, A) (entra estado, adiciona A na pilha) λ λ/a (, λ) δ(, λ, λ) (entra estado ) λ λ/λ (, λ) δ(, λ, A) (tira A da pilha) λ A/λ (, A) δ(, λ, λ) (coloca A na pilha) λ λ/a (, λ) δ(, a, λ) (muda do estado para o estado processando o símbolo a Σ; equivalente à transição de um autômato finito) a λ/λ Exemplo 7.1 Podemos construir uma PDA M que aceita a linguagem {a i b i i 0}. A computação começa com a string de entrada w na fita e a pilha vazia. Quando um a é processado, o símbolo A é colocado na pilha. Quando um b é processado, o símbolo no topo da pilha é removido.
4 4 Aula 7: Autômatos com Pilha Definimos o PDA M = ({q 0, q 1 }, {a, b}, {A}, δ, q 0, {q 0, q 1 }), δ(q 0, a, λ) = {(q 0, A)} δ(q 0, b, A) = {(q 1, λ)} δ(q 1, b, A) = {(q 1, λ)} com diagrama de estados a λ/a q 0 q 1 Ainda precisamos definir como é a computação em um PDA, as strings aceitas e a linguagem reconhecida. Vamos iniciar introduzindo o conceito de configuração instantânea e como ela é usada para demonstrar uma computação num PDA. Definição 7.2. A configuração instantânea de um PDA M é dada por uma tripla [, w, α], onde é o estado atual, w a substring ainda não processada e α é a string na pilha. A notação [, w, α] [, v, β] indica que a configuração [, v, β] pode ser obtida de [, w, α] por uma única transição do PDA M. A notação [, w, α] [, v, β] indica que a configuração [, v, β] pode ser obtida de [, w, α] por zero ou mais transições do PDA M. Exemplo 7.2 A computação da string aabb no PDA do Exemplo 7.1 pode ser descrita usando configurações instantâneas. O PDA começa o processamento no estado inicial, com a string de entrada na fita e com a pilha vazia. Essa configuração é dada pela tripla [q 0, aabb, λ]. No estado q 0 e lendo um a, existe uma única transição possível: δ(q 0, a, λ) = {(q 0, A)}. A computação é descrita abaixo. O símbolo a foi processado e o símbolo A foi colocado no topo da pilha. O processamento seguinte é idêntico e um novo A é empilhado.
5 Aula 7: Autômatos com Pilha 5 [q 0, bb, AA] O próximo processamento segue a a transição δ(q 0, b, A) = {(q 1, λ)}, que muda o estado de q 0 para q 1, processa um b e desempilha um A. [q 0, bb, AA] [q 1, b, A] Por fim, a transição δ(q 1, b, A) = {(q 1, λ)} é seguida. O processamento termina com toda a string de entrada processada e com a pilha vazia. [q 0, bb, AA] [q 1, b, A] [q 1, λ, λ] Definição 7.3. Seja M = (Q, Σ, Γ, δ, q 0, F ) um PDA. Uma string w Σ é aceita por M se existe uma computação [q 0, w, λ] [, λ, λ], tal que F. A linguagem de M, denotada por L(M), é o conjunto de strings aceitas por M. Exemplo 7.3 A linguagem {wcw R w {a, b} } é reconhecida pelo PDA M = ({q 0, q 1 }, {a, b, c}, {A, B}, δ, q 0, {q 1 }), onde δ(q 0, a, λ) = {(q 0, A)} δ(q 0, b, λ) = {(q 0, B)} δ(q 0, c, λ) = {(q 1, λ)} δ(q 1, a, A) = {(q 1, λ)} δ(q 1, b, B) = {(q 1, λ)}
6 6 Aula 7: Autômatos com Pilha A pilha é usada para gravar a string w a medida que ela é processada. diagrama de estados do PDA. Verifique no a λ/a b λ/b a A/λ b B/λ c λ/λ q 0 q 1 Exemplo 7.4 Um diagrama de estados para o PDA M que reconhece a linguagem L = {a i 0} {a i b i i 0} sobre o alfabeto Σ = {a, b}. i a λ/a q 0 q 1 λ λ/λ q 2 λ A/λ Exercício 7.1. Projete PDA s que reconheçam as linguagens abaixo. a) L = {a i b j c k i, j, k 0 e i = j ou i = k}. b) L aceita strings com número par de 0 s. c) L aceita strings com o mesmo número de 0 s e 1 s. d) L aceita strings cujo número de 0 s é duas vezes o número de 1 s. e) L aceita strings cujo número de 0 s é maior do que o número de 1 s.
7 Aula 7: Autômatos com Pilha 7 Exercício 7.2. Seja o PDA M = ({q 0, q 1, q 2 }, {a, b}, {A}, δ, q 1, q 2 ) com função de transição δ(q 0, a, λ) = {(q 0, A)} δ(q 0, λ, λ) = {(q 1, λ)} δ(q 0, b, A) = {(q 2, λ)} δ(q 1, λ, A) = {(q 1, λ)} δ(q 1, b, A) = {(q 2, λ)} δ(q 2, λ, A) = {(q 2, λ)} a) Descreva a linguagem reconhecida por M. b) Desenhe o diagrama de estados de M. c) Mostre todas as computações de aab, abb, aba em M. d) Mostre que aabb, aaab pertencem a L(M).
Aula 9: Máquinas de Turing
Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular
Autômato com Pilha. Autômato com Pilha. Autômato com Pilha
UNIVEIDDE ETDUL DE MINGÁ DEPTMENTO DE INFOMÁTI utômato com Pilha Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da osta utômato com Pilha Prof. Yandre Maldonado - 2 utômato com Pilha - P ão
Aula 3: Autômatos Finitos
Teoria da Computação Primeiro Semestre, 25 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
Aula 3: Autômatos Finitos
Teoria da Computação Segundo Semestre, 24 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
Autómatos de Pilha. Cada transição é caracterizada pelo estado, símbolo que está ser lido e o elemento no topo da pilha. dados de entrada.
Autómatos de Pilha Um autómato de pilha (não determinístico) (AP) é um autómato finito não determinístico com transições ɛ, acrescido de uma memória infinita a pilha mas em que o modo de acesso à informação
Autômatos de Pilha (AP)
Linguagens Formais e Autômatos Autômatos de Pilha (AP) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (h@p://dcc.ufmg.br/~nvieira) Sumário Introdução Autômatos de pilha
Autômatos com Pilha. Douglas O. Cardoso docardoso.github.io
Autômatos com Pilha [email protected] docardoso.github.io Autômatos com Pilha 1/18 Roteiro 1 Autômatos com Pilha 2 APDs 3 APNs Autômatos com Pilha 2/18 Roteiro 1 Autômatos com Pilha 2 APDs 3
Linguagens Livres de Contexto
Linguagens Livres de Contexto 1 Roteiro Gramáticas livres de contexto Representação de linguagens livres de contexto Formas normais para gramáticas livres de contexto Gramáticas ambíguas Autômatos de Pilha
Autómatos de Pilha e Linguagens Livres de Contexto
Folha Prática Autómatos de Pilha e Linguagens Livres de Contexto 1 Autómatos de Pilha e Linguagens Livres de Contexto Autómatos de Pilha Não Determinísticos (APND) 1. Considere a seguinte tabela de transição
Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios
Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios 1. Escreva a expressão regular para as seguintes linguagens sobre o alfabeto {0, 1}: strings começando
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas
SCC 205 Teoria da Computação e Linguagens Formais
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC 205 Teoria da Computação e Linguagens Formais Autômatos com pilha Lista 3 1. Dê um
Autômato com pilha. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz
Autômato com pilha IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Departmento de Computação e Matemática FFCLRP Universidade de São Paulo E.E.S Ruiz (DCM USP)
Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc.
Teoria da Computação Capítulo 1 Máquina de Turing Prof. Wanderley de Souza Alencar, MSc. Pauta 1. Introdução 2. Definição de Máquina de Turing 3. Variações de Máquina de Turing 4. A Tese de Church-Turing
Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação
Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Não são aceitas respostas sem justificativa. Explique tudo o que você fizer. Linguagens Formais o semestre de 999 Primeira Prova
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira As Linguagens e os formalismos representacionais
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Diferencia-se das máquinas de Turing e Post principalmente pelo fato de possuir a memória de entrada separada
Linguagens Formais e Autômatos 02/2016. LFA Aula 04 16/11/2016. Celso Olivete Júnior.
LFA Aula 04 Autômatos Finitos 16/11/2016 Celso Olivete Júnior [email protected] 1 Classificação das Linguagens segundo Hierarquia de Chomsky Máquina de Turing Máquina de Turing com fita limitada Autômato
Marcos Castilho. DInf/UFPR. 5 de abril de 2018
5 de abril de 2018 Autômatos com Pilha Não-Determinísticos Um Autômato com Pilha Não-Determinístico (APN) é uma sêxtupla (Q, Σ, Γ, δ, Q 0, F ), onde: Q, Σ, Γ, F são como nos APD s; δ : Q (Σ {λ}) (Γ {λ})
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
Aula 8: Gramáticas Livres de Contexto
Teoria da Computação Primeiro Semestre, 2015 Aula 8: Gramáticas Livres de Contexto DAINF-UTFPR Prof. Ricardo Dutra da Silva Veremos agora maneira de gerar as strings de um tipo específico de linguagem,
COMPILADORES. Revisão Linguagens formais Parte 01. Geovane Griesang
Universidade de Santa Cruz do Sul UNISC Departamento de informática COMPILADORES Revisão Linguagens formais Parte 01 [email protected] Legenda: = sigma (somatório) = delta ε = épsilon λ = lambda
Teoria da Computação. Máquinas Universais Máquina com Pilhas
Máquinas Universais Máquina com Pilhas Cristiano Lehrer Introdução A Máquina com Pilhas diferencia-se das Máquinas de Turing e de Post principalmente pelo fato de possuir uma memória de entrada separada
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
LFA Aula 05. AFND: com e sem movimentos 05/12/2016. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 05 AFND: com e sem movimentos vazios 05/12/2016 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula passada... Reconhecedores genéricos Autômatos finitos
Linguagens livres de contexto e autômatos de pilha
Capítulo 6: Linguagens livres de contexto e autômatos de pilha José Lucas Rangel, maio 1999 6.1 - Introdução. Os aceitadores, ou reconhecedores, das linguagens livres de contexto são os chamados autômatos
SCC Capítulo 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente
SCC-505 - Capítulo 3 Linguagens Sensíveis ao Contexto e João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)
Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q
SCC Capítulo 2 Linguagens Livres de Contexto e Autômatos de Pilha (versão 2)
SCC-505 - Capítulo 2 e (versão 2) João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Modelos de Computação Folha de trabalho n. 8
Modelos de Computação Folha de trabalho n. 8 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Doutorando em Ciência da Computação Estagiário em docência II Departamento de Ciência da Computação
Apostila 05 Assunto: Linguagens dos tipos 0 e 1
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Autômatos a pilha. UFRN/DIMAp/DIM0330 Linguagens formais. David Déharbe. http://www.consiste.dimap.ufrn.br/ david/enseignement/2003.
UFRN/DIMAp/DIM0330 Linguagens formais http://www.consiste.dimap.ufrn.br/ david/enseignement/2003.1/dim0330 1/36 Autômatos a pilha David Déharbe UFRN/DIMAp Campus Universitário, Lagoa Nova, 59072-970 Natal,
Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior.
LFA Aula 02 Linguagens regulares - introdução 28/09/2015 Celso Olivete Júnior [email protected] 1 Na aula passada... Visão geral Linguagens regulares expressões regulares autômatos finitos gramáticas
Aula 10: Decidibilidade
Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas
Autómatos de pilha e GIC
Autómatos de pilha e GIC Proposição 17.1. A classe de linguagens aceites por autómatos de pilha está contida na classe das linguagens independentes de contexto. Dem. Seja L uma linguagem independente de
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento
IV Gramáticas Livres de Contexto
IV Gramáticas Livres de Contexto Introdução Definições de GLC 1 G = (Vn, Vt, P, S) onde P = {A α A Vn α (Vn Vt) + } 2 GLC ε - LIVRE : S ε pode pertencer a P, desde que: S seja o símbolo inicial de G S
Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Lista de exercícios 1 Disciplina: Linguagens Formais e Autômatos Professora: Juliana Pinheiro
7.1. Autómatos de pilha não-determinísticos (NPDA) 7.3. Autómatos de pilha determinísticos e linguagens livres de contexto determinísticas.
Capítulo 7 Autómatos de pilha 7.1. Autómatos de pilha não-determinísticos (NPDA) 7.2. Autómatos de pilha e linguagens livres de contexto 7.3. Autómatos de pilha determinísticos e linguagens livres de contexto
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha Simão Melo de Sousa 12 de Outubro de 2011 Conteúdo 1 Gramáticas e Definições básicas 1 2 Gramáticas e Linguagens 4 2.1 Gramáticas
SCC-ICMC-USP. Trabalho em Grupo 1 SCC-0205
Trabalho em Grupo 1 SCC-0205 2 o. Semestre de 2010 Professor: João Luís G. Rosa - e-mail: [email protected] Monitor PAE: Fernando Alva - e-mail: [email protected] versão 1-23/8/2010 1 Objetivo Desenvolver
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP 1 ACP Assim como LR tem um autômato equivalente (AF) as LLC tem também
Linguagens Formais - Preliminares
Linguagens Formais - Preliminares Regivan H. N. Santiago DIMAp-UFRN 25 de fevereiro de 2007 Regivan H. N. Santiago (DIMAp-UFRN) Linguagens Formais - Preliminares 25 de fevereiro de 2007 1 / 26 Algumas
Autômatos Finitos Não Determinís5cos (AFN)
Linguagens Formais e Autômatos Autômatos Finitos Não Determinís5cos (AFN) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Introdução
Gramáticas ( [HMU00], Cap. 5.1)
Gramáticas ( [HMU00], Cap. 5.1) Vimos que a seguinte linguagem não é regular L = {0 n 1 n n 0} Contudo podemos fácilmente dar uma definição indutiva das suas palavras: 1. ɛ L 2. Se x L então 0x1 L L é
Máquinas de Turing (MT)
Linguagens Formais e Autômatos Máquinas de Turing (MT) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Sumário Introdução Máquinas de Turing
Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Linguagens Regulares A teoria da computação começa com uma pergunta: O que é um computador? É, talvez, uma
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 13 Autômato com Pilha [email protected] Última aula Linguagens Livres do Contexto P(S*) Recursivamente enumeráveis Recursivas
Autômatos Finitos Determinís3cos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinís3cos (AFD) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Introdução Exemplos Sumário
Autômatos finitos não-determinísticos
Autômatos finitos não-determinísticos IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 30 Frase do dia The
Autómatos Finitos Determinísticos (AFD)
Folha Prática Autómatos Finitos 1 Autómatos Finitos Determinísticos (AFD) 1. Determine e implemente computacionalmente um AFD que aceita todas as cadeias de cada uma das seguintes linguagens sobre o alfabeto
Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 4. Autômatos Finitos
Curso: Ciência da Computação Turma: 6ª Série Aula 4 Autômatos Finitos Autômatos Finitos Não Determinísticos Um autômato finito não-determinístico (AFND, ou NFA do inglês) tem o poder de estar em vários
INE5317 Linguagens Formais e Compiladores AULA 6: Autômatos Finitos Com S aída
INE5317 Linguagens Formais e Compiladores AULA 6: Autômatos Finitos Com S aída baseado em material produzido pelo prof Paulo B auth Menezes e pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação SCC-205 TEORIA DA COMPUTAÇÃO E LINGUAGENS FORMAIS Turma 1 2º. Semestre de 2012 Prof. João Luís
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma
Linguagens Livres do Contexto. Adaptado de H. Brandão
Linguagens Livres do Contexto Adaptado de H. Brandão Linguagens Livres do Contexto Para as LLC, temos as Gramáticas Livres do Contexto; Linguagens Livres do Contexto Para as LLC, temos as Gramáticas Livres
Variações de Máquinas de Turing
Linguagens Formais e Autômatos Variações de Máquinas de Turing Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Variações de Máquinas
Apostila 03 - Linguagens Livres de Contexto Exercícios
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Sistemas de Estados Finitos AF Determinísticos. (H&U, 1979) e (H;M;U, 2001)
a n Sistemas de Estados Finitos AF Determinísticos (H&U, 1979) e (H;M;U, 2001) 1 Sistemas de Estados Finitos Uma máquina de estados finitos é um modelo matemático de um sistema com entradas e saídas discretas.
Modelos de Computação
Modelos de Computação 2.ano LCC e LERSI URL: http://www.ncc.up.pt/~nam/aulas/0405/mc Escolaridade: 3.5T e 1P Frequência:Semanalmente serão propostos trabalhos aos alunos, que serão entregues nas caixas
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
Teoria de Linguagens 2 o semestre de 2017 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 19/9/2017 Valor: 10 pontos
Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 7 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 9/9/7 Valor: pontos. Uma versão do problema
Gramáticas Livres de Contexto Parte 1
Universidade Estadual de Feira de Santana Engenharia de Computação Gramáticas Livres de Contexto Parte 1 EXA 817 Compiladores Prof. Matheus Giovanni Pires O papel do Analisador Sintático É responsável
Apostila 02. Objetivos: Estudar os autômatos finitos Estudar as expressões regulares Estudar as gramáticas regulares Estudar as linguagens regulares
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
A. (Autómatos finitos determinísticos e não determinísticos AFD e AFND)
DEP. INFORMÁTICA - UNIVERSIDADE DA BEIRA INTERIOR Teoria da Computação Eng. Informática 1º Semestre Exame 1ª chamada - Resolução 2h + 30min 31/Jan/2011 Pergunta A.1 A.2 A.3 B.1 B.2 B.3a B.3b C.1 C.2 D.1
Linguagem (formal) de alfabeto Σ
Linguagem (formal) de alfabeto Σ Linguagem é qualquer subconjunto de Σ, i.e. qualquer conjunto de palavras de Σ Σ = {a, b} {aa, ab, ba, bb} ou {x x {a, b} e x = 2} {a, aa, ab, ba, aaa, aab, aba,...} ou
Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.
Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos
Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 3. Autômatos Finitos
Curso: Ciência da Computação Turma: 6ª Série Aula 3 Autômatos Finitos Alfabeto Alfabeto Conjunto finito de símbolos; Normalmente descrito por ; Exemplos: ={a, b} ={1, 2, 3} ={00, 11} Ø Alfabeto romano
a n Sistemas de Estados Finitos AF Determinísticos
a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um
Máquina de Turing e máquina de Turing universal
Máquina de Turing e máquina de Turing universal Rodrigo Santos de Souza 1 Universidade Católica de Pelotas - UCPel Mestrado em Ciência da Computação Disciplina de Teoria da Computação Prof. Antônio Carlos
Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves
Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que
Apostila 04. Objetivo: Estudar a Máquina de Turing
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Gramática regular. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz Universidade de São Paulo
Gramática regular IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 41 Frase do dia Através de três métodos
Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente
ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação
Autômatos com Pilha: Reconhecedores de LLCs
Autômatos com Pilha: Reconhecedores de LLCs 1 Autômatos com Pilha (AP) Definições alternativas para Linguagens Livres de Contexto Extensão de AFND com uma pilha, que pode ser lida, aumentada e diminuída
Máquinas de Turing: uma introdução
Máquinas de Turing: uma introdução Nelma Moreira Armando Matos Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {nam,acm}@ncc.up.pt 1996 Revisão: Maio 2001 1
Linguagens Livres de Contexto
Universidade Católica de Pelotas Centro Politécnico Bacharelado em Ciência da Computação 364018 Linguagens Formais e Autômatos TEXTO 4 Linguagens Livres de Contexto Prof. Luiz A M Palazzo Maio de 2011
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
Alfabeto, Cadeias, Operações e Linguagens
Linguagens de Programação e Compiladores - Aula 3 1 Alfabeto, Cadeias, Operações e Linguagens 1.Conjuntos Para representar um determinado conjunto é necessário buscar uma notação para representá-lo e ter
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela
Resolução Exe 2.12 Monolítico Recursivo
Resolução Exe 2.12 Monolítico Recursivo Recursivo P R é R 1 onde R 1 def (se T1 então R 2 senão R 3 ) R 2 def F; R 3 R 3 def (se T2 então R 4 senão R 7 ) R 4 def G; R 5 R 5 def (se T1 então R 7 senão R
Expressões Regulares e Gramáticas Regulares
Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos TEXTO 2 Expressões Regulares e Gramáticas Regulares Prof. Luiz A M Palazzo Março de 2007 Definição de Expressão
A. (Autómatos finitos determinísticos e não determinísticos AFD e AFND)
DEP. INFORMÁTICA - UNIVERSIDADE DA BEIRA INTERIOR Teoria da Computação Eng. Informática 1º Semestre Exame 2ª chamada - Resolução 2h + 30min 07/Fev/2011 Pergunta A.1 A.2 A.3 B.1 B.2 B.3a B.3b C.1 C.2 D.1
Linguagens e Autômatos
167657 - Controle para Automação Curso de Graduação em Engenharia de Controle e Automação Departamento de Engenharia Elétrica Universidade de Brasília Linguagens e Autômatos Geovany A. Borges [email protected]
Transformação de AP para GLC
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Transformação de AP para GLC Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Prof. Yandre Maldonado - 2 A técnica que será
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação - 1 0 Semestre 007 Professora : Sandra Aparecida de Amo Solução da Lista de Exercícios n o 1 Exercícios de Revisão
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Linguagens Formais e Problemas de Decisão
Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas
