Aula 9: Máquinas de Turing
|
|
|
- Pedro Mendes Caldeira
- 9 Há anos
- Visualizações:
Transcrição
1 Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular as entradas de forma ilimitada. Desta forma ela representa um modelo com características de um computador moderno. Podemos ver a máquina de Turing como uma fita infinita e um controlador (cabeçote) que está em uma determinada posição da fita e registrando um dos finitos estados possíveis.... B B B B B... p A string de entrada é escrita na fita e o restante das posições contêm o símbolo B. O cabeçote está inicialmente na posição mais à esquerda que contém um símbolo da string de entrada. O movimento da máquina de Turing consiste em: ir para o próximo estado; escrever um símbolo na posição atual da fita; mover o cabeçote para a esquerda ou para a direita. Definição 9.1. Uma máquina de Turing é uma 7-tupla M = (Q, Σ, Γ, δ, q 0, B, F ), onde Q é um conjunto finito de estados; Σ conjunto finito de símbolos de entrada. Γ conjunto completo de símbolos, Σ é um subconjunto. δ é uma função parcial δ : Q Γ Q Γ {L, R}, chamada de função de transição. q 0 Q é o estado inicial; B é um símbolo que representa um branco (está em Γ mas não em Σ). F Q é o subconjunto de estados finais. 1
2 2 Aula 9: Máquinas de Turing A função de transição δ(q i, a) = (q j, b, d) indica que quando a máquina está no estado q i lendo um símbolo a, ela deve mudar para o estado q j, escrever o símbolo b no lugar do símbolo a e, posteriormente, mover o cabeçote na direção d. Se d = L o cabeçote é movido para a esquerda, se d = R o cabeçote é movido para a direita. Como em um PDA, definiremos computações usando configurações instantâneas. Definição 9.2. A configuração instantânea de uma máquina de Turing será representada por BuqvB, sendo que a string de entrada é dada por w = uv; q representa o estado atual da máquina que está com o cabeçote sobre o primeiro símbolo de v; antes do B à esquerda e após o B à direita temos apenas outros B s. Definição 9.3. A notação Buq i vb Buq j vb indica que a configuração Buq j vb é obtida de Buq i vb a partir de apenas uma transição. A notação Buq i vb Buq j vb indica que a configuração Buq j vb é obtida de Buq i vb a partir de zero ou mais transições. No diagrama de estados de uma máquina de Turing, uma transição δ(q i, a) = (q j, b, d), com d {L, R} é representada por uma aresta entre os vértices q i e q j com rótulo a/b d. Exemplo 9.1 Considere a máquina de Turing M = ({q 0, q 1, q 2, q 3, q 4 }, {0, 1}, {0, 1, X, Y, B}, δ, q 0, B, {q 4 }) com a função de transição δ definida abaixo. δ 0 1 X Y B q 0 (q 1, X, R) (q 3, Y, R) q 1 (q 1, 0, R) (q 2, Y, L) (q 1, Y, R) q 2 (q 2, 0, L) (q 0, X, R) (q 2, Y, L) q 3 (q 3, Y, R) (q 4, B, R) q 4 O diagrama de estados de M é mostrado a seguir.
3 Aula 9: Máquinas de Turing 3 0/0 R, 0/0 L, Y/Y L 0/X R 1/Y L start q 0 q 1 q 2 X/X R q 3 q 4 Dada a string A computação da máquina será Bq B BXq 1 011B BX0q 1 11B BXq 2 0Y 1B Bq 2 X0Y 1B BXq 0 0Y 1B BXXq 1 Y 1B BXXY q 1 1B BXXq 2 Y Y B BXq 2 XY Y B BXXq 0 Y Y B BXXY q 3 Y B BXXY Y q 3 B BXXY Y Bq 4 B Dada a string A computação da máquina será Bq B BXq 1 010B BX0q 1 10B BXq 2 0Y 0B Bq 2 X0Y 0B BXq 0 0Y 0B BXXq 1 Y 0B BXXY q 1 0B BXXY 0q 1 B Definição 9.4. Seja M = (Q, Σ, Γ, δ, q 0, B, F ) uma máquina de Turing. Uma string u é aceita por estado final se a computação de u por M termina em um estado final. A linguagem de M, L(M), é o conjunto de strings aceitas por M. Exemplo 9.2 A máquina de Turing do Exemplo 9.1 aceita a linguagem {0 n 1 n n 1}. Exemplo 9.3 A máquina de Turing que computa max(m n, 0), dado que as strings de entrada são representadas por 0 m 10 n, é dada por M = ({q 0,..., q 6 }, {0, 1}, {0, 1, B}, δ, q 0, B, ) com função de transição
4 4 Aula 9: Máquinas de Turing δ 0 1 B q 0 (q 1, B, R) (q 5, B, R) q 1 (q 1, 0, R) (q 2, 1, R) q 2 (q 3, 1, L) (q 2, 1, R) (q 4, B, L) q 3 (q 3, 0, L) (q 3, 1, L) (q 0, B, R) q 4 (q 4, 0, L) (q 4, B, L) (q 6, 0, R) q 5 (q 5, B, R) (q 5, B, R) (q 6, B, R) O diagrama de estados para a máquina é dado por q 6 0/0 R 1/1 R 0/B R 1/1 R 0/1 L start q 0 q 1 q 2 q 3 1/1 L 0/0 L 1/B R B/B L q 5 q 6 q 4 B/0 R 1/B R 0/B R 1/B L 0/0 L A MT do Exemplo 9.3 não contém nenhum estado final. Ela não foi projetada pra aceitar uma linguagem mas sim para computar um função. Podemos definir um segundo critério para aceite em uma MT: quando ela aceita por parada. Definição 9.5. Seja M = (Q, Σ, Γ, δ, q 0, B, F ) uma máquina de Turing. Uma string u é aceita por parada se a computação de u por M para. Teorema 9.1. As seguintes declarações são equivalentes: 1. A linguagem L é aceita por uma máquina de Turing que aceita por estado final. 2. A linguagem L é aceita por uma máquina de Turing que aceita por parada. Demonstração. Seja M = (Q, Σ, Γ, δ, q 0, B, ) uma máquina de Turing que aceita L por parada. A máquina de Turing M = (Q {q f }, Σ, Γ, δ, q 0, B, {q f }) aceita por estado final. Para isso, q f é um novo estado. Se δ(q i, a) é definida, então δ (q i, a) = δ(q i, a), senão δ (q i, a) = (q f, a, R). O estado final q f não tem transições e portanto irá parar. Por outro lado, seja M = (Q, Σ, Γ, δ, q 0, B, F ) uma máquina de Turing que aceita L por estado final, podemos definir a máquina M = (Q {q f }, Σ, Γ, δ, q 0, B, ) que aceita L por
5 Aula 9: Máquinas de Turing 5 parada da seguinte forma: 1. se δ(q i, a) é definida, então δ (q i, a) = δ(q i, a). 2. Para cada estado Q F, se δ(q i, a) não é definida, então δ (q i, a) = (q f, a, R). 3. Para cada a Γ, δ (q f, a) = (q f, a, R). Definição 9.6. Uma linguagem que é aceita por uma máquina de Turing é chamada de linguagem recursivamente enumerável. Uma máquina de Turing pode não parar para uma determinada entrada já que podemos mover a máquina para frente e para trás na string de entrada. Definição 9.7. Uma linguagem que é aceita por uma máquina de Turing que sempre para, para todas as entradas, é chamada recursiva. Existem extensões de Máquinas de Turing, tais como MT com múltiplas fitas, MT com uma fita infinita em apenas uma direção, MT em que a entrada esteja em uma fita read only e as demais fitas sejam read-write, MT com diversas fitas de entrada read only, etc. Máquinas de Turing também são equivalentes a outros modelos computacionais, em especial computadores ( RAM machines ). Máquinas de Turing e computadores aceitam exatamente as mesmas linguagens, as linguagens recursivamente enumeráveis. É possível provar que esse modelos são semelhantes à máquina de Turing que introduzimos, elas têm o mesmo poder computacional, ou seja, decidem exatamente as mesmas linguagens. Definição 9.8. Uma máquina de Turing Não-Determinística (NTM) é uma máquina de Turing exceto pelo fato de que a função de transição δ(q, a) pode levar a um conjunto finito de triplas {(q 1, a 1, d 1 ), (q 2, a 2, d 2 ),..., (q n, a n, d n )}. A função δ é uma função parcial δ : Q Γ P(Q Γ {L, R})
Aula 7: Autômatos com Pilha
Teoria da Computação Segundo Semestre, 2014 Aula 7: Autômatos com Pilha DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos adicionar um memória do tipo pilha ao nossos autômatos para que seja possível aceitar
Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc.
Teoria da Computação Capítulo 1 Máquina de Turing Prof. Wanderley de Souza Alencar, MSc. Pauta 1. Introdução 2. Definição de Máquina de Turing 3. Variações de Máquina de Turing 4. A Tese de Church-Turing
Máquinas de Turing (MT)
Linguagens Formais e Autômatos Máquinas de Turing (MT) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Sumário Introdução Máquinas de Turing
Melhores momentos AULA PASSADA. Complexidade Computacional p. 136
Melhores momentos AULA PASSADA Complexidade Computacional p. 136 Configurações controle q 7 cabeça 1 0 1 1 0 1 1 1 fita de leitura e escrita Configuração 1 0 1q 7 1 0 1 1 1 Complexidade Computacional p.
Linguaguens recursivamente enumeráveis e recursivas
Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
Linguagens recursivamente enumeráveis
Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M
Aula 3: Autômatos Finitos
Teoria da Computação Primeiro Semestre, 25 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
Aula 3: Autômatos Finitos
Teoria da Computação Segundo Semestre, 24 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
Aula 10: Decidibilidade
Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma
Autômatos de Pilha (AP)
Linguagens Formais e Autômatos Autômatos de Pilha (AP) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (h@p://dcc.ufmg.br/~nvieira) Sumário Introdução Autômatos de pilha
Draft-v0.1. Máquinas de Turing Máquinas de Turing
13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal
Máquina de Turing. Controle finito
Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos
Modelos de Computação Folha de trabalho n. 10
Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE.
DEINFO - UFRPE Julho, 2014 Motivação Introdução O que pode ser computado? E mais intrigantemente, o que não pode ser computado? Motivação Introdução O que pode ser computado? E mais intrigantemente, o
Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente
ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Modelo de computação poderoso concebido pelo matemático britânico Alan Turing
Máquinas de Turing: uma introdução
Máquinas de Turing: uma introdução Nelma Moreira Armando Matos Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {nam,acm}@ncc.up.pt 1996 Revisão: Maio 2001 1
Variações de Máquinas de Turing
Linguagens Formais e Autômatos Variações de Máquinas de Turing Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Variações de Máquinas
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Apostila 05 Assunto: Linguagens dos tipos 0 e 1
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Máquina de Turing. Controle finito
Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos
Máquina de Turing e máquina de Turing universal
Máquina de Turing e máquina de Turing universal Rodrigo Santos de Souza 1 Universidade Católica de Pelotas - UCPel Mestrado em Ciência da Computação Disciplina de Teoria da Computação Prof. Antônio Carlos
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela
Aula 10: Tratabilidade
Teoria da Computação DAINF-UTFPR Aula 10: Tratabilidade Prof. Ricardo Dutra da Silva Na aula anterior discutimos problemas que podem e que não podem ser computados. Nesta aula vamos considerar apenas problemas
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL)
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) 1 Gramática Sensível ao Contexto Definição: Uma gramática G é sensível ao contexto se
PCC104 - Projeto e Análise de Algoritmos
PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 5 de dezembro de 2017 Marco Antonio
Marcos Castilho. DInf/UFPR. 5 de abril de 2018
5 de abril de 2018 Autômatos com Pilha Não-Determinísticos Um Autômato com Pilha Não-Determinístico (APN) é uma sêxtupla (Q, Σ, Γ, δ, Q 0, F ), onde: Q, Σ, Γ, F são como nos APD s; δ : Q (Σ {λ}) (Γ {λ})
Autômato com pilha. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz
Autômato com pilha IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Departmento de Computação e Matemática FFCLRP Universidade de São Paulo E.E.S Ruiz (DCM USP)
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 18/11/2013 Linguagens Recursivamente Enumeráveis, Complexidade (Custo) de Tempo/Espaço, Transdutores para exibir complexidade de Tempo/Espaço 1 Linguagens Recursivamente
Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Marcos Castilho. DInf/UFPR. 16 de maio de 2019
16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
Máquinas de Turing 3
Máquinas de Turing 3 Exercícios Máquinas de Turing com Múltiplas Fitas Máquinas de Turing Não-deterministicas A Tese/Hipótese de Church-Turing Linguagens decidíveis por Máquinas de Turing (Recursivas)
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira As Linguagens e os formalismos representacionais
Linguagens Formais e Autômatos Decidibilidade
Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada
Apostila 04. Objetivo: Estudar a Máquina de Turing
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 1. Linguagens Regulares Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected] www.each.usp.br/lauretto
Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)
Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Aula 8: Gramáticas Livres de Contexto
Teoria da Computação Primeiro Semestre, 2015 Aula 8: Gramáticas Livres de Contexto DAINF-UTFPR Prof. Ricardo Dutra da Silva Veremos agora maneira de gerar as strings de um tipo específico de linguagem,
Teoria da Computação. Máquinas Universais Máquina com Pilhas
Máquinas Universais Máquina com Pilhas Cristiano Lehrer Introdução A Máquina com Pilhas diferencia-se das Máquinas de Turing e de Post principalmente pelo fato de possuir uma memória de entrada separada
Linguagens Formais e Autômatos 02/2016. LFA Aula 04 16/11/2016. Celso Olivete Júnior.
LFA Aula 04 Autômatos Finitos 16/11/2016 Celso Olivete Júnior [email protected] 1 Classificação das Linguagens segundo Hierarquia de Chomsky Máquina de Turing Máquina de Turing com fita limitada Autômato
SCC Capítulo 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente
SCC-505 - Capítulo 3 Linguagens Sensíveis ao Contexto e João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Capítulo A máquina de Turing (TM) padrão Combinações de máquinas de Turing A Tese de Turing. ADC/TC/Cap.9/ /LEI/DEIFCTUC 375
Capítulo 9 Máquinas de Turing 9.1. A máquina de Turing (TM) padrão 9.2. Combinações de máquinas de Turing 9.3. A Tese de Turing ADC/TC/Cap.9/2009-10/LEI/DEIFCTUC 375 Linguagens regulares Autómatos finitos
Complexidade de Algoritmos. Edson Prestes
Edson Prestes A classe P consiste nos problemas que podem ser resolvidos em tempo Polinomial (Problemas tratáveis) A classe NP consiste nos problemas que podem ser verificados em tempo polinomial (Problemas
Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 4. Autômatos Finitos
Curso: Ciência da Computação Turma: 6ª Série Aula 4 Autômatos Finitos Autômatos Finitos Não Determinísticos Um autômato finito não-determinístico (AFND, ou NFA do inglês) tem o poder de estar em vários
PCS3616. Programação de Sistemas (Sistemas de Programação) Máquinas de Turing
PCS3616 Programação de Sistemas (Sistemas de Programação) Máquinas de Turing Escola Politécnica da Universidade de São Paulo Objetivos Familiarização com o funcionamento global de software de sistema computacional
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 13 Autômato com Pilha [email protected] Última aula Linguagens Livres do Contexto P(S*) Recursivamente enumeráveis Recursivas
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas
Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens:
UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM167 Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exercícios 2005/1 Exercício
Capítulo 2: Máquinas de Estados Finitos. Modelagem do problema. Quebra-cabeças. Newton José Vieira, Isabel Gomes Barbosa. 19 de agosto de 2010
Sumário Newton José Vieira Isabel Gomes Barbosa Departamento de Ciência da Computação Universidade Federal de Minas Gerais 9 de agosto de 2 Quebra-cabeças Modelagem do problema O Leão, o coelho e o repolho
Linguagens livres de contexto e autômatos de pilha
Capítulo 6: Linguagens livres de contexto e autômatos de pilha José Lucas Rangel, maio 1999 6.1 - Introdução. Os aceitadores, ou reconhecedores, das linguagens livres de contexto são os chamados autômatos
a n Sistemas de Estados Finitos AF Determinísticos
a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um
Terceira Lista de Exercícios 2004/2...
UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2
Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação
Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Não são aceitas respostas sem justificativa. Explique tudo o que você fizer. Linguagens Formais o semestre de 999 Primeira Prova
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Diferencia-se das máquinas de Turing e Post principalmente pelo fato de possuir a memória de entrada separada
Autómatos de Pilha. Cada transição é caracterizada pelo estado, símbolo que está ser lido e o elemento no topo da pilha. dados de entrada.
Autómatos de Pilha Um autómato de pilha (não determinístico) (AP) é um autómato finito não determinístico com transições ɛ, acrescido de uma memória infinita a pilha mas em que o modo de acesso à informação
Autômatos Finitos Determinís3cos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinís3cos (AFD) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Introdução Exemplos Sumário
Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves
Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
INTRATABILIDADE e NP-COMPLETUDE
INTRATABILIDADE e NP-COMPLETUDE Sandro Santos Andrade Doutorado Multiinstitucional em Ciência da Computação UFBA/UNIFACS/UEFS Junho/2008 Grafos e Análise de Algoritmos Introdução Para alguns problemas
Concurso Público para provimento de cargo efetivo de Docentes. Edital 20/2015 CIÊNCIA DA COMPUTAÇÃO II Campus Rio Pomba
Questão 01 No processo de construção de compiladores, é essencial compreender e manipular as expressões regulares e suas equivalências. Dentro desse contexto, seja o alfabeto = {a, b, c, d, e} e a seguinte
Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios
Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios 1. Escreva a expressão regular para as seguintes linguagens sobre o alfabeto {0, 1}: strings começando
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
Introdução às Máquinas de Turing (TM)
Comparação com computadores: Introdução às Máquinas de Turing (TM) um modelo matemático simples de um computador Semelhanças: lê e escreve em posições arbitrarias de memoria Diferenças: sem limite no tamanho
IV Gramáticas Livres de Contexto
IV Gramáticas Livres de Contexto Introdução Definições de GLC 1 G = (Vn, Vt, P, S) onde P = {A α A Vn α (Vn Vt) + } 2 GLC ε - LIVRE : S ε pode pertencer a P, desde que: S seja o símbolo inicial de G S
Linguagens Formais e Problemas de Decisão
Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas
Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Linguagens Regulares A teoria da computação começa com uma pergunta: O que é um computador? É, talvez, uma
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP 1 ACP Assim como LR tem um autômato equivalente (AF) as LLC tem também
Autômatos Finitos Não Determinís5cos (AFN)
Linguagens Formais e Autômatos Autômatos Finitos Não Determinís5cos (AFN) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Introdução
LINGUAGENS FORMAIS E AUTÔMATOS. Prova 2-10/06/ Prof. Marcus Ramos
LINGUAGENS FORMAIS E AUTÔMATOS Prova 2-10/06/2011 - Prof. Marcus Ramos NOME: _ Colocar seu nome no espaço acima; A prova pode ser feita à lápis ou caneta; A duração é de três horas; As questões da parte
Sistemas de Estados Finitos AF Determinísticos. (H&U, 1979) e (H;M;U, 2001)
a n Sistemas de Estados Finitos AF Determinísticos (H&U, 1979) e (H;M;U, 2001) 1 Sistemas de Estados Finitos Uma máquina de estados finitos é um modelo matemático de um sistema com entradas e saídas discretas.
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos
Máquina de Turing. Teoria da Computação. Teoria da Computação. Histórico da Computação:
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Pro. Yandre Maldonado - 1 Pro. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação Ênase teórica:
O que é Linguagem Regular. Um teorema sobre linguagens regulares. Uma aplicação do Lema do Bombeamento. Exemplo de uso do lema do bombeamento
O que é Linguagem Regular Um teorema sobre linguagens regulares Linguagem regular Uma linguagem é dita ser uma linguagem regular se existe um autômato finito que a reconhece. Dada uma linguagem L: É possível
