Aula 9: Máquinas de Turing

Tamanho: px
Começar a partir da página:

Download "Aula 9: Máquinas de Turing"

Transcrição

1 Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular as entradas de forma ilimitada. Desta forma ela representa um modelo com características de um computador moderno. Podemos ver a máquina de Turing como uma fita infinita e um controlador (cabeçote) que está em uma determinada posição da fita e registrando um dos finitos estados possíveis.... B B B B B... p A string de entrada é escrita na fita e o restante das posições contêm o símbolo B. O cabeçote está inicialmente na posição mais à esquerda que contém um símbolo da string de entrada. O movimento da máquina de Turing consiste em: ir para o próximo estado; escrever um símbolo na posição atual da fita; mover o cabeçote para a esquerda ou para a direita. Definição 9.1. Uma máquina de Turing é uma 7-tupla M = (Q, Σ, Γ, δ, q 0, B, F ), onde Q é um conjunto finito de estados; Σ conjunto finito de símbolos de entrada. Γ conjunto completo de símbolos, Σ é um subconjunto. δ é uma função parcial δ : Q Γ Q Γ {L, R}, chamada de função de transição. q 0 Q é o estado inicial; B é um símbolo que representa um branco (está em Γ mas não em Σ). F Q é o subconjunto de estados finais. 1

2 2 Aula 9: Máquinas de Turing A função de transição δ(q i, a) = (q j, b, d) indica que quando a máquina está no estado q i lendo um símbolo a, ela deve mudar para o estado q j, escrever o símbolo b no lugar do símbolo a e, posteriormente, mover o cabeçote na direção d. Se d = L o cabeçote é movido para a esquerda, se d = R o cabeçote é movido para a direita. Como em um PDA, definiremos computações usando configurações instantâneas. Definição 9.2. A configuração instantânea de uma máquina de Turing será representada por BuqvB, sendo que a string de entrada é dada por w = uv; q representa o estado atual da máquina que está com o cabeçote sobre o primeiro símbolo de v; antes do B à esquerda e após o B à direita temos apenas outros B s. Definição 9.3. A notação Buq i vb Buq j vb indica que a configuração Buq j vb é obtida de Buq i vb a partir de apenas uma transição. A notação Buq i vb Buq j vb indica que a configuração Buq j vb é obtida de Buq i vb a partir de zero ou mais transições. No diagrama de estados de uma máquina de Turing, uma transição δ(q i, a) = (q j, b, d), com d {L, R} é representada por uma aresta entre os vértices q i e q j com rótulo a/b d. Exemplo 9.1 Considere a máquina de Turing M = ({q 0, q 1, q 2, q 3, q 4 }, {0, 1}, {0, 1, X, Y, B}, δ, q 0, B, {q 4 }) com a função de transição δ definida abaixo. δ 0 1 X Y B q 0 (q 1, X, R) (q 3, Y, R) q 1 (q 1, 0, R) (q 2, Y, L) (q 1, Y, R) q 2 (q 2, 0, L) (q 0, X, R) (q 2, Y, L) q 3 (q 3, Y, R) (q 4, B, R) q 4 O diagrama de estados de M é mostrado a seguir.

3 Aula 9: Máquinas de Turing 3 0/0 R, 0/0 L, Y/Y L 0/X R 1/Y L start q 0 q 1 q 2 X/X R q 3 q 4 Dada a string A computação da máquina será Bq B BXq 1 011B BX0q 1 11B BXq 2 0Y 1B Bq 2 X0Y 1B BXq 0 0Y 1B BXXq 1 Y 1B BXXY q 1 1B BXXq 2 Y Y B BXq 2 XY Y B BXXq 0 Y Y B BXXY q 3 Y B BXXY Y q 3 B BXXY Y Bq 4 B Dada a string A computação da máquina será Bq B BXq 1 010B BX0q 1 10B BXq 2 0Y 0B Bq 2 X0Y 0B BXq 0 0Y 0B BXXq 1 Y 0B BXXY q 1 0B BXXY 0q 1 B Definição 9.4. Seja M = (Q, Σ, Γ, δ, q 0, B, F ) uma máquina de Turing. Uma string u é aceita por estado final se a computação de u por M termina em um estado final. A linguagem de M, L(M), é o conjunto de strings aceitas por M. Exemplo 9.2 A máquina de Turing do Exemplo 9.1 aceita a linguagem {0 n 1 n n 1}. Exemplo 9.3 A máquina de Turing que computa max(m n, 0), dado que as strings de entrada são representadas por 0 m 10 n, é dada por M = ({q 0,..., q 6 }, {0, 1}, {0, 1, B}, δ, q 0, B, ) com função de transição

4 4 Aula 9: Máquinas de Turing δ 0 1 B q 0 (q 1, B, R) (q 5, B, R) q 1 (q 1, 0, R) (q 2, 1, R) q 2 (q 3, 1, L) (q 2, 1, R) (q 4, B, L) q 3 (q 3, 0, L) (q 3, 1, L) (q 0, B, R) q 4 (q 4, 0, L) (q 4, B, L) (q 6, 0, R) q 5 (q 5, B, R) (q 5, B, R) (q 6, B, R) O diagrama de estados para a máquina é dado por q 6 0/0 R 1/1 R 0/B R 1/1 R 0/1 L start q 0 q 1 q 2 q 3 1/1 L 0/0 L 1/B R B/B L q 5 q 6 q 4 B/0 R 1/B R 0/B R 1/B L 0/0 L A MT do Exemplo 9.3 não contém nenhum estado final. Ela não foi projetada pra aceitar uma linguagem mas sim para computar um função. Podemos definir um segundo critério para aceite em uma MT: quando ela aceita por parada. Definição 9.5. Seja M = (Q, Σ, Γ, δ, q 0, B, F ) uma máquina de Turing. Uma string u é aceita por parada se a computação de u por M para. Teorema 9.1. As seguintes declarações são equivalentes: 1. A linguagem L é aceita por uma máquina de Turing que aceita por estado final. 2. A linguagem L é aceita por uma máquina de Turing que aceita por parada. Demonstração. Seja M = (Q, Σ, Γ, δ, q 0, B, ) uma máquina de Turing que aceita L por parada. A máquina de Turing M = (Q {q f }, Σ, Γ, δ, q 0, B, {q f }) aceita por estado final. Para isso, q f é um novo estado. Se δ(q i, a) é definida, então δ (q i, a) = δ(q i, a), senão δ (q i, a) = (q f, a, R). O estado final q f não tem transições e portanto irá parar. Por outro lado, seja M = (Q, Σ, Γ, δ, q 0, B, F ) uma máquina de Turing que aceita L por estado final, podemos definir a máquina M = (Q {q f }, Σ, Γ, δ, q 0, B, ) que aceita L por

5 Aula 9: Máquinas de Turing 5 parada da seguinte forma: 1. se δ(q i, a) é definida, então δ (q i, a) = δ(q i, a). 2. Para cada estado Q F, se δ(q i, a) não é definida, então δ (q i, a) = (q f, a, R). 3. Para cada a Γ, δ (q f, a) = (q f, a, R). Definição 9.6. Uma linguagem que é aceita por uma máquina de Turing é chamada de linguagem recursivamente enumerável. Uma máquina de Turing pode não parar para uma determinada entrada já que podemos mover a máquina para frente e para trás na string de entrada. Definição 9.7. Uma linguagem que é aceita por uma máquina de Turing que sempre para, para todas as entradas, é chamada recursiva. Existem extensões de Máquinas de Turing, tais como MT com múltiplas fitas, MT com uma fita infinita em apenas uma direção, MT em que a entrada esteja em uma fita read only e as demais fitas sejam read-write, MT com diversas fitas de entrada read only, etc. Máquinas de Turing também são equivalentes a outros modelos computacionais, em especial computadores ( RAM machines ). Máquinas de Turing e computadores aceitam exatamente as mesmas linguagens, as linguagens recursivamente enumeráveis. É possível provar que esse modelos são semelhantes à máquina de Turing que introduzimos, elas têm o mesmo poder computacional, ou seja, decidem exatamente as mesmas linguagens. Definição 9.8. Uma máquina de Turing Não-Determinística (NTM) é uma máquina de Turing exceto pelo fato de que a função de transição δ(q, a) pode levar a um conjunto finito de triplas {(q 1, a 1, d 1 ), (q 2, a 2, d 2 ),..., (q n, a n, d n )}. A função δ é uma função parcial δ : Q Γ P(Q Γ {L, R})

Aula 7: Autômatos com Pilha

Aula 7: Autômatos com Pilha Teoria da Computação Segundo Semestre, 2014 Aula 7: Autômatos com Pilha DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos adicionar um memória do tipo pilha ao nossos autômatos para que seja possível aceitar

Leia mais

Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc.

Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc. Teoria da Computação Capítulo 1 Máquina de Turing Prof. Wanderley de Souza Alencar, MSc. Pauta 1. Introdução 2. Definição de Máquina de Turing 3. Variações de Máquina de Turing 4. A Tese de Church-Turing

Leia mais

Máquinas de Turing (MT)

Máquinas de Turing (MT) Linguagens Formais e Autômatos Máquinas de Turing (MT) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Sumário Introdução Máquinas de Turing

Leia mais

Melhores momentos AULA PASSADA. Complexidade Computacional p. 136

Melhores momentos AULA PASSADA. Complexidade Computacional p. 136 Melhores momentos AULA PASSADA Complexidade Computacional p. 136 Configurações controle q 7 cabeça 1 0 1 1 0 1 1 1 fita de leitura e escrita Configuração 1 0 1q 7 1 0 1 1 1 Complexidade Computacional p.

Leia mais

Linguaguens recursivamente enumeráveis e recursivas

Linguaguens recursivamente enumeráveis e recursivas Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo

Leia mais

Linguagens recursivamente enumeráveis

Linguagens recursivamente enumeráveis Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M

Leia mais

Aula 3: Autômatos Finitos

Aula 3: Autômatos Finitos Teoria da Computação Primeiro Semestre, 25 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor

Leia mais

Aula 3: Autômatos Finitos

Aula 3: Autômatos Finitos Teoria da Computação Segundo Semestre, 24 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas

Leia mais

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma

Leia mais

Autômatos de Pilha (AP)

Autômatos de Pilha (AP) Linguagens Formais e Autômatos Autômatos de Pilha (AP) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (h@p://dcc.ufmg.br/~nvieira) Sumário Introdução Autômatos de pilha

Leia mais

Draft-v0.1. Máquinas de Turing Máquinas de Turing

Draft-v0.1. Máquinas de Turing Máquinas de Turing 13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal

Leia mais

Máquina de Turing. Controle finito

Máquina de Turing. Controle finito Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos

Leia mais

Modelos de Computação Folha de trabalho n. 10

Modelos de Computação Folha de trabalho n. 10 Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação

Leia mais

Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE.

Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE. DEINFO - UFRPE Julho, 2014 Motivação Introdução O que pode ser computado? E mais intrigantemente, o que não pode ser computado? Motivação Introdução O que pode ser computado? E mais intrigantemente, o

Leia mais

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação

Leia mais

Computabilidade e Complexidade (ENG10014)

Computabilidade e Complexidade (ENG10014) Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Modelo de computação poderoso concebido pelo matemático britânico Alan Turing

Leia mais

Máquinas de Turing: uma introdução

Máquinas de Turing: uma introdução Máquinas de Turing: uma introdução Nelma Moreira Armando Matos Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {nam,acm}@ncc.up.pt 1996 Revisão: Maio 2001 1

Leia mais

Variações de Máquinas de Turing

Variações de Máquinas de Turing Linguagens Formais e Autômatos Variações de Máquinas de Turing Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Variações de Máquinas

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação

Leia mais

Apostila 05 Assunto: Linguagens dos tipos 0 e 1

Apostila 05 Assunto: Linguagens dos tipos 0 e 1 Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

Máquina de Turing. Controle finito

Máquina de Turing. Controle finito Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos

Leia mais

Máquina de Turing e máquina de Turing universal

Máquina de Turing e máquina de Turing universal Máquina de Turing e máquina de Turing universal Rodrigo Santos de Souza 1 Universidade Católica de Pelotas - UCPel Mestrado em Ciência da Computação Disciplina de Teoria da Computação Prof. Antônio Carlos

Leia mais

Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.

Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução. Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela

Leia mais

Aula 10: Tratabilidade

Aula 10: Tratabilidade Teoria da Computação DAINF-UTFPR Aula 10: Tratabilidade Prof. Ricardo Dutra da Silva Na aula anterior discutimos problemas que podem e que não podem ser computados. Nesta aula vamos considerar apenas problemas

Leia mais

Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL)

Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) 1 Gramática Sensível ao Contexto Definição: Uma gramática G é sensível ao contexto se

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 5 de dezembro de 2017 Marco Antonio

Leia mais

Marcos Castilho. DInf/UFPR. 5 de abril de 2018

Marcos Castilho. DInf/UFPR. 5 de abril de 2018 5 de abril de 2018 Autômatos com Pilha Não-Determinísticos Um Autômato com Pilha Não-Determinístico (APN) é uma sêxtupla (Q, Σ, Γ, δ, Q 0, F ), onde: Q, Σ, Γ, F são como nos APD s; δ : Q (Σ {λ}) (Γ {λ})

Leia mais

Autômato com pilha. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz

Autômato com pilha. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz Autômato com pilha IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Departmento de Computação e Matemática FFCLRP Universidade de São Paulo E.E.S Ruiz (DCM USP)

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) Linguagens Formais e Autômatos (LFA) Aula de 18/11/2013 Linguagens Recursivamente Enumeráveis, Complexidade (Custo) de Tempo/Espaço, Transdutores para exibir complexidade de Tempo/Espaço 1 Linguagens Recursivamente

Leia mais

Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade

Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

Marcos Castilho. DInf/UFPR. 16 de maio de 2019

Marcos Castilho. DInf/UFPR. 16 de maio de 2019 16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.

Leia mais

Linguagens Regulares. Prof. Daniel Oliveira

Linguagens Regulares. Prof. Daniel Oliveira Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões

Leia mais

Máquinas de Turing 3

Máquinas de Turing 3 Máquinas de Turing 3 Exercícios Máquinas de Turing com Múltiplas Fitas Máquinas de Turing Não-deterministicas A Tese/Hipótese de Church-Turing Linguagens decidíveis por Máquinas de Turing (Recursivas)

Leia mais

INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos

INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira As Linguagens e os formalismos representacionais

Leia mais

Linguagens Formais e Autômatos Decidibilidade

Linguagens Formais e Autômatos Decidibilidade Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada

Leia mais

Apostila 04. Objetivo: Estudar a Máquina de Turing

Apostila 04. Objetivo: Estudar a Máquina de Turing Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 1. Linguagens Regulares Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected] www.each.usp.br/lauretto

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000) Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teoria da Computação Primeiro Semestre, 2015 Aula 8: Gramáticas Livres de Contexto DAINF-UTFPR Prof. Ricardo Dutra da Silva Veremos agora maneira de gerar as strings de um tipo específico de linguagem,

Leia mais

Teoria da Computação. Máquinas Universais Máquina com Pilhas

Teoria da Computação. Máquinas Universais Máquina com Pilhas Máquinas Universais Máquina com Pilhas Cristiano Lehrer Introdução A Máquina com Pilhas diferencia-se das Máquinas de Turing e de Post principalmente pelo fato de possuir uma memória de entrada separada

Leia mais

Linguagens Formais e Autômatos 02/2016. LFA Aula 04 16/11/2016. Celso Olivete Júnior.

Linguagens Formais e Autômatos 02/2016. LFA Aula 04 16/11/2016. Celso Olivete Júnior. LFA Aula 04 Autômatos Finitos 16/11/2016 Celso Olivete Júnior [email protected] 1 Classificação das Linguagens segundo Hierarquia de Chomsky Máquina de Turing Máquina de Turing com fita limitada Autômato

Leia mais

SCC Capítulo 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente

SCC Capítulo 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente SCC-505 - Capítulo 3 Linguagens Sensíveis ao Contexto e João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis

Leia mais

Capítulo A máquina de Turing (TM) padrão Combinações de máquinas de Turing A Tese de Turing. ADC/TC/Cap.9/ /LEI/DEIFCTUC 375

Capítulo A máquina de Turing (TM) padrão Combinações de máquinas de Turing A Tese de Turing. ADC/TC/Cap.9/ /LEI/DEIFCTUC 375 Capítulo 9 Máquinas de Turing 9.1. A máquina de Turing (TM) padrão 9.2. Combinações de máquinas de Turing 9.3. A Tese de Turing ADC/TC/Cap.9/2009-10/LEI/DEIFCTUC 375 Linguagens regulares Autómatos finitos

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes A classe P consiste nos problemas que podem ser resolvidos em tempo Polinomial (Problemas tratáveis) A classe NP consiste nos problemas que podem ser verificados em tempo polinomial (Problemas

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 4. Autômatos Finitos

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 4. Autômatos Finitos Curso: Ciência da Computação Turma: 6ª Série Aula 4 Autômatos Finitos Autômatos Finitos Não Determinísticos Um autômato finito não-determinístico (AFND, ou NFA do inglês) tem o poder de estar em vários

Leia mais

PCS3616. Programação de Sistemas (Sistemas de Programação) Máquinas de Turing

PCS3616. Programação de Sistemas (Sistemas de Programação) Máquinas de Turing PCS3616 Programação de Sistemas (Sistemas de Programação) Máquinas de Turing Escola Politécnica da Universidade de São Paulo Objetivos Familiarização com o funcionamento global de software de sistema computacional

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 13 Autômato com Pilha [email protected] Última aula Linguagens Livres do Contexto P(S*) Recursivamente enumeráveis Recursivas

Leia mais

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas

Leia mais

Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens:

Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens: UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM167 Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exercícios 2005/1 Exercício

Leia mais

Capítulo 2: Máquinas de Estados Finitos. Modelagem do problema. Quebra-cabeças. Newton José Vieira, Isabel Gomes Barbosa. 19 de agosto de 2010

Capítulo 2: Máquinas de Estados Finitos. Modelagem do problema. Quebra-cabeças. Newton José Vieira, Isabel Gomes Barbosa. 19 de agosto de 2010 Sumário Newton José Vieira Isabel Gomes Barbosa Departamento de Ciência da Computação Universidade Federal de Minas Gerais 9 de agosto de 2 Quebra-cabeças Modelagem do problema O Leão, o coelho e o repolho

Leia mais

Linguagens livres de contexto e autômatos de pilha

Linguagens livres de contexto e autômatos de pilha Capítulo 6: Linguagens livres de contexto e autômatos de pilha José Lucas Rangel, maio 1999 6.1 - Introdução. Os aceitadores, ou reconhecedores, das linguagens livres de contexto são os chamados autômatos

Leia mais

a n Sistemas de Estados Finitos AF Determinísticos

a n Sistemas de Estados Finitos AF Determinísticos a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um

Leia mais

Terceira Lista de Exercícios 2004/2...

Terceira Lista de Exercícios 2004/2... UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2

Leia mais

Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação

Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Não são aceitas respostas sem justificativa. Explique tudo o que você fizer. Linguagens Formais o semestre de 999 Primeira Prova

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Diferencia-se das máquinas de Turing e Post principalmente pelo fato de possuir a memória de entrada separada

Leia mais

Autómatos de Pilha. Cada transição é caracterizada pelo estado, símbolo que está ser lido e o elemento no topo da pilha. dados de entrada.

Autómatos de Pilha. Cada transição é caracterizada pelo estado, símbolo que está ser lido e o elemento no topo da pilha. dados de entrada. Autómatos de Pilha Um autómato de pilha (não determinístico) (AP) é um autómato finito não determinístico com transições ɛ, acrescido de uma memória infinita a pilha mas em que o modo de acesso à informação

Leia mais

Autômatos Finitos Determinís3cos (AFD)

Autômatos Finitos Determinís3cos (AFD) Linguagens Formais e Autômatos Autômatos Finitos Determinís3cos (AFD) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Introdução Exemplos Sumário

Leia mais

Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves

Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação

Leia mais

INTRATABILIDADE e NP-COMPLETUDE

INTRATABILIDADE e NP-COMPLETUDE INTRATABILIDADE e NP-COMPLETUDE Sandro Santos Andrade Doutorado Multiinstitucional em Ciência da Computação UFBA/UNIFACS/UEFS Junho/2008 Grafos e Análise de Algoritmos Introdução Para alguns problemas

Leia mais

Concurso Público para provimento de cargo efetivo de Docentes. Edital 20/2015 CIÊNCIA DA COMPUTAÇÃO II Campus Rio Pomba

Concurso Público para provimento de cargo efetivo de Docentes. Edital 20/2015 CIÊNCIA DA COMPUTAÇÃO II Campus Rio Pomba Questão 01 No processo de construção de compiladores, é essencial compreender e manipular as expressões regulares e suas equivalências. Dentro desse contexto, seja o alfabeto = {a, b, c, d, e} e a seguinte

Leia mais

Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios

Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios 1. Escreva a expressão regular para as seguintes linguagens sobre o alfabeto {0, 1}: strings começando

Leia mais

Teoria da Computação

Teoria da Computação Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz

Leia mais

Introdução às Máquinas de Turing (TM)

Introdução às Máquinas de Turing (TM) Comparação com computadores: Introdução às Máquinas de Turing (TM) um modelo matemático simples de um computador Semelhanças: lê e escreve em posições arbitrarias de memoria Diferenças: sem limite no tamanho

Leia mais

IV Gramáticas Livres de Contexto

IV Gramáticas Livres de Contexto IV Gramáticas Livres de Contexto Introdução Definições de GLC 1 G = (Vn, Vt, P, S) onde P = {A α A Vn α (Vn Vt) + } 2 GLC ε - LIVRE : S ε pode pertencer a P, desde que: S seja o símbolo inicial de G S

Leia mais

Linguagens Formais e Problemas de Decisão

Linguagens Formais e Problemas de Decisão Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas

Leia mais

Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD)

Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD) Linguagens Formais e Autômatos Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Linguagens Regulares A teoria da computação começa com uma pergunta: O que é um computador? É, talvez, uma

Leia mais

LINGUAGENS FORMAIS E AUTÔMATOS

LINGUAGENS FORMAIS E AUTÔMATOS LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.

Leia mais

a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP

a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP 1 ACP Assim como LR tem um autômato equivalente (AF) as LLC tem também

Leia mais

Autômatos Finitos Não Determinís5cos (AFN)

Autômatos Finitos Não Determinís5cos (AFN) Linguagens Formais e Autômatos Autômatos Finitos Não Determinís5cos (AFN) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Introdução

Leia mais

LINGUAGENS FORMAIS E AUTÔMATOS. Prova 2-10/06/ Prof. Marcus Ramos

LINGUAGENS FORMAIS E AUTÔMATOS. Prova 2-10/06/ Prof. Marcus Ramos LINGUAGENS FORMAIS E AUTÔMATOS Prova 2-10/06/2011 - Prof. Marcus Ramos NOME: _ Colocar seu nome no espaço acima; A prova pode ser feita à lápis ou caneta; A duração é de três horas; As questões da parte

Leia mais

Sistemas de Estados Finitos AF Determinísticos. (H&U, 1979) e (H;M;U, 2001)

Sistemas de Estados Finitos AF Determinísticos. (H&U, 1979) e (H;M;U, 2001) a n Sistemas de Estados Finitos AF Determinísticos (H&U, 1979) e (H;M;U, 2001) 1 Sistemas de Estados Finitos Uma máquina de estados finitos é um modelo matemático de um sistema com entradas e saídas discretas.

Leia mais

Fundamentos da Teoria da Computação

Fundamentos da Teoria da Computação Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos

Leia mais

Máquina de Turing. Teoria da Computação. Teoria da Computação. Histórico da Computação:

Máquina de Turing. Teoria da Computação. Teoria da Computação. Histórico da Computação: UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Pro. Yandre Maldonado - 1 Pro. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação Ênase teórica:

Leia mais

O que é Linguagem Regular. Um teorema sobre linguagens regulares. Uma aplicação do Lema do Bombeamento. Exemplo de uso do lema do bombeamento

O que é Linguagem Regular. Um teorema sobre linguagens regulares. Uma aplicação do Lema do Bombeamento. Exemplo de uso do lema do bombeamento O que é Linguagem Regular Um teorema sobre linguagens regulares Linguagem regular Uma linguagem é dita ser uma linguagem regular se existe um autômato finito que a reconhece. Dada uma linguagem L: É possível

Leia mais