Terceira Lista de Exercícios 2004/2...
|
|
|
- Jónatas Fontes Bicalho
- 9 Há anos
- Visualizações:
Transcrição
1 UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2 Exercício 1 Descreva gramáticas Livres de Contexto que geram as seguintes linguagens, todas sobre o alfabeto {0, 1}. a. {ε, 0, 1, 00, 01, 10, 11, } G = ({S}, {0, 1}, R, S), onde: R: S b. {w o número de 1s é o dobro do número de 0s} G = ({S}, {0, 1}, R, S), onde: R: S c. {w w >2 é par e o antepenúltimo símbolo é o 1} G = ({S, A}, {0, 1}, R, S), onde: R: S A AAA 0 1 d. {1 a 0 b 1 c 0 d a, b, c, d 0, b > a e a+c = b+d} G = ({S, X, Y}, {0, 1}, R, S), onde: R: S XYX X 1X0 Y Obs) 1 a 0 b 1 c 0 d = 1 a 0 a 0 b-a 1 c 0 d = 1 a 0 a 0 b-a 1 b-a 1 c-(b-a) 0 d = 1 a 0 a 0 b-a 1 b-a 1 d 0 d e. {w a diferença em módulo entre o número de 0s e 1s é menor que 3} G = ({A, B, C, S}, {0, 1}, R, S), onde: R: S! A C0C C1C B!"!"!#!$!$! C!$!#!"!# Exercício 2 Use o lema da iteração das linguagens livre de contexto para mostrar que as seguintes linguagens não são livres de contexto.
2 a. {0 n 1 2n 0 3n n 0} Por contradição, suponha que A é livre de contexto. Logo, A satisfaz o lema da iteração para linguagens livres de contexto e existe um inteiro p. Tome s = 0 p 1 2p 0 3p lema, s pode ser escrita como s = uvxyz = 0 p 1 2p 0 3p. Analisando a 1ª condição do lema (uv i xy i z A, para todo i ): Caso 1: v e y contém apenas um tipo de símbolo. Neste caso, uv 2 xy 2 z não obedece à proporção 1:2:3 entre os três trechos dos quais a palavra é formada, já que dado este caso, um dos trechos (0 s ou 1 s ou 0 s) não cresce em relação aos demais quando do incremento nas quantidades de v e y. Logo, uv 2 xy 2 z não pertence a A. Caso 2: v ou y contém mais de um tipo de símbolo. Neste caso, uv 2 xy 2 z pode até seguir a proporção 1:2:3 entre os três trechos da palavra, mas não na ordem correta. Logo, uv 2 xy 2 z não pertence a A. Contradição. b. {1 m m = n 2, n 0} Por contradição, suponha que B é livre de contexto. Logo, B satisfaz o lema da iteração para linguagens livres de contexto e existe um inteiro p. Tome s = 1 p.p! então s pode ser escrita como s = uvxyz = 0 p 1 2p 0 3p. Além disso, uv i xy i "! m = uxz e p &' ( )+* $#% ão, m, m + k, m + 2k, m + 3k,..., devem ser quadrados perfeitos, já que o comprimento da palavra é p 2, que é um quadrado perfeito. O comprimento de uvxyz é p 2 = m + k. Mas p 2 < uvvxyyz = p 2 + k,- 2 + p < (p + 1) 2. Logo, uvvxyyz não é quadrado perfeito. Contradição. c. {w o número de 1s em w é o quadrado do número de 0s} Por contradição, suponha que C é livre de contexto. Logo, C satisfaz o lema da iteração para linguagens livres de contexto e existe um inteiro p. Tome s = 0 p 1! p.p * p vem do lema. Analisando a 1ª condição do lema (uv i xy i! / 01. Caso 1: v e y contém apenas um tipo de símbolo. Neste caso, uv 2 xy 2 z não obedece à proporção de o número de 1 s ser o quadrado do número de 0 s. Logo, uv 2 xy 2 z não pertence a C. Caso 2: v ou y contém mais de um tipo de símbolo. Neste caso, uv 2 xy 2 z pode até seguir a proporção entre as quantidades de 0 s e 1 s, sem manter a ordem entre os elementos. Como no 2º caso não tivemos uma contradição, vamos analisar a construção da palavra s: Seja uxz = m, contendo a 0 s e b 1 s. Seja vy = k, contendo c 0 s e d 1 s. Obs) a, b, c e d representam as quantidades de símbolos em cada subpalavra de s. Vamos verificar algumas possibilidades:
3 (1) uxz a 0 s e b 1 s. (2) uvxyz 0 0 (3) uv 2 xy 2 z 0 0 (4) uv 3 xy 3 z 0 0 (5) uv 4 xy 4 z Como, em (1), b = a 2 (quantidade de 1 s é o quadrado da quantidade de 0 s), segue nos demais casos: (2) (b + d) = (a + c) 2 = a 2 + 2ac + c 2 (b + d) = (a + c) 2 = b + c.(2a + c) b + d = b + c.(2a + c) d = c.(2a + c) (3) (b + 2d) = (a + 2c) 2 = a 2 + 4ac + 4c 2 (b + 2d) = (a + 2c) 2 = b + 4c.(a + c) b + 2c.(2a + c) = b + 4c.(a + c) 2a + c = 2a + 2c c = 2c 2c c = 0 c = 0 Se c = 0, logo: d = c.(2a + c) % 0 % Mas, c = 0 e d = 0 acontecem em (1), onde s = uxz. No entanto, considerando a 2ª condição do lema da iteração ( vy > 0), ocorre uma falha. Contradição. Exercício 3 Desenhe diagramas de estados para M.T. que decidem as linguagem: a. {a * b * c * }
4 b. {0 n 1 n 0 n n 0} c. {0 n 1 2n 0 3n n 0}
5 d. {a r b s c t r, s, t > 0 e r = s t} Exercício 4 Indique se as expressões abaixo são verdadeiras ou falsas. Justifique: a. Toda linguagem regular é livre de contexto. VERDADEIRO, pois existe um corolário que afirma isso a partir do fato de que todo autômato finito é uma autômato com pilha (que não usa a pilha). b. Uma palavra é aceita por DFA se a computação consegue alcançar um estado final FALSO, pois uma palavra é aceita por um DFA se seus símbolos pertencem ao alfabeto da linguagem por ele reconhecida e se a computação termina em um estado final.
6 c. NFA e autômatos com Pilha são máquinas não-determinísticas. VERDADEIRO, por definição, já que NFA s e autômatos com pilha se utilizam do não-determinismo em suas computações. d. DFA, M.T. e Gramática livre de contexto são máquinas determinísticas. FALSO, pois uma gramática livre de contexto não é um autômato e, portanto, não é uma máquina não-determinística. e. Autômatos com Pilha reconhecem linguagens regulares. VERDADEIRO, já que todo autômato finito é um autômato com pilha, este reconhece linguagens regulares. f. Toda linguagem que está na forma normal de Chomsky é livre de contexto. FALSO, pois a definição de forma normal de Chomsky é para gramática e não para linguagem. g. A linguagem de um autômato com Pilha pode ser gerada por uma gramática livre de contexto. VERDADEIRO, pois, por teorema, existe uma equivalência entre autômatos com pilha e gramáticas livres de contexto. h. A linguagem de uma M.T. qualquer é recursivamente enumerável. VERDADEIRO, pois, por definição, se uma linguagem é reconhecida por alguma máquina de Turing, ele é recursivamente enumerável. i. Toda linguagem que não entra em loop é recursiva. FALSO, pois linguagens não entram em loop, e sim máquinas de Turing. j. Toda linguagem recursiva possui uma M.T. que a reconhece sem entrar em loop. VERDADEIRO, por definição, uma vez que linguagem recursiva é aquela reconhecida por uma máquina de Turing sem que esta entre em loop. k. Uma palavra é aceita em uma M.T. se sua computação chega no estado de aceitação e a palavra de entrada é totalmente lida. FALSO, pois, por definição, uma máquina de Turing aceita uma palavra se sua computação termina em um estado de aceitação, sem que a palavra precise ser necessariamente lida por completo. l. Toda linguagem recursiva é recursivamente enumerável.
7 VERDADEIRO, por definição, uma linguagem recursiva é uma linguagem recursivamente enumerável, na qual sua máquina de Turing correspondente não entra em loop. m. Lemas da iteração conseguem provar se uma linguagem é regular ou livre de contexto. FALSO, pois são da forma se...então, e conseguem provar se uma linguagem não é regular ou não é livre de contexto, quando pelo menos uma de suas condições falhar.
Segunda Lista de Exercícios 2004/2...
+ + UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Segunda Lista de Exercícios
Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens:
UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM167 Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exercícios 2005/1 Exercício
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL)
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) 1 Gramática Sensível ao Contexto Definição: Uma gramática G é sensível ao contexto se
Lema do Bombeamento para Linguagens Livres do Contexto
Lema do Bombeamento para Linguagens Livres do Contexto IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 44
Conceitos básicos de Teoria da Computação
Folha Prática Conceitos básicos de 1 Conceitos básicos de Métodos de Prova 1. Provar por indução matemática que para todo o número natural n: a) 1 + 2 + 2 2 + + 2 n = 2 n+1 1, para n 0 b) 1 2 + 2 2 + 3
Apostila 05 Assunto: Linguagens dos tipos 0 e 1
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação
Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Não são aceitas respostas sem justificativa. Explique tudo o que você fizer. Linguagens Formais o semestre de 999 Primeira Prova
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma
Exercícios Associados à Aula 28 (27/11/2013) Feitos em sala e em equipes
Exercícios Associados à Aula 28 (27/11/2013) Feitos em sala e em equipes Questões do POSCOMP 2011 A resposta certa está assinalada em vermelho. Por que é correta e por que as demais alternativas são incorretas?
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 1. Linguagens Regulares Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected] www.each.usp.br/lauretto
Propriedades das Linguagens Livres do Contexto
Capítulo 7 Propriedades das Linguagens Livres do Contexto As linguagens livres do contexto ocupam uma posição central na hierarquia das linguagens formais. Por um lado, as linguagens livres do contexto
Lema do Bombeamento. Aplicação para Linguagens Regulares e Livres de Contexto. Maria Adriana Vidigal de Lima. Abril
Aplicação para Linguagens Regulares e Livres de Contexto Abril - 2009 1 Linguagens Não-Regulares 2 Propriedades das Linguagens Regulares Todas as linguagens finitas (com um número finito de palavras) são
Máquinas de Turing - Computabilidade
BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma
Linguagens Não-Regulares
Linguagens Não-Regulares Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Não-Regulares DCC-UFMG (2018/02)
LINGUAGENS FORMAIS E AUTÔMATOS. Prova 2-10/06/ Prof. Marcus Ramos
LINGUAGENS FORMAIS E AUTÔMATOS Prova 2-10/06/2011 - Prof. Marcus Ramos NOME: _ Colocar seu nome no espaço acima; A prova pode ser feita à lápis ou caneta; A duração é de três horas; As questões da parte
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação bas eado em material produzido pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected]
Linguagens Formais. Aula 01 - Conceitos Básicos. Prof. Othon Batista Mestre em Informática
Linguagens Formais Aula 01 - Conceitos Básicos Prof. Othon Batista Mestre em Informática Sumário Introdução à Linguagem Alfabeto Cadeias de Símbolos, Palavras Tamanho de Palavra Prefixo, Sufixo ou Subpalavra
Marcos Castilho. DInf/UFPR. 16 de maio de 2019
16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.
I.2 Introdução a Teoria da Computação
I.2 Introdução a Teoria da Computação O que é? Fundamento da Ciência da Computação Tratamento Matemático da Ciência da Computação Estudo Matemático da Transformação da Informação Qual sua importância?
Marcos Castilho. DInf/UFPR. 5 de abril de 2018
5 de abril de 2018 Autômatos com Pilha Não-Determinísticos Um Autômato com Pilha Não-Determinístico (APN) é uma sêxtupla (Q, Σ, Γ, δ, Q 0, F ), onde: Q, Σ, Γ, F são como nos APD s; δ : Q (Σ {λ}) (Γ {λ})
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Modelos de Computação Folha de trabalho n. 10
Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
A. (Autómatos finitos determinísticos e não determinísticos AFD e AFND)
DEP. INFORMÁTICA - UNIVERSIDADE DA BEIRA INTERIOR Teoria da Computação Eng. Informática 1º Semestre Exame 1ª chamada - Resolução 2h + 30min 31/Jan/2011 Pergunta A.1 A.2 A.3 B.1 B.2 B.3a B.3b C.1 C.2 D.1
2. DISCIPLINA REQUISITO (RECOMENDAÇÃO) 3. INDICAÇÃO DE CONJUNTO (BCC) Obrigatória TEORIA: 60 LABORATÓRIO: 30
Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC3106 - LINGUAGENS FORMAIS E
COMPUTABILIDADE 2. Indecidibilidade
Licenciatura em Ciências da Computação COMPUTABILIDADE 2. Indecidibilidade José Carlos Costa Dep. Matemática e Aplicações Universidade do Minho 15 de Novembro de 2011 José Carlos Costa DMA-UMinho 15 de
a * Lema do Bombeamento Linguagens regulares e não-regulares
a * Lema do Bombeamento Linguagens regulares e não-regulares 1 Lema do Bombeamento para LR Como decidir que uma linguagem não é regular? Toda linguagem regular satisfaz o Lema do bombeamento (LB). Lemas
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Doutorando em Ciência da Computação Estagiário em docência II Departamento de Ciência da Computação
Autômatos com Pilha: Reconhecedores de LLCs
Autômatos com Pilha: Reconhecedores de LLCs 1 Autômatos com Pilha (AP) Definições alternativas para Linguagens Livres de Contexto Extensão de AFND com uma pilha, que pode ser lida, aumentada e diminuída
Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior.
LFA Aula 02 Linguagens regulares - introdução 28/09/2015 Celso Olivete Júnior [email protected] 1 Na aula passada... Visão geral Linguagens regulares expressões regulares autômatos finitos gramáticas
Lema do Bombeamento Linguagens Livres de Contexto
Lema do Bombeamento Linguagens Livres de Contexto Agenda Lema do Bombeamento para CFL s Motivação Teorema Prova Exemplos de provas usando o lema 0 Bombeando FA s 1 x y z 1 0 1 0 Strings de comprimento
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
Aula 9: Máquinas de Turing
Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular
Aula 10: Decidibilidade
Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 08 Minimização de AFDs [email protected] Últimas aulas... Linguagens Formais vs Linguagens Naturais Últimas aulas... Linguagens
Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Lista de exercícios 1 Disciplina: Linguagens Formais e Autômatos Professora: Juliana Pinheiro
Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Prof. Dr. Marcos Castilho. Departamento de Informática/UFPR. 22 de Fevereiro de 2018
22 de Fevereiro de 2018 Motivação O que é um computador? O que é um algoritmo? Para que serve um algoritmo? Quando um algoritmo é bom? A análise de um algoritmo depende do computador? Motivação Em teoria
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares baseado em material produzido pelo prof Paulo B auth Menezes e pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja
Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves
Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que
Modelos de Computação Folha de trabalho n. 8
Modelos de Computação Folha de trabalho n. 8 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
Lista de Exercícios CT-200 Primeiro Bimestre Carlos Henrique Quartucci Forster Estagiário: Wesley Telles. Revisão de Teoria de Conjuntos
Lista de Exercícios CT-200 Primeiro Bimestre 2010 Carlos Henrique Quartucci Forster Estagiário: Wesley Telles Revisão de Teoria de Conjuntos 1. Sejam A = {1,2 } e B = { x, y, z}. Quais os elementos dos
Linguagens Formais e Problemas de Decisão
Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas
Histórico e motivação
Expressões regulares 1. Histórico e motivação 2. Definição a) Sintaxe b) Semântica c) Precedência dos operadores 3. Exemplos 4. Leis algébricas 5. Dialetos 6. Aplicações 7. Exercícios Pré-requisito: básico
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
SCC-5832 Teoria da Computação
Teoria da Computação SCC-5832 Teoria da Computação João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
Decidibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Decidibilidade Mário S Alvim (msalvim@dccufmgbr) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S Alvim (msalvim@dccufmgbr) Decidibilidade DCC-UFMG (2018/02) 1 / 45 Decidibilidade:
Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE.
DEINFO - UFRPE Julho, 2014 Motivação Introdução O que pode ser computado? E mais intrigantemente, o que não pode ser computado? Motivação Introdução O que pode ser computado? E mais intrigantemente, o
Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação - 1 0 Semestre 007 Professora : Sandra Aparecida de Amo Solução da Lista de Exercícios n o 1 Exercícios de Revisão
Teoria da Computação. Máquinas Universais Máquina com Pilhas
Máquinas Universais Máquina com Pilhas Cristiano Lehrer Introdução A Máquina com Pilhas diferencia-se das Máquinas de Turing e de Post principalmente pelo fato de possuir uma memória de entrada separada
Autômatos de Pilha (AP)
Linguagens Formais e Autômatos Autômatos de Pilha (AP) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (h@p://dcc.ufmg.br/~nvieira) Sumário Introdução Autômatos de pilha
Linguagens Livres-do-Contexto
Linguagens Livres-do-Contexto Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Livres-do-Contexto DCC-UFMG
Expressões regulares
Expressões regulares IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 38 Frase do dia A vida é uma luta inteira
Draft-v0.1. Máquinas de Turing Máquinas de Turing
13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens 1 Introdução Estudar computação do ponto de vista teórico é sinônimo de caracterizar
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas
TEORIA DAS LINGUAGENS 3. GRAMÁTICAS INDEPENDENTES DE CONTEXTO
LICENCIATURA EM CIÊNCIAS DA COMPUTAÇÃO TEORIA DAS LINGUAGENS 3. GRAMÁTICAS INDEPENDENTES DE CONTEXTO José Carlos Costa Dep. Matemática e Aplicações Universidade do Minho Braga, Portugal 31 de Maio de 2010
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos
Modelos de Computação
Modelos de Computação 2.ano LCC e LERSI URL: http://www.ncc.up.pt/~nam/aulas/0405/mc Escolaridade: 3.5T e 1P Frequência:Semanalmente serão propostos trabalhos aos alunos, que serão entregues nas caixas
AFNs, Operações Regulares e Expressões Regulares
AFNs, Operações Regulares e Expressões Regulares AFNs. OperaçõesRegulares. Esquematicamente. O circulo vermelho representa o estado inicial q 0, a porção verde representa o conjunto de estados de aceitação
Um alfabeto é um conjunto de símbolos indivisíveis de qualquer natureza. Um alfabeto é geralmente denotado pela letra grega Σ.
Linguagens O conceito de linguagem engloba uma variedade de categorias distintas de linguagens: linguagens naturais, linguagens de programação, linguagens matemáticas, etc. Uma definição geral de linguagem
Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção
Shift e reduce Shift: move o foco uma posição à direita A B C x y z A B C x y z é uma ação shift Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção Se A x y é uma produção, então
Expressões Regulares e Gramáticas Regulares
Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos TEXTO 2 Expressões Regulares e Gramáticas Regulares Prof. Luiz A M Palazzo Março de 2007 Definição de Expressão
MAC-4722 Linguagens, Autômatos e Computabilidade Lista L3
MAC-4722 Linguagens, Autômatos e Computabilidade Lista L3 Athos Coimbra Ribeiro NUSP: ****** 3 de Abril de 26 Problema.46 (itens a,c, e d) Solução a) L = { n m n m, n } Usamos o lema do bombeamento para
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação - P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Linguagens Formais e Autômatos. Simplificação de Gramáticas Livre do Contexto (GLC)
Linguagens Formais e Autômatos Simplificação de Gramáticas Livre do Contexto (GLC) Cristiano Lehrer, M.Sc. Gramática Simplificada Gramática simplificada é uma gramática livre do contexto que não apresenta
Primeira Lista de Exercícios 2004/2...
UFLA Universidade Federal de Lavras Departamento de Ciênia da Computação COM62 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exeríios 24/2...
formais e autómatos Linguagens g recursivas e recursivamente enumeráveis Gramáticas não-restringidas
Capítulo 11 Uma hierarquia de linguagens formais e autómatos 11.1. Linguagens g recursivas e recursivamente enumeráveis. 11.2. Gramáticas não-restringidas 11.3. Gramáticas e linguagens dependentes do contexto
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha Simão Melo de Sousa 12 de Outubro de 2011 Conteúdo 1 Gramáticas e Definições básicas 1 2 Gramáticas e Linguagens 4 2.1 Gramáticas
TRANSFORMAÇÃO DE GRAMÁTICAS LIVRES DO CONTEXTO PARA EXPRESSÕES REGULARES ESTENDIDAS
TRANSFORMAÇÃO DE GRAMÁTICAS LIVRES DO CONTEXTO PARA EXPRESSÕES REGULARES ESTENDIDAS Acadêmico: Cleison Vander Ambrosi Orientador: José Roque Voltolini da Silva Roteiro da Apresentação Introdução Motivação
Concurso Público para provimento de cargo efetivo de Docentes. Edital 20/2015 CIÊNCIA DA COMPUTAÇÃO II Campus Rio Pomba
Questão 01 No processo de construção de compiladores, é essencial compreender e manipular as expressões regulares e suas equivalências. Dentro desse contexto, seja o alfabeto = {a, b, c, d, e} e a seguinte
Melhores momentos AULA PASSADA. Complexidade Computacional p. 136
Melhores momentos AULA PASSADA Complexidade Computacional p. 136 Configurações controle q 7 cabeça 1 0 1 1 0 1 1 1 fita de leitura e escrita Configuração 1 0 1q 7 1 0 1 1 1 Complexidade Computacional p.
Lema do Bombeamento Operações Fechadas sobre LR s Aplicações
a n Lema do Bombeamento Operações Fechadas sobre LR s Aplicações (H&U, 969),(H&U, 979), (H;M;U, 2) e (Menezes, 22) Lema do Bombeamento para LR Como decidir que uma linguagem é ou não regular? Não bastaria
Compiladores. Análise lexical. Plano da aula. Motivação para análise lexical. Vocabulário básico. Estrutura de um compilador
Estrutura de um compilador programa fonte Compiladores Análise lexical () Expressões Regulares analisador léxico analisador sintático analisador semântico análise gerador de código intermediário otimizador
Autómatos Finitos Determinísticos (AFD)
Folha Prática Autómatos Finitos 1 Autómatos Finitos Determinísticos (AFD) 1. Determine e implemente computacionalmente um AFD que aceita todas as cadeias de cada uma das seguintes linguagens sobre o alfabeto
Linguagens recursivamente enumeráveis
Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M
Linguaguens recursivamente enumeráveis e recursivas
Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente
Linguagens Formais e Autômatos Decidibilidade
Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Segunda e Quinta:
