Máquinas de Turing - Computabilidade
|
|
|
- Simone Ferretti Canário
- 7 Há anos
- Visualizações:
Transcrição
1 BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma linguagem finita, então L X não é livre de contexto. Seja X finita e suponha, por contradição, que L X seja livre de contexto. Como X é finita, temos que L X é finita e, portanto, é livre de contexto, Como a classe das linguagens livres de contexto é fechada em relação à interseção, teríamos que (L X) (L X) é livre de contexto. Mas (L X) (L X) = L e L não é livre de contexto. Portanto, se X é finita, então L X não é livre de contexto. (b) Se X é uma linguagem regular, então L X pode ser livre de contexto ou pode não ser. Considere L Σ =. Temos que Σ é regular e é livre de contexto. Por outro lado, considere L = L. Temos que é regular e L não é livre de contexto. Portanto, se L não é livre de contexto e X é regular, L X pode ser livre de contexto ou não. 2. Construa uma MT que reconheça a linguagem a b. b b, D, D a a, D b b, D 3. Descreva, em linguagem de alto nível, uma MT que reconheça a linguagem {a n b n c n n 0}. while current-symbol == a escreve x, anda para a direita while current-symbol <> b escreve o mesmo simbolo lido, anda para direita escreve y, anda para a direita while current-symbol <> c escreve o mesmo simbolo lido, anda para direita escreve z, anda para a esquerda while current-symbol <> x escreve o mesmo simbolo lido, anda para esquerda escreve x, anda para a direita if current-symbol == then aceita else rejeita. OBS: Note que, se o número de a s for maior do que o número de b s ou do que o número de c s, a máquina entra em loop e, portanto, o string não será aceito. Se o número de b s ou de c s for maior do que o número de a s, o símbolo encontrado no final do loop mais externo não será branco e, portanto, o string não será aceito.
2 4. Prove que a classe das linguagens Turing-decidíveis (ou recursivas) é fechada em relação as operações de união, interseção e concatenação. 5. Prove que a classe das linguagens Turing-reconhecíveis (ou recursivamente enumeráveis) é fechada em relação as operações de união, interseção e concatenação. 6. Seja L uma linguagem não recursiva. (a) Mostre que, se X é finita então L X é não recursiva. (b) Mostre que L é não recursiva. (c) Mostre que, se L é LRE, então L não é LRE. 7. POSCOMP Assinale a afirmativa INCORRETA: Existe uma Máquina de Turing U que simula qualquer outra Máquina de Turing M sobre qualquer entrada w. A Tese de Church-Turing afirma que o conceito informal de procedimento efetivo é capturado pelo conceito formal de Máquina de Turing. Uma linguagem é recursivamente enumerável se, e somente se, ela é aceita por alguma Máquina de Turing. Existe uma Máquina deturing T que, dada uma Máquina de Turing M e uma entrada w para M, T determina, em um número finito de passos, se M pára ou não para a entrada w. Toda linguagem recursiva é recursivamente enumerável, mas o inverso nem sempre é verdadeiro. 8. Sejam L e L uma linguagem e o seu complemento, respectivamente. Marque as situações abaixo que não podem ocorrer: L e L são ambas recursivas. L é recursivamente enumerável, mas não é recursiva, e L não é recursivamente enumerável. L e L são ambas recursivamente enumeráveis, mas não são recursivas. L é regular e L não é regular. L é livre de contexto e L não é livre de contexto. 9. Assinale as afirmativas CORRETAS: Toda Linguagem enumerável é recursivamente enumerável. Toda Linguagem Livre de Contexto é decidível. Existem linguagens Regulares que não são decidíveis. Toda linguagem é reconhecível ou é co-reconhecível. O conjunto de todos os strings sobre um alfabeto Σ é recursivamente enumerável. O conjunto de todas as MTs é enumerável, mas não é recursivamente enumerável. O conjunto de todos as MTs cuja linguagem é vazia é enumerável mas não é recursivamente enumerável.
3 10. Com relação a linguagens e seus aceitadores (ou reconhecedores), marque as afirmativas a seguir que são corretas. {w w R w {a, b} } é aceita por autômato de pilha determinista. {w c w R w {a, b} } é aceita por autômato finito não determinista. {a 2n b m n, m 0} é aceita por autômato finito não determinista. {w c w w {a, b} } é aceita por autômato de pilha determinista. {M M é uma MT e M pára para alguma entrada } é reconhecida por uma Máquina de Turing não determinista. {w w w {a, b} } é aceita por uma máquina de Turing que sempre pára. 11. Considere as seguintes linguagens, sobre um dado alfabeto Σ: A RE = { D, s o AFD D aceita a string s} E RE = { D a linguagem reconhecida pelo AFD D é } A T M = { M, s a máquina de Turing M aceita a string s} E T M = { M a linguagem reconhecida pela máquina de Turing M é } ALL T M == { M a linguagem reconhecida pela máquina de Turing M é Σ } Marque a afirmativas CORRETA: Todas as linguagens acima são enumeráveis. Todas as linguagens acima são decidíveis. Apenas as linguagens E T M e ALL T M não são reconhecíveis. A linguagem E T M é co-reconhecível. A linguagem ALL T M não é reconhecível, nem co-reconhecível. A linguagem A T M é reconhecível e co-reconhecível. 12. Um problema de decisão é um problema cuja resposta é sim ou não. Por exemplo, determinar se um string w pertence a uma linguagem L, ou determinar uma máquina de Turing M reconhece a linguagem vazia, ou determinar se x+y = z. Uma instância de um problema de decisão é um caso particular deste problema. Por exemplo, = 5 é uma instância positiva do problema x + y = z e = 10 é uma instâncoa negativa deste problema. Dizemos que um problema de decisão P é decidível, se existe uma máquina de Turing que decide este problema, isto é, que é capaz de determinar, dada uma instância qualquer do problema como entrada, se esta é uma instância positiva ou não é. Dizemos que um problema de decisão P reduz para outro problema de decisão P, se existe um algoritmo (ou máquina de Turing) que converte cada instância do Problema P em uma instância do problema P. Considere três problemas de decisão P 1, P 2 e P 3. Sabemos que P 1 é decidível e P 2 não não é decidível. Marque a afirmativa CORRETA: P 3 é decidível se P 1 reduz para P 3.
4 P 3 não é decidível se P 3 reduz para P 2. P 3 não é decidível se P 2 reduz para P 3. P 3 é decidível se P 3 reduz para o complemento de P (1,0 ponto) O "poder computacional" de um computador consiste na classe de problemas que podem ser resolvidos por meio de programas executados nesse computador. Considere um computador moderno usual, tal como o seu PC. Com base nos resultados da teoria de máquinas de Turing, analise as seguintes afirmativas e marque aquelas que são CORRETAS: Um computador com vários processadores, que pode executar computações em paralelo, tem o mesmo poder computacional que outro que tenha um único processador. Um computador que tenha uma memória com acesso apenas sequencial tem menor poder computacional do que outro que tenha acesso direto a qualquer posição de memória. Um computador com vários dispositivos de memória tem maior poder computacional que outro computador com apenas uma área de memória, com a mesma capacidade total de todos os dispositivos de armazenamento do primeiro. Se o computador tem vários dispositivos de memória e pode ler dados simultaneamente em cada um desses dispositivos, ele tem maior poder computacional do que se apenas pudesse ler dados de um único dispositivo de cada vez. Um computador que tenha apenas um tipo de instrução, que pode ler o valor em uma posição qualquer de memória e determinar o valor a ser escrito na memória e a próxima instrução a ser executada tem o mesmo poder computacional que um computador moderno, que inclui instruções para carregar e armazenar dados, com diversos tipos de endereçamento à memória, intruções de teste e desvio, intruções para realizar operações aritméticas etc. 14. A tabela a seguir resume informações que aprendemos ao longo do curso sobre a hierarquia de linguagens formais Hierarquia de Chomsky. Preencha as lacunas da tabela, usando como modelo as informações já preenchidas. Obesrvações: (a) Utilize a seguinte simbologia: AF (Autômato de Estados Finitos), AP (Autômato de Pilha), MT (Máquina de Turing), ER (Expressão Regular), GLC (Gramática Livre de Contexto), GSC (Gramática Sensível ao Contexto), GI (Gramática Irrestrita). (b) Na coluna entitulada "Exemplo", dê uma exemplo de uma linguagem que pertença à classe indicada e que não pertença à classe imediatamente anterior. (c) Na coluna entitulada "ND", responda à pergunta "Não determinismo introduz maior poder computacional ao modelo?". (d) Na coluna entitulada "Fecho", indique em relação a quais das seguintes operações a classe de linguagens é fechada: (união), (concatenação), (fecho de Kleene), (interseção) e (complemento).
5 Hierarquia de Linguagens Classe Especificação Exemplo Reconhecedor ND Fecho Regular (0 1) Livre de Contexto Sensível ao Contexto Recursiva Recursiv. enumerável Gramática irrestrita Gramática irrestrita {0 p p é primo} MT limitada linearmente?,,,, não,,,,
I.2 Introdução a Teoria da Computação
I.2 Introdução a Teoria da Computação O que é? Fundamento da Ciência da Computação Tratamento Matemático da Ciência da Computação Estudo Matemático da Transformação da Informação Qual sua importância?
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação bas eado em material produzido pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected]
Decidibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Decidibilidade Mário S Alvim (msalvim@dccufmgbr) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S Alvim (msalvim@dccufmgbr) Decidibilidade DCC-UFMG (2018/02) 1 / 45 Decidibilidade:
Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente
ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação
Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Linguaguens recursivamente enumeráveis e recursivas
Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Decidibilidade O estudo da decidibilidade objetiva determinar a solucionabilidade
Modelos de Computação Folha de trabalho n. 10
Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
ECO026 TEORIA DA COMPUTAÇÃO. Prof: Rafael Santos Site:
ECO026 TEORIA DA COMPUTAÇÃO Prof: Rafael Santos Email: [email protected] Site: http://sites.google.com/site/rafafic Máquinas de Turing Uma linguagem Turing-reconhecível (Linguagem recursivamente enumeravel),
Teoria da Computação. Computabilidade e complexidade computacional
Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade
SCC-5832 Teoria da Computação
Teoria da Computação SCC-5832 Teoria da Computação João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL)
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) 1 Gramática Sensível ao Contexto Definição: Uma gramática G é sensível ao contexto se
Linguagens Formais e Autômatos Decidibilidade
Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada
Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc.
Teoria da Computação Capítulo 1 Máquina de Turing Prof. Wanderley de Souza Alencar, MSc. Pauta 1. Introdução 2. Definição de Máquina de Turing 3. Variações de Máquina de Turing 4. A Tese de Church-Turing
Linguagens Formais e Autômatos Apresentação da Disciplina
Linguagens Formais e Autômatos Apresentação da Disciplina Andrei Rimsa Álvares Computação Histórico da Computação O que pode ser computado? Ábaco China Aprox. 3500 a.c. Máquina de Babbage Inglaterra 1823
Linguagens recursivamente enumeráveis
Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M
Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Redutibilidade Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Redutibilidade DCC-UFMG (2018/02) 1 / 46 Redutibilidade:
Marcos Castilho. DInf/UFPR. 16 de maio de 2019
16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.
Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Draft-v0.1. Máquinas de Turing Máquinas de Turing
13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal
Máquinas de Turing (MT)
Linguagens Formais e Autômatos Máquinas de Turing (MT) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Sumário Introdução Máquinas de Turing
Concurso Público para provimento de cargo efetivo de Docentes. Edital 20/2015 CIÊNCIA DA COMPUTAÇÃO II Campus Rio Pomba
Questão 01 No processo de construção de compiladores, é essencial compreender e manipular as expressões regulares e suas equivalências. Dentro desse contexto, seja o alfabeto = {a, b, c, d, e} e a seguinte
SCC Teoria da Computação e Linguagens Formais
SCC-0205 João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis/ [email protected]
Capítulo 2: Procedimentos e algoritmos
Capítulo 2: Procedimentos e algoritmos Para estudar o processo de computação de um ponto de vista teórico, com a finalidade de caracterizar o que é ou não é computável, é necessário introduzir um modelo
SCC 205 Teoria da Computação e Linguagens Formais
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC 205 Teoria da Computação e Linguagens Formais Autômatos com pilha Lista 3 1. Dê um
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma
SCC Introdução à Teoria da Computação
SCC-0505 João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis/ [email protected]
LINGUAGENS FORMAIS Modelos Determinísticos e Não Determinísticos. Usam-se modelos matemáticos para representar eventos (fenômenos) do mundo real.
LINGUAGENS FORMAIS Modelos Determinísticos e Não Determinísticos Modelos Matemáticos Usam-se modelos matemáticos para representar eventos (fenômenos) do mundo real. Ressalta-se contudo que é muito importante
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 8 - Indecidibilidade Exercicio 1-5.5 do Livro
Linguagens Formais e Problemas de Decisão
Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos
Máquina de Turing. Teoria da Computação. Teoria da Computação. Histórico da Computação:
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Pro. Yandre Maldonado - 1 Pro. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação Ênase teórica:
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Apostila 05 Assunto: Linguagens dos tipos 0 e 1
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
COMPUTABILIDADE 2. Indecidibilidade
Licenciatura em Ciências da Computação COMPUTABILIDADE 2. Indecidibilidade José Carlos Costa Dep. Matemática e Aplicações Universidade do Minho 15 de Novembro de 2011 José Carlos Costa DMA-UMinho 15 de
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Hisham Muhammad [email protected] PUC-Rio Sobre o professor Hisham H. Muhammad MSc. em Informática pela PUC-Rio Doutorando na área de Linguagens de Programação Grupo do LabLua,
Terceira Lista de Exercícios 2004/2...
UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Máquinas de Turing 3
Máquinas de Turing 3 Exercícios Máquinas de Turing com Múltiplas Fitas Máquinas de Turing Não-deterministicas A Tese/Hipótese de Church-Turing Linguagens decidíveis por Máquinas de Turing (Recursivas)
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Linguagens Regulares A teoria da computação começa com uma pergunta: O que é um computador? É, talvez, uma
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
Teoria da Computação (BBC244)
Teoria da Computação (BBC244) Professor: Anderson Almeida Ferreira [email protected] http://www.decom.ufop.br/anderson Sala COM 10 DECOM-UFOP Ementa Gramáticas. Linguagens. Operações com Linguagens.
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 13 Autômato com Pilha [email protected] Última aula Linguagens Livres do Contexto P(S*) Recursivamente enumeráveis Recursivas
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO. Aula 18. Cap O Problema da Parada
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Aula 18 Cap 4.2 - O Problema da Parada Profa. Ariane Machado Lima [email protected] 1 Nas últimas aulas Tese de Church-Turing Problemas computacionais descritos
Compiladores. Análise lexical. Plano da aula. Motivação para análise lexical. Vocabulário básico. Estrutura de um compilador
Estrutura de um compilador programa fonte Compiladores Análise lexical () Expressões Regulares analisador léxico analisador sintático analisador semântico análise gerador de código intermediário otimizador
Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)
Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q
PCS3616. Programação de Sistemas (Sistemas de Programação) Máquinas de Turing
PCS3616 Programação de Sistemas (Sistemas de Programação) Máquinas de Turing Escola Politécnica da Universidade de São Paulo Objetivos Familiarização com o funcionamento global de software de sistema computacional
Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP
Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP Ementa Gramáticas. Linguagens Regulares, Livres-de-Contexto e Sensíveis-ao- Contexto. Tipos de Reconhecedores. Operações
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Introdução Problema: definir um conjunto de cadeias de símbolos; Prof. Yandre Maldonado - 2 Exemplo: conjunto
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Problema: definir um conjunto de cadeias de símbolos; Prof. Yandre Maldonado - 2 Exemplo: conjunto M dos
Máquina de Turing. Controle finito
Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma A01 Engenharia da Computação e Ciência da Computação Horário: Segunda, Terça e Quinta.
LR's: Lema do Bombeamento e Propriedades de Fechamento
Linguagens Formais e Autômatos LR's: Lema do Bombeamento e Propriedades de Fechamento Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hfp://dcc.ufmg.br/~nvieira) Introdução
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Doutorando em Ciência da Computação Estagiário em docência II Departamento de Ciência da Computação
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira As Linguagens e os formalismos representacionais
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Modelo de computação poderoso concebido pelo matemático britânico Alan Turing
Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE.
DEINFO - UFRPE Julho, 2014 Motivação Introdução O que pode ser computado? E mais intrigantemente, o que não pode ser computado? Motivação Introdução O que pode ser computado? E mais intrigantemente, o
Linguagens Não-Regulares
Linguagens Não-Regulares Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Não-Regulares DCC-UFMG (2018/02)
Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação
Universidade Federal de Santa Maria Disciplina de Teoria da Computação Quais são as capacidades e limitações fundamentais dos computadores? Funções Computáveis Algoritmo: descrição finitade uma computação
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Segunda e Quinta:
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 09/09/2013 Panorama do Restante da Disciplina 1 Próximo Tópicos da Matéria Linguagens Autômatos Regulares Autômatos Finitos Máquinas de Moore e Mealy Livres
Aula 10: Decidibilidade
Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas
Teoria da Computação. Computabilidade
Cristiano Lehrer Introdução O objetivo do estudo da solucionabilidade de problemas é investigar a existência ou não de algoritmos que solucionem determinada classe de problemas. Ou seja, investigar os
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Terça e Sexta: 20:30
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
Linguagens Formais e Autômatos 02/2016. LFA Aula 01 24/10/2016. Celso Olivete Júnior.
LFA Aula 01 Apresentação 24/10/2016 Celso Olivete Júnior [email protected] 1 Professor Celso Olivete Júnior Bacharelado em Ciência da Computação (Unoeste-2002) Mestrado e Doutorado em Engenharia Elétrica
Modelos de Computação
Modelos de Computação 2.ano LCC e LERSI URL: http://www.ncc.up.pt/~nam/aulas/0405/mc Escolaridade: 3.5T e 1P Frequência:Semanalmente serão propostos trabalhos aos alunos, que serão entregues nas caixas
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 2. Linguagens Livres-do-Contexto Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected]
