Teoria da Computação. Computabilidade
|
|
|
- Marcela Henriques
- 6 Há anos
- Visualizações:
Transcrição
1 Cristiano Lehrer
2 Introdução O objetivo do estudo da solucionabilidade de problemas é investigar a existência ou não de algoritmos que solucionem determinada classe de problemas. Ou seja, investigar os limites da computabilidade e, consequentemente, os limites do que pode efetivamente ser implementado em um computador. Em particular, o estudo da solucionabilidade objetiva evitar a pesquisa de soluções inexistentes.
3 Classes de Solucionabilidade de Problemas (1/2) Problema Solucionável Um problema é dito Solucionável ou Totalmente Solucionável se existe um algoritmo (Máquina Universal) que solucione o problema tal que sempre termine para qualquer entrada, com uma resposta afirmativa (aceita) ou negativa (rejeita). Problema Não-solucionável Um problema é dito Não-Solucionável se não existe um algoritmo (Máquina Universal) que solucione o problema tal que sempre termine para qualquer entrada. Universo de todos os problemas Solucionáveis Não-Solucionáveis
4 Classes de Solucionabilidade de Problemas (2/2) Problema Parcialmente Solucionável ou Computável Um problema é dito Parcialmente Solucionável ou Computável se existe um algoritmo (Máquina Universal) que solucione o problema tal que termine quando a resposta é afirmativa (aceita). Entretanto, quando a resposta esperada for negativa, o algoritmo pode terminar (rejeita) ou permanecer processando indefinidamente (loop). Problema Completamente Insolúvel ou Não-Computável Um problema é dito Completamente Insolúvel ou Não-Computável se não existe um algoritmo (Máquina Universal) que solucione o problema tal que termine quando a resposta é afirmativa (aceita). Universo de todos os problemas Parcialmente Solucionáveis (Computáveis) Completamente Insolúveis (Não-Computáveis)
5 Conclusão (1/3) Universo de todos os problemas Solucionáveis Não-Solucionáveis Parcialmente Solucionáveis Completamente Insolúveis Computáveis Não-computáveis
6 Conclusão (2/3) A união das Classes dos Problemas Solucionáveis e dos Não- Solucionáveis é o Universo de Todos os Problemas. A união das Classes dos Problemas Parcialmente Solucionáveis e dos Completamente Insolúveis é o Universo de Todos os Problemas. A Classe dos Problemas Parcialmente Solucionáveis contém propriamente a Classe dos Problemas Solucionáveis e parte da Classe dos Problemas Não-Solucionáveis. Todo problema solucionável é parcialmente solucionável. Existem problemas não-solucionáveis que possuem solução parcial. Os problemas completamente insolúveis não possuem solução total nem parcial.
7 Conclusão (3/3) Para qualquer algoritmo que solucione um problema parcialmente solucionável que é não-solucionável, sempre existe pelo menos uma palavra de entrada que faz com que o algoritmo fique em loop. É importante observar que alguns problemas não-solucionáveis são parcialmente solucionáveis.
8 P = NP ou P NP?!? P polynomial time P versus NP (1/5) NP nondeterministic polynomial time O problema P versus NP é um dos Problemas do Prêmio Millenium (Millenium Prize Problems) proposto pelo Instituto Clay de Matemática (Clay Mathematics Institute). Existe um prêmio de um milhão de dólares para quem resolver! A comunidade científica considera P NP
9 P versus NP (2/5) Classe NP A classe NP é a classe de TODOS os problemas de busca cuja solução pode ser encontrada e verificada em tempo polinomial por um algoritmo não determinístico. Classe P Um algoritmo não determinístico é um tipo especial de algoritmo que adivinha corretamente em todos os passos. A classe P é a classe de TODOS os problemas de busca que são resolvidos em tempo polinomial. Obs.: A definição original de NP não foi para problemas de busca, mas para problemas de decisão, que são perguntas algorítmicas que podem ser respondidas por SIM ou NÃO.
10 P versus NP (3/5) Classe NP-Completo Um problema de busca é NP-Completo se todos os problemas de busca se reduzem a ele, ou seja, ele deve ser capaz de resolver todos os problemas de busca do mundo! Uma redução de um problema de busca A para um problema de busca B são dois algoritmos de tempo polinomial f e h que: f transforma qualquer instância x de A em uma instância f(x) de B; h transforma qualquer solução S de f(x) de volta em solução h(s) de x; Se f(x) não tem solução então x também não tem.
11 P versus NP (4/5)
12 P versus NP (5/5) NP-Hard ou NP-Difícil ou NP-Complexo: É uma classe de problemas que são, informalmente, pelo menos tão difíceis quanto os problemas mais difíceis em NP. Um problema é NP-Hard se e somente se existe um problema NP- Completo L que é Turing-redutível em tempo polinomial para H. Em outras palavras, L pode ser resolvido em tempo polinomial por uma Máquina de Turing não determinística com um oráculo para H. Exemplo de problema NP-Hard e também NP-Completo: Problema do Caixeiro Viajante. Exemplo de problema NP-Hard que não é NP-Completo: Problema da Parada.
13 Problema da Parada (1/2) Um dos mais importantes problemas não-solucionáveis conhecido. Definição formal: Dada uma Máquina Universal M qualquer e uma palavra w qualquer sobre o alfabeto de entrada, existe um algoritmo que verifica se M finaliza, aceitando ou rejeitando, ao processar a entrada w? É um problema de decisão, do tipo sim/não. Alan Turing provou, em 1936, que um algoritmo genérico para resolver o problema da parada para todos os pares programa/entrada possíveis não pode existir. O problema da parada é indecidível.
14 Problema da Parada (2/2) Exemplos do Problema da Parada, cuja insolubilidade já foi provada, que podemos encontrar atualmente: Garantir que um antivírus jamais executa código malicioso. Garantir que um determinado compilador produza o código mais rápido possível. Garantir que dois parsers diferentes aceitem exatamente a mesma linguagem?
15 Hipótese de Church (1/2) Turing propôs um modelo abstrato de computação, conhecido como Máquina de Turing, com o objetivo de explorar os limites da capacidade de expressar soluções de problemas. Trata-se, portanto, de uma proposta de definição formal da noção intuitiva de algoritmo. Diversos outros trabalhos, como Máquina de Post, bem como trabalhos mais recentes como Máquina de Norma e Autômato com Pilhas, resultaram em conceitos equivalentes ao de Turing. O fato de todos esses trabalhos independentes gerarem o mesmo resultado em termos de capacidade de expressar computabilidade é um forte reforço no que é conhecido como Hipótese de Church ou Hipótese de Turing-Church.
16 Hipótese de Church (2/2) A capacidade de computação representada pela Máquina de Turing é o limite máximo que pode ser atingido por qualquer dispositivo de computação. Em outras palavras, a Hipótese de Church afirma que qualquer outra forma de expressar algoritmos terá, no máximo, a mesma capacidade computacional da Máquina de Turing. Como a noção intuitiva de algoritmo ou função computável é intuitiva, a Hipótese de Church não é demonstrável.
17 Resumo dos Principais Conceitos (1/5) O principal conceito estudado é o de computabilidade, o qual é construído, usando noções de programas, máquinas e computações. São três conceitos distintos, mas diretamente relacionados, pois um programa para uma máquina pode induzir uma computação. Se ela for finita, então se define ainda a função computada por esse programa nessa máquina: Ela descreve o que o programa faz. A distinção entre programa e máquina é importante na Ciência da Computação, uma vez que o programa (ou algoritmo) independe da máquina e possui uma complexidade estrutural e computacional (quantidade de trabalho necessário para resolver o problema).
18 Resumo dos Principais Conceitos (2/5) A partir do conceito de função computada, podem-se fazer comparações entre programas e entre máquinas e definir-se a equivalência dos mesmos. Se dois programas, em uma máquina, possuem a mesma função computada, ou seja, computam a mesma função, então eles são equivalentes. Se esses programas são equivalentes em qualquer máquina, então eles são equivalentes fortemente. Utiliza-se o conceito de equivalência de programas para eliminar instruções desnecessárias e para otimizar o programa. Dessa forma, pode-se dizer que um programa otimizado representa uma classe de programas que são equivalentes.
19 Resumo dos Principais Conceitos (3/5) A comparação entre máquinas é feita em função da noção de simulação, que, por sua vez, utiliza-se do conceito de equivalência de programas: Se uma máquina simula outra, é porque, para qualquer programa da outra máquina, pode-se encontrar um programa desta que faça a mesma coisa. Se duas máquinas simulam-se mutuamente, é porque elas são equivalentes. Nesse caso, ambas têm o mesmo poder computacional. Foi observado que nem sempre o fato de acrescentar instruções ou recursos a uma máquina aumenta o poder computacional da mesma. Muitas vezes, ocorre que essa nova instrução ou esse novo recurso podem ser simulados pela máquina anterior, mantendo o seu poder computacional.
20 Resumo dos Principais Conceitos (4/5) Neste ponto, pode-se pensar em suas situações limites: Qual a máquina mais poderosa? Qual o conjunto ou a classe de funções computáveis? As respostas dessas perguntas são intuitivas, mas nem sempre são fáceis de serem verificadas. Diz-se que uma máquina é universal se toda função computável puder ser executada nela. E, segundo a Hipótese de Church, diz-se que uma função computável é aquela que pode ser processada numa Máquina de Turing ou equivalente. Assim, não se conseguem demostrar tais afirmações, devido ao fato de a noção de algoritmo ser algo intuitivo. Entretanto, diversas evidências fortalecem a Hipótese de Church.
21 Resumo dos Principais Conceitos (5/5) Programa Máquina Computação Função Computada Programas Equivalentes Máquinas Equivalentes Funções Computáveis Máquinas Universais
Teoria da Computação. Computabilidade e complexidade computacional
Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade
Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Decidibilidade O estudo da decidibilidade objetiva determinar a solucionabilidade
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
Teoria da Computação. Aula 01
Teoria da Computação Aula 01 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/tc 1 Professor Celso Olivete Júnior Bacharelado em Ciência da Computação (Unoeste-2002) Mestrado
Marcos Castilho. DInf/UFPR. 16 de maio de 2019
16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.
PCC104 - Projeto e Análise de Algoritmos
PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 5 de dezembro de 2017 Marco Antonio
SCC-5832 Teoria da Computação
Teoria da Computação SCC-5832 Teoria da Computação João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos
Máquinas Universais. Máquina de Turing. Celso Olivete Júnior.
Máquinas Universais Máquina de Celso Olivete Júnior [email protected] http://www2.fct.unesp.br/docentes/dmec/olivete/ Roteiro Hipótese de Church - Máquinas Universais: Máquina de Máquina de : Noção
Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação
Universidade Federal de Santa Maria Disciplina de Teoria da Computação Quais são as capacidades e limitações fundamentais dos computadores? Funções Computáveis Algoritmo: descrição finitade uma computação
SCC Teoria da Computação e Linguagens Formais
SCC-0205 João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis/ [email protected]
Teoria da Computação. Computabilidade e complexidade computacional
Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade
SCC Introdução à Teoria da Computação
SCC-0505 João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis/ [email protected]
Complexidade computacional
Complexidade computacional CLRS sec 34.1 e 34.2 Algoritmos p. 1 Algumas questões Por que alguns problemas parecem ser (computacionalmente) mais difíceis do que outros? Algoritmos p. 2 Algumas questões
ECO026 TEORIA DA COMPUTAÇÃO. Prof: Rafael Santos Site:
ECO026 TEORIA DA COMPUTAÇÃO Prof: Rafael Santos Email: [email protected] Site: http://sites.google.com/site/rafafic Máquinas de Turing Uma linguagem Turing-reconhecível (Linguagem recursivamente enumeravel),
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma A01 Engenharia da Computação e Ciência da Computação Horário: Segunda, Terça e Quinta.
Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Linguagens Regulares A teoria da computação começa com uma pergunta: O que é um computador? É, talvez, uma
P, NP e NP-Completo. André Vignatti DINF- UFPR
P, NP e NP-Completo André Vignatti DINF- UFPR Problemas Difíceis, Problemas Fáceis O mundo está cheio de problemas de busca. Alguns podem ser resolvidos eficientemente, outros parecem ser muito difíceis.
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Modelo de computação poderoso concebido pelo matemático britânico Alan Turing
Complexidade de Algoritmos. Edson Prestes
Edson Prestes O limite superior de complexidade de um problema refere-se ao melhor algoritmo que o resolve. nlog 2 n é um limite superior para o problema de classificação. O limite inferior de um problema
Complexidade computacional
Complexidade computacional Marina Andretta ICMC-USP 15 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli, R. Dahab, P. Feofiloff,
INTRATABILIDADE e NP-COMPLETUDE
INTRATABILIDADE e NP-COMPLETUDE Sandro Santos Andrade Doutorado Multiinstitucional em Ciência da Computação UFBA/UNIFACS/UEFS Junho/2008 Grafos e Análise de Algoritmos Introdução Para alguns problemas
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Terça e Sexta: 20:30
Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente
ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Aula 01 Apresentação da Disciplina Prof.ª Danielle Casillo PLANO DE ENSINO Nome: Teoria da Computação Créditos:
I.2 Introdução a Teoria da Computação
I.2 Introdução a Teoria da Computação O que é? Fundamento da Ciência da Computação Tratamento Matemático da Ciência da Computação Estudo Matemático da Transformação da Informação Qual sua importância?
Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE.
DEINFO - UFRPE Julho, 2014 Motivação Introdução O que pode ser computado? E mais intrigantemente, o que não pode ser computado? Motivação Introdução O que pode ser computado? E mais intrigantemente, o
Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão
Projeto e Análise de Algoritmos NP Completude Prof. Humberto Brandão [email protected] Universidade Federal de Alfenas versão da aula: 0.4 Introdução Problemas intratáveis ou difíceis são comuns
Linguagens Formais e Autômatos. Tiago Alves de Oliveira
Linguagens Formais e Autômatos Tiago Alves de Oliveira Ementa Linguagens Regulares; Máquinas de Turing; O Problema da Parada da Máquina de Turing; Autômatos Finitos; Linguagens Livres de Contexto; Autômatos
Máquinas de Turing - Computabilidade
BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma
Teoria da Computação (BBC244)
Teoria da Computação (BBC244) Professor: Anderson Almeida Ferreira [email protected] http://www.decom.ufop.br/anderson Sala COM 10 DECOM-UFOP Ementa Gramáticas. Linguagens. Operações com Linguagens.
Teoria da Computação. Complexidade computacional classes de problemas
Teoria da Computação Complexidade computacional classes de problemas 1 Universo de problemas Problemas indecidíveis ou não-computáveis Não admitem algoritmos Problemas intratáveis Não admitem algoritmos
Teoria da Computação. Máquinas Universais Máquina de Turing
Máquinas Universais Máquina de Turing Cristiano Lehrer Máquina de Turing Proposta por Alan Turing, em 1936. Universalmente conhecida e aceita como formalização de algoritmo. Trata-se de um mecanismo simples
Linguagens Formais e Autômatos Apresentação da Disciplina
Linguagens Formais e Autômatos Apresentação da Disciplina Andrei Rimsa Álvares Computação Histórico da Computação O que pode ser computado? Ábaco China Aprox. 3500 a.c. Máquina de Babbage Inglaterra 1823
Teoria da Computação. Máquinas Universais Máquina com Pilhas
Máquinas Universais Máquina com Pilhas Cristiano Lehrer Introdução A Máquina com Pilhas diferencia-se das Máquinas de Turing e de Post principalmente pelo fato de possuir uma memória de entrada separada
Máquinas de Turing para construção: Foram encontrados dois modelos que se destacaram em nossas pesquisas.
Máquina de Turing É um dispositivo imaginário que formou a estrutura para fundamentar a ciência da computação moderna. Seu inventor, o matemático Alan Mathison Turing, mostrou que a computação das operações
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação bas eado em material produzido pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected]
Resolução Exe 2.12 Monolítico Recursivo
Resolução Exe 2.12 Monolítico Recursivo Recursivo P R é R 1 onde R 1 def (se T1 então R 2 senão R 3 ) R 2 def F; R 3 R 3 def (se T2 então R 4 senão R 7 ) R 4 def G; R 5 R 5 def (se T1 então R 7 senão R
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Segunda e Quinta:
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema
Complexidade de Algoritmos. Edson Prestes
Edson Prestes A classe P consiste nos problemas que podem ser resolvidos em tempo Polinomial (Problemas tratáveis) A classe NP consiste nos problemas que podem ser verificados em tempo polinomial (Problemas
Busca e Decisão. Problemas de Otimização. Kakuro. P e NP. Pode-se resolver o Kakuro somente resolvendo problemas de decisão?
Busca e Decisão Universidade Federal de Ouro Preto Departamento de Computação P e NP Decisão: Respostas SIM ou NÃO Eiste uma clique de tamanho k no grafo? Eiste um preenchimento da mochila com lucro z?
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO. Aula 18. Cap O Problema da Parada
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Aula 18 Cap 4.2 - O Problema da Parada Profa. Ariane Machado Lima [email protected] 1 Nas últimas aulas Tese de Church-Turing Problemas computacionais descritos
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens 1 Introdução Estudar computação do ponto de vista teórico é sinônimo de caracterizar
Linguagens Formais e Autômatos Decidibilidade
Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada
Máquinas de Turing 3
Máquinas de Turing 3 Exercícios Máquinas de Turing com Múltiplas Fitas Máquinas de Turing Não-deterministicas A Tese/Hipótese de Church-Turing Linguagens decidíveis por Máquinas de Turing (Recursivas)
Aula 01. Murilo V. G. da Silva DINF/UFPR
Aula 01 DINF/UFPR Antes de qualquer coisa... Computação quântica é algo quente nos noticiários... Antes de qualquer coisa... Computação quântica é algo quente nos noticiários... mas Antes de qualquer coisa...
Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Redutibilidade Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Redutibilidade DCC-UFMG (2018/02) 1 / 46 Redutibilidade:
Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP
Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP Ementa Gramáticas. Linguagens Regulares, Livres-de-Contexto e Sensíveis-ao- Contexto. Tipos de Reconhecedores. Operações
O que é a Teoria em Ciência da Computação. Introdução à Ciência da Computação Mário S. Alvim
O que é a Teoria em Ciência da Computação Introdução à Ciência da Computação Mário S. Alvim 2018-10-05 1 O que é computação? Algumas tentativas de definir o que é computação : É o ato de raciocinar seguindo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Diferencia-se das máquinas de Turing e Post principalmente pelo fato de possuir a memória de entrada separada
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Proposta por Alan Turing em 1936; É universalmente conhecida e aceita como formalização de algoritmo; Teoria
1 introdução. capítulo. O que é uma solução computável? Quais são os limites do que pode ser computado? Existem problemas sem solução computacional?
capítulo 1 introdução A ciência da computação é o conhecimento sistematizado da computação. Sua origem é milenar, tendo se desenvolvido em diferentes regiões e épocas. A teoria da computação é a base fundamental
Modelos de Computação Folha de trabalho n. 10
Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
1 INTRODUÇÃO E CONCEITOS BÁSICOS
1 INTRODUÇÃO E CONCEITOS BÁSICOS Inicia com uma breve história do surgimento e do desenvolvimento dos conceitos, resultados e formalismos nos quais a Teoria da Computação é baseada. Formalização dos conceitos
Projeto e Análise de Algoritmos NP Completude Parte 2. Prof. Humberto Brandão
Projeto e Análise de Algoritmos NP Completude Parte 2 Prof. Humberto Brandão [email protected] Universidade Federal de Alfenas Departamento de Ciências Exatas versão da aula: 0.2 Última aula
Teoria da Complexidade Computacional
Teoria da Complexidade Computacional 25 de novembro de 2011 Enquanto a teoria de análise de algoritmos estuda a análise de complexidade de algoritmos, a teoria da complexidade estuda a classificação de
TEORIA DE COMPLEXIDADE
UFMG/ICEX/DCC PROJETO E ANÁLISE DE ALGORITMOS TEORIA DE COMPLEXIDADE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 1 O SEMESTRE DE 2008 Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro
PCS3616. Programação de Sistemas (Sistemas de Programação) Máquinas de Turing
PCS3616 Programação de Sistemas (Sistemas de Programação) Máquinas de Turing Escola Politécnica da Universidade de São Paulo Objetivos Familiarização com o funcionamento global de software de sistema computacional
Linguagens recursivamente enumeráveis
Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M
Teoria da Complexidade Computacional
Teoria da Complexidade Computacional Letícia Rodrigues Bueno UFABC Motivação Motivação I can t find an efficient algorithm, I guess I m just too dumb. Fonte: GAREY, M. R. e JOHNSON, D. S. Computers and
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Turing to Norma, uma ferramenta para auxiliar o estudo da equivalência entre Máquina de Turing e Máquina Norma
4ª Jornada Científica e Tecnológica e 1º Simpósio de Pós-Graduação do IFSULDEMINAS 16, 17 e 18 de outubro de 2012, Muzambinho MG Turing to Norma, uma ferramenta para auxiliar o estudo da equivalência entre
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
Decidibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Decidibilidade Mário S Alvim (msalvim@dccufmgbr) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S Alvim (msalvim@dccufmgbr) Decidibilidade DCC-UFMG (2018/02) 1 / 45 Decidibilidade:
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Nome: Teoria da Computação Créditos: 4 60 horas Período: 2010.2 Horário: segundas e quintas das 20:40 às 22:20
Compiladores. Otimização de Código
Compiladores Otimização de Código Cristiano Lehrer, M.Sc. Atividades do Compilador Arquivo de origem Arquivo de destino Análise Otimização Geração de Código Intermediário Geração de Código Final Síntese
