SCC-5832 Teoria da Computação
|
|
|
- Manuel Sequeira Porto
- 6 Há anos
- Visualizações:
Transcrição
1 Teoria da Computação SCC-5832 Teoria da Computação João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos [email protected] 2012 João Luís G. Rosa c SCC-5832: Teoria da Computação 1/21
2 Sumário Teoria da Computação 1 Teoria da Computação A disciplina SCC-5832 Objetivos e Programa Avaliação João Luís G. Rosa c SCC-5832: Teoria da Computação 2/21
3 Sumário 1 Teoria da Computação A disciplina SCC-5832 Objetivos e Programa Avaliação João Luís G. Rosa c SCC-5832: Teoria da Computação 3/21
4 A disciplina SCC-5832 A disciplina é composta de três partes centrais da Teoria da Computação que têm o objetivo de tentar responder quais são as capacidades e as limitações dos computadores: 1 Teoria das Linguagens Formais e dos Autômatos, 2 Teoria da Computabilidade e 3 Teoria da Complexidade. João Luís G. Rosa c SCC-5832: Teoria da Computação 4/21
5 A disciplina A primeira parte (Teoria das Linguagens Formais e dos Autômatos) trata das definições e propriedades de modelos matemáticos de computação que têm um papel fundamental em várias áreas da Computação como o processamento de textos, compiladores, definição de linguagens de programação, dentre outras. Além desse lado prático, do ponto de vista teórico, para se definir o que é ou não computável é necessário utilizar um modelo matemático que represente o que se entende por computação. João Luís G. Rosa c SCC-5832: Teoria da Computação 5/21
6 A disciplina A segunda parte do curso (Teoria da Computabilidade) é centralizada na Tese de Church-Turing e nas evidências dela. Church usou um sistema chamado cálculo-λ para definir algoritmo e Turing fez o mesmo com o uso da Máquina de Turing (MT). As duas definições foram mostradas serem equivalentes e a conexão entre a noção informal de algoritmo (solúvel efetivamente) e a definição precisa por uma MT foi chamada Tese de Church-Turing: se um problema algorítmico não pode ser resolvido por uma máquina de Turing, então não existe nenhuma solução computável para ele. João Luís G. Rosa c SCC-5832: Teoria da Computação 6/21
7 A disciplina Vários outros modelos de computação (por exemplo, as funções recursivas de Kleene, linguagens formais, RAMs, algoritmos de Markov, linguagens de programação, a máquina de Post) foram propostos e provados terem poder equivalente à máquina de Turing. Assim, estudando qualquer um destes modelos, por exemplo um modelo simples como a máquina de Turing, é possível aprender sobre as limitações teóricas de todos os computadores. A meta da teoria da computabilidade é a classificação de problemas em solúveis, parcialmente solúveis e insolúveis e se forem problemas de decisão, em problemas decidíveis, parcialmente decidíveis e indecidíveis. João Luís G. Rosa c SCC-5832: Teoria da Computação 7/21
8 A disciplina Nem todos os problemas algorítmicos, que podem ser resolvidos em princípio, podem ser resolvidos na prática: os recursos computacionais requeridos (tempo ou espaço) podem ser proibitivos. Esta observação motiva o estudo da complexidade computacional que será tratada na terceira parte do curso (Teoria da Complexidade). A meta principal da teoria da complexidade é a classificação de problemas de acordo com a dificuldade computacional. João Luís G. Rosa c SCC-5832: Teoria da Computação 8/21
9 Sumário 1 Teoria da Computação A disciplina SCC-5832 Objetivos e Programa Avaliação João Luís G. Rosa c SCC-5832: Teoria da Computação 9/21
10 Objetivos e Justificativa Objetivos: Apresentar ao aluno conceitos fundamentais das disciplinas de teoria da computação, linguagens formais e lógica. Capacitar o aluno a compreender e utilizar estes conceitos. Justificativa: O estudo destes aspectos fundamentais da ciência da computação deve auxiliar na formação da base teórica necessária às demais disciplinas do curso. João Luís G. Rosa c SCC-5832: Teoria da Computação 10/21
11 Programa 1 Linguagens Regulares e Autômatos Finitos 1 Gramáticas e Linguagens A Primeira Linguagem Gramáticas e Linguagens Linguagens Regulares e de Estados Finitos 2 Autômatos de Estados Finitos Autômatos Finitos Arcos-λ Autômato Mínimo 3 Autômatos Finitos com Saída Máquinas de Mealy Máquinas de Moore Exemplos João Luís G. Rosa c SCC-5832: Teoria da Computação 11/21
12 Programa 2 Linguagens Livres de Contexto e Autômatos de Pilha 1 Linguagens Livres de Contexto Linguagens Livres de Contexto Lema do Bombeamento para Linguagens Livres de Contexto Formas Normais para Gramáticas Livres de Contexto 2 Autômatos de Pilha A Pilha como Processador de Linguagem O Autômato de Pilha O Teorema da Equivalência 3 Programas, Linguagens e Parsing Linguagens de Programação Parsing Gramáticas Livres de Contexto e a Língua Natural João Luís G. Rosa c SCC-5832: Teoria da Computação 12/21
13 Programa 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente 1 Gramáticas e Linguagens Sensíveis ao Contexto Gramáticas e Linguagens Sensíveis ao Contexto O Lema da Cadeia Vazia Prova do Lema da Cadeia Vazia 2 Máquinas de Turing Máquinas de Turing e a Computabilidade Conjunto de Aceitação de uma Máquina de Turing 3 Autômatos Limitados Linearmente Autômatos Limitados Linearmente O Lema do Alfabeto João Luís G. Rosa c SCC-5832: Teoria da Computação 13/21
14 Programa 4 Linguagens Recursivamente Enumeráveis e Máquinas de Turing 1 Gramáticas Irrestritas Gramáticas Irrestritas Das Gramáticas para as Máquinas de Turing Das Máquinas de Turing para as Gramáticas 2 A Máquina de Turing Universal A Máquina de Turing e Funções Numéricas A Tese de Church-Turing A Máquina Universal João Luís G. Rosa c SCC-5832: Teoria da Computação 14/21
15 Programa 5 Computabilidade e Complexidade 1 Indecidibilidade Máquinas de Turing Não Determinísticas Uma Linguagem que não é Recursivamente Enumerável O Problema da Parada e a Indecidibilidade 2 Teoria de Complexidade Complexidade de Tempo Complexidade de Espaço 3 Tratabilidade e Problemas N P-Completos Tratabilidade A Classe N P Outras Classes de Problemas Aulas: Terças: 9h00-12h00 - sala João Luís G. Rosa c SCC-5832: Teoria da Computação 15/21
16 Sumário 1 Teoria da Computação A disciplina SCC-5832 Objetivos e Programa Avaliação João Luís G. Rosa c SCC-5832: Teoria da Computação 16/21
17 Avaliação 2 provas: P 1 = 08/5 P 2 = 26/6 3 trabalhos individuais, com implementação: Apresentação do Trabalho T 1 : 27/4. Apresentação do Trabalho T 2 : 25/5. Apresentação do Trabalho T 3 : 22/6. Trabalho Extra (Alan Turing) - opcional T 4 : 29/6 acréscimo de 0,2 na média. João Luís G. Rosa c SCC-5832: Teoria da Computação 17/21
18 Avaliação MP = Média Aritmética das Provas MT = Média Aritmética dos Trabalhos MF = Média Final: Se MP 5, 0 e MT 5, 0 então MF = (7*MP + 3*MT)/10 Senão MF = menor valor entre MP e MT CF = conceito final: CF = A se 8, 5 MP 10; CF = B se 7 MP < 8, 5; CF = C se 5 MP < 7; CF = R, caso contrário. João Luís G. Rosa c SCC-5832: Teoria da Computação 18/21
19 Bibliografia Básica I Apêndice Bibliografia [1] Rosa, J. L. G. Linguagens Formais e Autômatos. Editora LTC, João Luís G. Rosa c SCC-5832: Teoria da Computação 19/21
20 Apêndice Bibliografia Complementar I Bibliografia [1] Hopcroft, J. E., Ullman, J. D. Formal Languages and Their Relation to Automata. Addison-Wesley Publishing Company, [2] Hopcroft, J. E., Ullman, J. D. e Motwani, R. Introdução à Teoria de Autômatos, Linguagens e Computação. Tradução da segunda edição americana. Editora Campus, [3] JFLAP Version 6.0. Ferramenta para Diagrama de Estados. [4] Moll, R. N., Arbib, M. A., and Kfoury, A. J. An Introduction to Formal Language Theory. Springer-Verlag, João Luís G. Rosa c SCC-5832: Teoria da Computação 20/21
21 Apêndice Bibliografia Complementar II Bibliografia [5] Sipser, M. Introduction to the Theory of Computation. Second Edition, Thomson, João Luís G. Rosa c SCC-5832: Teoria da Computação 21/21
SCC Teoria da Computação e Linguagens Formais
SCC-0205 João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis/ [email protected]
SCC Introdução à Teoria da Computação
SCC-0505 João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis/ [email protected]
2. DISCIPLINA REQUISITO (RECOMENDAÇÃO) 3. INDICAÇÃO DE CONJUNTO (BCC) Obrigatória TEORIA: 60 LABORATÓRIO: 30
Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC3106 - LINGUAGENS FORMAIS E
Linguagens Formais e Autômatos. Tiago Alves de Oliveira
Linguagens Formais e Autômatos Tiago Alves de Oliveira Ementa Linguagens Regulares; Máquinas de Turing; O Problema da Parada da Máquina de Turing; Autômatos Finitos; Linguagens Livres de Contexto; Autômatos
Teoria da Computação (BBC244)
Teoria da Computação (BBC244) Professor: Anderson Almeida Ferreira [email protected] http://www.decom.ufop.br/anderson Sala COM 10 DECOM-UFOP Ementa Gramáticas. Linguagens. Operações com Linguagens.
SCC Capítulo 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente
SCC-505 - Capítulo 3 Linguagens Sensíveis ao Contexto e João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Teoria da Computação. Aula 01
Teoria da Computação Aula 01 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/tc 1 Professor Celso Olivete Júnior Bacharelado em Ciência da Computação (Unoeste-2002) Mestrado
ECO026 TEORIA DA COMPUTAÇÃO. Prof: Rafael Santos Site:
ECO026 TEORIA DA COMPUTAÇÃO Prof: Rafael Santos Email: [email protected] Site: http://sites.google.com/site/rafafic Máquinas de Turing Uma linguagem Turing-reconhecível (Linguagem recursivamente enumeravel),
Linguagens Formais e Autômatos Apresentação da Disciplina
Linguagens Formais e Autômatos Apresentação da Disciplina Andrei Rimsa Álvares Computação Histórico da Computação O que pode ser computado? Ábaco China Aprox. 3500 a.c. Máquina de Babbage Inglaterra 1823
Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP
Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP Ementa Gramáticas. Linguagens Regulares, Livres-de-Contexto e Sensíveis-ao- Contexto. Tipos de Reconhecedores. Operações
SCC Capítulo 2 Linguagens Livres de Contexto e Autômatos de Pilha (versão 2)
SCC-505 - Capítulo 2 e (versão 2) João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Prof. Dr. Marcos Castilho. Departamento de Informática/UFPR. 22 de Fevereiro de 2018
22 de Fevereiro de 2018 Motivação O que é um computador? O que é um algoritmo? Para que serve um algoritmo? Quando um algoritmo é bom? A análise de um algoritmo depende do computador? Motivação Em teoria
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Contextualização Prof.ª Aracele Garcia de Oliveira Fassbinder IFSULDEMINAS Campus Muzambinho Muzambinho, Fevereiro de 2012 Sobre esta disciplina O que é uma linguagem formal?
I.2 Introdução a Teoria da Computação
I.2 Introdução a Teoria da Computação O que é? Fundamento da Ciência da Computação Tratamento Matemático da Ciência da Computação Estudo Matemático da Transformação da Informação Qual sua importância?
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação bas eado em material produzido pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected]
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma A01 Engenharia da Computação e Ciência da Computação Horário: Segunda, Terça e Quinta.
SCC Capítulo 4 Máquinas de Turing e a Teoria da Computabilidade
SCC-505 - Capítulo 4 Máquinas de Turing e a Teoria da Computabilidade João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de
Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Segunda e Quinta:
Turma A - Segundas e Quartas das 8h30min - 10h10min Turma B - Segundas e Quartas das 10h30min - 12h10min
UNIVERSIDADE DEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA DEPARTAMENTO DE INFORMÁTICA TEÓRICA 2 Semestre 2008 04/08/2008 a 12/12/2008 DISCIPLINA: TEORIA DA COMPUTAÇÃO N CÓDIGO: INF05501. Horário:
Teoria da Computação. Computabilidade e complexidade computacional
Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Terça e Sexta: 20:30
Linguaguens recursivamente enumeráveis e recursivas
Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente
Modelos de Computação
Modelos de Computação 2.ano LCC e LERSI URL: http://www.ncc.up.pt/~nam/aulas/0405/mc Escolaridade: 3.5T e 1P Frequência:Semanalmente serão propostos trabalhos aos alunos, que serão entregues nas caixas
Linguagens recursivamente enumeráveis
Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M
SCC Capítulo 1 Linguagens Regulares e Autômatos Finitos
SCC-505 - Capítulo 1 Linguagens Regulares e Autômatos Finitos João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo
Teoria da Computação. Computabilidade
Cristiano Lehrer Introdução O objetivo do estudo da solucionabilidade de problemas é investigar a existência ou não de algoritmos que solucionem determinada classe de problemas. Ou seja, investigar os
formais e autómatos Linguagens g recursivas e recursivamente enumeráveis Gramáticas não-restringidas
Capítulo 11 Uma hierarquia de linguagens formais e autómatos 11.1. Linguagens g recursivas e recursivamente enumeráveis. 11.2. Gramáticas não-restringidas 11.3. Gramáticas e linguagens dependentes do contexto
Marcos Castilho. DInf/UFPR. 16 de maio de 2019
16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.
Máquinas de Turing - Computabilidade
BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Hisham Muhammad [email protected] PUC-Rio Sobre o professor Hisham H. Muhammad MSc. em Informática pela PUC-Rio Doutorando na área de Linguagens de Programação Grupo do LabLua,
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Aula 01 Apresentação da Disciplina Prof.ª Danielle Casillo PLANO DE ENSINO Nome: Teoria da Computação Créditos:
Máquinas Universais. Máquina de Turing. Celso Olivete Júnior.
Máquinas Universais Máquina de Celso Olivete Júnior [email protected] http://www2.fct.unesp.br/docentes/dmec/olivete/ Roteiro Hipótese de Church - Máquinas Universais: Máquina de Máquina de : Noção
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação
Universidade Federal de Santa Maria Disciplina de Teoria da Computação Quais são as capacidades e limitações fundamentais dos computadores? Funções Computáveis Algoritmo: descrição finitade uma computação
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Decidibilidade O estudo da decidibilidade objetiva determinar a solucionabilidade
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 13 Autômato com Pilha [email protected] Última aula Linguagens Livres do Contexto P(S*) Recursivamente enumeráveis Recursivas
Capítulo A máquina de Turing (TM) padrão Combinações de máquinas de Turing A Tese de Turing. ADC/TC/Cap.9/ /LEI/DEIFCTUC 375
Capítulo 9 Máquinas de Turing 9.1. A máquina de Turing (TM) padrão 9.2. Combinações de máquinas de Turing 9.3. A Tese de Turing ADC/TC/Cap.9/2009-10/LEI/DEIFCTUC 375 Linguagens regulares Autómatos finitos
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
PCS3616. Programação de Sistemas (Sistemas de Programação) Máquinas de Turing
PCS3616 Programação de Sistemas (Sistemas de Programação) Máquinas de Turing Escola Politécnica da Universidade de São Paulo Objetivos Familiarização com o funcionamento global de software de sistema computacional
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
INE5317 Linguagens Formais e Compiladores. Ricardo Azambuja Silveira INE-CTC-UFSC URL:
INE5317 Linguagens Formais e Compiladores Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira Plano de Ensino OBJETIVO GERAL: Estudar a teoria das linguagens
Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE.
DEINFO - UFRPE Julho, 2014 Motivação Introdução O que pode ser computado? E mais intrigantemente, o que não pode ser computado? Motivação Introdução O que pode ser computado? E mais intrigantemente, o
CT-200 Fundamentos de Linguagens Formais e Automata - Aula 01 - In...
1 de 14 14/3/2010 09:28 CT-200 Fundamentos de Linguagens Formais e Automata Aula 01 - Introdução Primeira aula (updated just now by YourName) Orientações Gerais: Horários e Avaliação Horários: 3 tempos
Linguagens Formais e Autômatos Decidibilidade
Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas
COMPUTABILIDADE 2. Indecidibilidade
Licenciatura em Ciências da Computação COMPUTABILIDADE 2. Indecidibilidade José Carlos Costa Dep. Matemática e Aplicações Universidade do Minho 15 de Novembro de 2011 José Carlos Costa DMA-UMinho 15 de
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 09/09/2013 Panorama do Restante da Disciplina 1 Próximo Tópicos da Matéria Linguagens Autômatos Regulares Autômatos Finitos Máquinas de Moore e Mealy Livres
Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente
ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação
INE5622 INTRODUÇÃO A COMPILADORES
INE5622 INTRODUÇÃO A COMPILADORES PLANO DE ENSINO Objetivo geral Conhecer o processo de especificação e implementação de linguagens de programação, a partir do estudo dos conceitos, modelos, técnicas e
IBM1088 Linguagens Formais e Teoria da Computação
IBM1088 Linguagens Formais e Teoria da Computação Apresentação da disciplina Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 16 IBM1088 Objetivos Fornecer
SCC 605 Teoria da Computação e Compiladores
SCC 605 Teoria da Computação e Compiladores 1 1. Teoria das Linguagens Formais e dos Autômatos 2. Teoria da Computabilidade 3. Teoria da Complexidade (não veremos) Quais são as capacidades fundamentais
1 INTRODUÇÃO E CONCEITOS BÁSICOS
1 INTRODUÇÃO E CONCEITOS BÁSICOS Inicia com uma breve história do surgimento e do desenvolvimento dos conceitos, resultados e formalismos nos quais a Teoria da Computação é baseada. Formalização dos conceitos
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Modelo de computação poderoso concebido pelo matemático britânico Alan Turing
SCC 205 Teoria da Computação e Linguagens Formais
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC 205 Teoria da Computação e Linguagens Formais Autômatos com pilha Lista 3 1. Dê um
Teoria da Computação. Computabilidade e complexidade computacional
Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade
SCC-5832: II. Ling. Livres de Contexto e Autômatos de Pilha
SCC-5832 - Capítulo 2 e João Luís Garcia Rosa 1 1 Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos [email protected] 2009 Sumário 1 Lema do Bombeamento para Linguagens
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL)
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) 1 Gramática Sensível ao Contexto Definição: Uma gramática G é sensível ao contexto se
Revisões de Conjuntos
Revisões de Conjuntos {, {a}, {b}, {a, b}} a A a pertence a A, a é elemento de A a {a, b, c} a / A a não pertence a A d / {a, b, c} A B A contido em B, A subconjunto de B x A x B {a, b} {b, c, a} A B A
Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)
Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens 1 Introdução Estudar computação do ponto de vista teórico é sinônimo de caracterizar
Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Apresentação. !! Familiarização com os métodos de construção de compiladores de linguagens e com as técnicas de compilação mais habituais.
Apresentação Universidade dos Açores Departamento de Matemática www.uac.pt/~hguerra/!! Aquisição de conceitos sobre a definição de linguagens de programação.!! Familiarização com os métodos de construção
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Nome: Teoria da Computação Créditos: 4 60 horas Período: 2010.2 Horário: segundas e quintas das 20:40 às 22:20
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
