Máquina de Turing. Controle finito
|
|
|
- Ana Clara de Almeida Vilalobos
- 8 Há anos
- Visualizações:
Transcrição
1 Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos da computação 1
2 História Turing (1936): Máquinas de Turing como modelo de função computável. Tese de Church-Turing: qualquer modelo geral de computação permite calcular as mesmas funções (ou, tudo o que se pode computar coincide com as linguagens reconhecidas pelas Máquinas de Turing). 2
3 Máquina de Turing Controle finito... B B X 1 X 2... Xi... X n B B... Inicialmente, a entrada é colocada na fita. Todas as outras células (infinitamente à esquerda e à direita) têm um símbolo especial da fita, B (branco). A cabeça da fita fica posicionada em uma das células. No início, a cabeça está posicionada na célula mais à esquerda que contém a entrada. 3
4 Um movimento da MT é uma função do estado do controle finito e do símbolo atual da fita. Em um movimento, a MT: 1. Mudará de estado (opcionalmente para o mesmo). 2.Gravará um símbolo de fita na célula atual, substituindo o existente (podendo ser o mesmo). 3.Movimentará (necessariamente) a cabeça da fita uma célula à esquerda ou à direita. 4
5 MT: notação formal M = (Q,,,, qo, F) Controle finito = alfabeto finito de entrada Q=conj. finito de estados; F = conj. estados finais (de aceitação) = alfabeto finito da fita cabeça da fita... B B X 1 X 2 Xi X n B B... 5
6 Máquina de Turing Função de transição : : Q x Q x x {L,R} Ou seja, (q,x) = (p,y,d) onde: p é o próximo estado em Q; Y é o símbolo que substituirá X na fita; D é uma direção (esquerda ou direita) em que a cabeça da fita irá se mover. 6
7 Descrições Instantâneas para MT Suponha que (q,x i ) = (p,y,l), ou seja, o movimento foi para a esquerda. Então: X 1 X 2...X i-1 qx i X i+1...x n X 1 X 2...X i-2 pxi -1 YX i+1...x n M... B B X 1 X 2 X i-1 X i X i+1 X n B B B B X 1 X 2 X i-2 X i-1 Y X i+1 X n B B... p q 7
8 Duas exceções: Se i = 1, então M se move para o B à esquerda de X1. Nesse caso: qx 1 X 2...X n pbyx 2... X n Se i = n e Y = B, então o B gravado sobre X n se junta ao sufixo de Bs e não aparece na próxima DI: X 1 X 2...X n-1 qx n X 1 X 2... X n-2 px n-1 8
9 Agora suponha que (q,x i ) = (p,y,r), ou seja, o movimento foi para a direita. Então: X 1 X 2...X i-1 qx i X i+1...x n X 1 X 2...X i-1 YpX i+1...x n M Duas exceções: Se i = n, então a (i+1)-ésima célula contém um B e ela não faz parte da DI anterior. Nesse caso: X 1 X 2...X n-1 qx n X 1 X 2... X n-1 YpB Se i = 1 e Y = B, então o B gravado sobre X1 se junta ao prefixo de Bs e não aparece na próxima DI: qx 1 X 2...X n px 2... X n 9
10 Exemplo Vamos projetar uma MT para reconhecer L = {0 n 1 n n 1} Estratégia: a MT trocará um 0 por um X, e depois um 1 por um Y, até todos os 0s e 1s terem sido comparados. Em cada passo, da esq. para dir., ela troca um 0 por X e vai para a direita, ignorando 0s e Ys até encontrar 1. Troca esse 1 por Y e se move para a esquerda, ignorando Ys e 0s, até encontrar um X. Procura um 0 a direita e troca por X, repetindo o processo. Se a entrada não estiver em 0 n 1 n eventualmente a MT não vai ter um movimento previsto e vai parar sem aceitar. Se, por outro lado, na busca por mais um 0, ela só encontrar Xs e Ys, então ela descobre que deve aceitar a entrada. 10
11 M = ({q0,q1,q2,q3,q4}, {0,1}, {0,1,X,Y,B},, q0, {q4}) Estado 0 1 X Y B qo (q1,x,r) (q3,y,r) -- q1 (q1,0,r) (q2,y,l) -- (q1,y,r) -- q2 (q2,0,l) -- (qo,x,r) (q2,y,l) -- q (q3,y,r) (q4,b,r) q4* Verifique se a cadeia é aceita 11
12 Diagrama de Transição Y/Y 0/0 Y/Y 0/0 qo 0/X q1 1/Y q2 Y/Y X/X q3 Y/Y B/B q4 12
13 Exercício Construa uma MT para reconhecer cadeias de L={w#w w {0,1}*} Estágios para a resolução: - Verifique se a entrada tem um único símbolo #, cc rejeite. - Verifique (zigue-zague) se antes e depois do # existem os mesmos símbolos, cc rejeite. Ao checar um símbolo marque-o (use um X por exemplo) para ter controle sobre os que estão sendo analisados num dado momento. - Quando todos os da esquerda forem checados (com X) verifique se existe algum símbolo à direita ainda não checado. Se houver, rejeite; cc aceite. 13
14 A linguagem de uma MT Intuitivamente: a cadeia de entrada é colocada na fita, e a cabeça da fita começa no símbolo mais à esquerda da cadeia. Se a MT entrar eventualmente num estado de aceitação, a entrada será aceita; caso contrário, não. Formalmente: seja M = (Q,,,, qo, F) uma MT. Então L(M) é o conjunto de cadeias w em * tais que q o w * p para algum estado p em F e quaisquer cadeias de fita e. (aceitação por estado final)
15 A linguagem de uma MT As linguagens aceitas por MT são também chamadas de linguagens recursivamente enumeráveis (RE)
16 MT e sua parada Há uma outra noção de aceitação para MT: a aceitação por parada. Em geral, usada quando o conteúdo final da fita representa alguma resposta ao problema que a MT representa. Dizemos que uma MT pára se ela entra em um estado q, olhando um símbolo de fita X, e não existe mais nenhum movimento previsto nessa situação, i.e., (q,x) é indefinido. 16
17 Usos de uma MT como reconhecedor de linguagens (Visto) para calcular funções
18 MT como um processador de funções inteiras Tradicionalmente, os inteiros são representados em vocabulário unário. O inteiro i >= 0 é representado pela cadeia 0 i. Se a função tem k argumentos (i1, i2,..., ik) então esses inteiros são colocados na fita separados por 1 s como: 0 i1 1 0 i ik O inverso também é possível. Se a máquina pára (não importa se num estado final) com a fita consistindo de 0 m para algum m então dizemos que f(i1,i2,...ik) = m, onde f é uma função de k argumentos computados por essa MT.
19 Exemplo: MT que soma dois números naturais Conteúdo inicial da Fita:...B 0 a 1 0 b B... Quando a MT parar, o conteúdo da fita dever ser:...b 0 a+b B... Processo: Ler o 0 mais à esquerda, mantendo-o como 0, e mover à direita até encontrar o 1. Substitua o 1 por 0 (nesse momento a cadeia da fita é 0 a+b+1. Continue movendo à direita sem mudar a fita, até que um B seja encontrado. Mantenha o B e mova a esquerda para encontrar o último 0 mais a direita. Substitua esse 0 por B. O resultado é 0 a+b
20
21
22 Exercício Projete uma MT que. calcule, para dois inteiros positivos m e n, m n, chamada monus ou subtração própria, e definida por:. m n = max(m-n,0). Isto é,. m n = m-n, se m n = 0, se m < n início 0 n...bb bb... final 0 m...bb bb m - n
23 F é vazio se a MT é transformadora de uma cadeia de entrada em uma cadeia de saída, isto é, como um modelo para descrever procedimentos (ou computar funções). F é relevante quando a MT é usada para reconhecer uma linguagem. 23
24 Ex. Uma MT para reconhecer a Linguagem L = { a n b n c n n 0 } Exemplos: Pertence à L: Não Pertence à L: aaabbbccc aaabbcccc 24
25 A Máquina deturing 1. Q = {q 0,q 1,q 2,q 3,q 4,q ac } 2. = {a,b,c} 3. = {a,b,c,b,x,y,z} 4. a seguir. 5. q 0 o estado inicial 6. F = {q ac } 25
26 A Função de Transição Idéia: em cada passo, reconhecer um a, um b e um c. B B, R q ac q 0 B B, R a a, R Y Y, R a X,R q 1 X X, R Y Y, R q 4 b Y,R q 3 Y Y, R Z Z, R q 2 c Z,L b b, R Z Z, R b b, L a a, L Y Y, L Z Z, L transições não especificadas aqui levam ao q reject 26
27 Exercícios 1) Construir uma MT que decida se uma seqüência de parênteses é bem formada. Escreve 0 se mal formada Escreve 1 se bem formada Dica: considere que a cadeia de parênteses é limitada por 2 A s (um a esq e outra à direita). Idéia: Procurem por um ) e substitua por X e em seguida voltar a esquerda procurando o ( mais próximo para substituir por X também. 2) Construir uma MT tal que, dada uma cadeia w pertencente ao fecho de {0,1}, duplique w. Quando a máquina parar, a fita deve conter w#w sendo que # indica fim de w.
28 Exercícios 1. Faça uma MT que reconheça L = {0^2^n n >= 0} cadeias de 0 cujo tamanho é potência de 2 2. Faça uma MT que reconheça L = {x x {a,b,c}* e x é uma permutação de a n b n c n para algum n >= 0 } ex. aabbcc bca cccaaabbb 28
29 Comentários sobre os Exercícios 2: a) trocar um a,b, ou c do começo por 1 para marcar o final à esquerda; b) substituir um a, um b e um c por 0 s. c) M aceita se, ao percorrer a cadeia de entrada, a fita consiste somente de 0 s. 29
30 Comentários sobre os Exercícios 1: estágios para a resolução: 0. Marque o primeiro zero com Y 1. Atravesse da esquerda para direita marcando um zero sim outro não com um X 2. Se no estágio 1. a fita contém 1 único 0 aceite. Se contiver mais do que 1 zero e o número for impar, rejeite. 3. Retorne ao marcador Y 4. Vá para o estágio 1. 30
31 1 31
32 32
33 33
34 34
Máquina de Turing. Controle finito
Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL)
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) 1 Gramática Sensível ao Contexto Definição: Uma gramática G é sensível ao contexto se
Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)
Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q
Máquinas de Turing 3
Máquinas de Turing 3 Exercícios Máquinas de Turing com Múltiplas Fitas Máquinas de Turing Não-deterministicas A Tese/Hipótese de Church-Turing Linguagens decidíveis por Máquinas de Turing (Recursivas)
Teoria da Computação. Capítulo 1. Máquina de Turing. Prof. Wanderley de Souza Alencar, MSc.
Teoria da Computação Capítulo 1 Máquina de Turing Prof. Wanderley de Souza Alencar, MSc. Pauta 1. Introdução 2. Definição de Máquina de Turing 3. Variações de Máquina de Turing 4. A Tese de Church-Turing
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
SCC 205 Teoria da Computação e Linguagens Formais
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC 205 Teoria da Computação e Linguagens Formais Autômatos com pilha Lista 3 1. Dê um
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas
Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente
ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação
Aula 9: Máquinas de Turing
Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Modelo de computação poderoso concebido pelo matemático britânico Alan Turing
Máquinas Universais. Máquina de Turing. Celso Olivete Júnior.
Máquinas Universais Máquina de Celso Olivete Júnior [email protected] http://www2.fct.unesp.br/docentes/dmec/olivete/ Roteiro Hipótese de Church - Máquinas Universais: Máquina de Máquina de : Noção
Máquinas de Turing 3
Máquinas de Turing 3 Máquinas de Turing com Múltiplas Fitas Máquinas de Turing Não-deterministicas A Tese/Hipótese de Church-Turing Linguagens decidíveis por Máquinas de Turing (Recursivas) Linguagens
Máquinas de Turing (MT)
Linguagens Formais e Autômatos Máquinas de Turing (MT) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Sumário Introdução Máquinas de Turing
Melhores momentos AULA PASSADA. Complexidade Computacional p. 136
Melhores momentos AULA PASSADA Complexidade Computacional p. 136 Configurações controle q 7 cabeça 1 0 1 1 0 1 1 1 fita de leitura e escrita Configuração 1 0 1q 7 1 0 1 1 1 Complexidade Computacional p.
Draft-v0.1. Máquinas de Turing Máquinas de Turing
13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal
Introdução às Máquinas de Turing (TM)
Comparação com computadores: Introdução às Máquinas de Turing (TM) um modelo matemático simples de um computador Semelhanças: lê e escreve em posições arbitrarias de memoria Diferenças: sem limite no tamanho
Máquinas de Turing - Computabilidade
BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma
Modelos de Computação Folha de trabalho n. 10
Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Proposta por Alan Turing em 1936; É universalmente conhecida e aceita como formalização de algoritmo; Teoria
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Apostila 05 Assunto: Linguagens dos tipos 0 e 1
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem
Conceitos Básicos Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto.
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens
Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens 1 Introdução Estudar computação do ponto de vista teórico é sinônimo de caracterizar
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 18/11/2013 Linguagens Recursivamente Enumeráveis, Complexidade (Custo) de Tempo/Espaço, Transdutores para exibir complexidade de Tempo/Espaço 1 Linguagens Recursivamente
Máquinas de Turing: uma introdução
Máquinas de Turing: uma introdução Nelma Moreira Armando Matos Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {nam,acm}@ncc.up.pt 1996 Revisão: Maio 2001 1
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
Capítulo 2: Procedimentos e algoritmos
Capítulo 2: Procedimentos e algoritmos Para estudar o processo de computação de um ponto de vista teórico, com a finalidade de caracterizar o que é ou não é computável, é necessário introduzir um modelo
PCS3616. Programação de Sistemas (Sistemas de Programação) Máquinas de Turing
PCS3616 Programação de Sistemas (Sistemas de Programação) Máquinas de Turing Escola Politécnica da Universidade de São Paulo Objetivos Familiarização com o funcionamento global de software de sistema computacional
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Diferencia-se das máquinas de Turing e Post principalmente pelo fato de possuir a memória de entrada separada
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Máquina de Turing Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa [email protected] Teoria da Computação Ciência da Computação
Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Capítulo A máquina de Turing (TM) padrão Combinações de máquinas de Turing A Tese de Turing. ADC/TC/Cap.9/ /LEI/DEIFCTUC 375
Capítulo 9 Máquinas de Turing 9.1. A máquina de Turing (TM) padrão 9.2. Combinações de máquinas de Turing 9.3. A Tese de Turing ADC/TC/Cap.9/2009-10/LEI/DEIFCTUC 375 Linguagens regulares Autómatos finitos
Apostila 04. Objetivo: Estudar a Máquina de Turing
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Redutibilidade Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Redutibilidade DCC-UFMG (2018/02) 1 / 46 Redutibilidade:
LFA Aula 05. AFND: com e sem movimentos 05/12/2016. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 05 AFND: com e sem movimentos vazios 05/12/2016 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula passada... Reconhecedores genéricos Autômatos finitos
a n Sistemas de Estados Finitos AF Determinísticos
a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um
Linguagens recursivamente enumeráveis
Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M
Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Linguagens Regulares A teoria da computação começa com uma pergunta: O que é um computador? É, talvez, uma
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma
Linguagens Formais e Problemas de Decisão
Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas
Marcos Castilho. DInf/UFPR. 16 de maio de 2019
16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.
Linguaguens recursivamente enumeráveis e recursivas
Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente
Linguagens Formais e Autômatos Decidibilidade
Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.
Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela
SCC Capítulo 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente
SCC-505 - Capítulo 3 Linguagens Sensíveis ao Contexto e João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Computabilidade e Complexidade (ENG10014)
Sistemas de Informação Computabilidade e Complexidade (ENG10014) Profa. Juliana Pinheiro Campos E-mail: [email protected] Decidibilidade O estudo da decidibilidade objetiva determinar a solucionabilidade
Teoria da Computação. Máquinas Universais Máquina de Turing
Máquinas Universais Máquina de Turing Cristiano Lehrer Máquina de Turing Proposta por Alan Turing, em 1936. Universalmente conhecida e aceita como formalização de algoritmo. Trata-se de um mecanismo simples
I.2 Introdução a Teoria da Computação
I.2 Introdução a Teoria da Computação O que é? Fundamento da Ciência da Computação Tratamento Matemático da Ciência da Computação Estudo Matemático da Transformação da Informação Qual sua importância?
Teoria da Computação. Computabilidade e complexidade computacional
Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade
Introdução Maquinas de Turing universais O problema da parada. Indecidibilidade. Rodrigo Gabriel Ferreira Soares DEINFO - UFRPE.
DEINFO - UFRPE Julho, 2014 Motivação Introdução O que pode ser computado? E mais intrigantemente, o que não pode ser computado? Motivação Introdução O que pode ser computado? E mais intrigantemente, o
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 8 - Indecidibilidade Exercicio 1-5.5 do Livro
Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação
Universidade Federal de Santa Maria Disciplina de Teoria da Computação Quais são as capacidades e limitações fundamentais dos computadores? Funções Computáveis Algoritmo: descrição finitade uma computação
Autômatos com Pilha: Reconhecedores de LLCs
Autômatos com Pilha: Reconhecedores de LLCs 1 Autômatos com Pilha (AP) Definições alternativas para Linguagens Livres de Contexto Extensão de AFND com uma pilha, que pode ser lida, aumentada e diminuída
Teoria da Computação. Computabilidade e complexidade computacional
Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Doutorando em Ciência da Computação Estagiário em docência II Departamento de Ciência da Computação
Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Linguagens Formais e Autômatos 02/2016. LFA Aula 04 16/11/2016. Celso Olivete Júnior.
LFA Aula 04 Autômatos Finitos 16/11/2016 Celso Olivete Júnior [email protected] 1 Classificação das Linguagens segundo Hierarquia de Chomsky Máquina de Turing Máquina de Turing com fita limitada Autômato
Máquinas de Turing. Juliana Kaizer Vizzotto. Disciplina de Teoria da Computação. Universidade Federal de Santa Maria
Universidade Federal de Santa Maria Disciplina de Teoria da Computação Roteiro Definição Formal de Máquina de Turing Mais exemplos Definição Formal de Máquina de Turing Uma máquina de Turing é uma 7-upla,
Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.
Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos
Linguagens Livres de Contexto
Universidade Católica de Pelotas Centro Politécnico Bacharelado em Ciência da Computação 364018 Linguagens Formais e Autômatos TEXTO 4 Linguagens Livres de Contexto Prof. Luiz A M Palazzo Maio de 2011
Variações de Máquinas de Turing
Linguagens Formais e Autômatos Variações de Máquinas de Turing Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Variações de Máquinas
Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens:
UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM167 Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exercícios 2005/1 Exercício
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP 1 ACP Assim como LR tem um autômato equivalente (AF) as LLC tem também
Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior.
LFA Aula 02 Linguagens regulares - introdução 28/09/2015 Celso Olivete Júnior [email protected] 1 Na aula passada... Visão geral Linguagens regulares expressões regulares autômatos finitos gramáticas
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação
INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação bas eado em material produzido pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected]
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 13 Autômato com Pilha [email protected] Última aula Linguagens Livres do Contexto P(S*) Recursivamente enumeráveis Recursivas
Autômatos de Pilha (AP)
Linguagens Formais e Autômatos Autômatos de Pilha (AP) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (h@p://dcc.ufmg.br/~nvieira) Sumário Introdução Autômatos de pilha
ECO026 TEORIA DA COMPUTAÇÃO. Prof: Rafael Santos Site:
ECO026 TEORIA DA COMPUTAÇÃO Prof: Rafael Santos Email: [email protected] Site: http://sites.google.com/site/rafafic Máquinas de Turing Uma linguagem Turing-reconhecível (Linguagem recursivamente enumeravel),
Autômatos Finitos Determinís3cos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinís3cos (AFD) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Introdução Exemplos Sumário
