Primeira Lista de Exercícios 2004/2...
|
|
|
- Maria Júlia Rico Monteiro
- 9 Há anos
- Visualizações:
Transcrição
1 UFLA Universidade Federal de Lavras Departamento de Ciênia da Computação COM62 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exeríios 24/2... Exeríio Temos um Homem (H), um Lobo (L), uma Cabra (C) e um Repolho (R). Todos estão de um mesmo lado do rio. Há um baro apaz de atravessar o rio om o Homem e mais apenas L, ou C ou R de ada vez. É preiso atravessar todos para a outra margem de forma que L e C, ou C e R não fiquem sozinhos sem o Homem na mesma margem. Desenvolva um diagrama de transições para a solução do problema. RESPOSTA = Subjetivo. É um exeríio interessante para ser feito, uma vez que está assoiado à teoria de autômatos e diagrama de estados vistos na disiplina até o momento. Uma das formas de fazer seria oloar sobre as transições os elementos que estão de um lado do rio, e sob as mesmas, aqueles que estivessem do outro lado. A figura exibe isso: Situação de um lado do rio Situação do outro lado do rio Um exemplo pode ser visto a seguir, onde: h = homem; = abra; r = repolho; l = lobo. Exeríio 2 Construa um DFA M que aeita L(N), a partir do NFA N = ( {q,q }, {,}, δ, q,{q } ) onde δ(q,) = {q, q }, δ(q,) = {q }, δ(q,) =, δ(q,) = {q,q }. RESPOSTA = Dado o NFA N = ({q, q, {q }), onde:, ) = {q, q }, ) = {q }, ) =, ) = {q, q }
2 , q q Podemos onstruir um DFA M equivalente, que reonhee a mesma linguagem de N, ou seja, L(M) = L(N). Vamos representar p =, p 2 = {q }, p 3 = {q } e p 4 = {q, q }, onde o estado iniial é p 2 e os estados finais são p 3 e p 4. p, p 2 p 4 p 3, Exeríio 3 Prove que se uma linguagem L é aeita por um NFA om transições vazias, então L é também aeita por um NFA sem transições vazias. Transições vazias são as transições ε (epsilon). RESPOSTA = :
3 q 3 q 4 q 2 b q 5 Considere que ele possui uma transição, F ):, ) = {q 2 } e L(N) = L. q 3 q q 4 q 2 b b q 5 Considere que ele não possui transição Queremos provar que se L(N) = L e L(N ) = L, então L = L. Construção de N : Q = Q q, ou, a) {q 2 }, se q = q e a = = i, a), se q = q e a, onde q i E(q) e E(q) = {p Q p pode ser atingido de q usando zero ou mais transições q = q F = F, se q 2 não pertene a F = F {q }, se q 2 F
4 Tomando q 4 2, ) e q 5 2, b), respetivamente, pela onstrução, q 4, ) e q 5, b). Logo, L = L. Exeríio 4 Desreva om suas palavras os onjuntos que denotam as seguintes expressões regulares: a. ( )*( )* RESPOSTA = São seqüênias de zero ou mais s ou s, seguidas de seqüênias de zero ou mais s ou s. b. ( )*(ε ) RESPOSTA = São seqüênias de zero ou mais s ou s ou s, seguidas de menos de três s.. ( ( )( )*( ))* RESPOSTA = São seqüênias de zero ou mais s ou s ou seqüênias iniiando e terminando em ou, ontendo zero ou mais s ou s no meio. Exeríio 5 Construa um autômato finito equivalente para as seguintes expressões regulares: a. ( )* RESPOSTA = NFA otimizado. Reomenda-se seguir os passos para a onstrução do autômato onforme teorema visto em aula. b. ((()* )* )* RESPOSTA = NFA otimizado. Reomenda-se seguir os passos para a onstrução do autômato onforme teorema visto em aula.
5 . (( )( ))* (( )( )( ))* RESPOSTA = NFA otimizado. Reomenda-se seguir os passos para a onstrução do autômato onforme teorema visto em aula.,,,,, Exeríio 6 Prove ou disprove para as seguintes expressões regulares R, S e T: a. (RS R)*R = R(SR R)* RESPOSTA = Provaremos por indução que (RS R) n R = R(SR R) n Base da indução: n = => R = R (verdadeiro) Hipótese de indução: R) k R = R(SR R) k Passo da indução: vamos provar que (RS R) k+ R = R(SR R) k+ (RS R) k+ R = (RS R)(RS R) k R = (RS R)R(SR R) k = R(S )R(SR R) k =
6 = R(SR R)(SR R) k = R(SR R) k+ Logo, R) n R = R(SR R) n, por indução. b. R(RS S)*S = RR*S(RR*S)* RESPOSTA = Provaremos que essa igualdade não é válida usando prova direta om um ontra-exemplo. Sejam R e S expressões regulares. Sejam R = e S =, vamos verifiar os resultados: º) R(RS S)*S = ( )* 2º) RR*S(RR*S)* = *(*)* Seja o ontra-exemplo w =. º) ( )* não gera 2º) *(*)* gera Logo, por prova direta, usando o ontra-exemplo w =, R(RS S)*S *S(RR*S)*. (R S)* = R* S* RESPOSTA = Provaremos que essa igualdade não é válida usando prova direta om um ontra-exemplo. Sejam R e S expressões regulares. Sejam R = e S =, vamos verifiar os resultados: º) (R S)* = ( )* 2º) R* S* = * * Seja o ontra-exemplo w =. º) ( )* gera 2º) * * não gera Logo, por prova direta, usando o ontra-exemplo w =, (R S)* R* S*. Exeríio 7 Desenhe o diagrama de estados de um autômato finito determinístio para ada uma das linguagens abaixo. Obtenha ainda a expressão regular orrespondente. a. {w w é qualquer palavra, exeto,, } RESPOSTA = Para onstruir o diagrama de estados de um DFA para reonheer esta linguagem, onstruiremos um autômato que aeita, e, e depois ajustaremos os estados finais de modo a rejeitar aquelas palavras (omplemento):
7 ,, Assim, o DFA pedido é o omplemento deste aima:,, Expressão Regular: b. {w w tem omprimento par ou termina em }
8 RESPOSTA = Para onstruir o diagrama de estados de um DFA para reonheer esta linguagem, onstruiremos um autômato para reonheer palavras sob ada ondição e faremos a união dos dois (já que a lasse de linguagens regulares é fehada sob união, por teorema). DFA que reonhee palavras de omprimento par:,, DFA que reonhee palavras terminadas em : Utilizando a idéia da prova do teorema que afirma que a lasse de linguagens regulares é fehada sob união (ver aderno), obtemos: Expressão Regular: ( )*
9 . {w w ontém pelo menos três s} RESPOSTA = DFA que reonhee esta linguagem:, Vamos enontrar a expressão regular removendo os estados um a um, a partir de um GNFA: removendo o 2º estado: removendo o 3º estado: ** removendo o 4º estado: *** removendo o 5º estado:
10 ***( )* Expressão Regular: ***( )* Exeríio 8 Para qualquer palavra w = w w 2...w n, o reverso de w, denotado por w R, é a palavra w R = w n...w 2 w. Para qualquer linguagem A, seja A R = {w R w A}. Mostre que se A é regular, então A R também é regular. RESPOSTA = Dados do Problema: para qualquer palavra w = w w 2...w n, w R = w n...w 2 w para qualquer linguagem A, A R = {w R Temos que mostrar que se A é regular, A R também é regular. ({,d}, F) om linguagem L(N) = A. r q d t s, F ) om linguagem L(N ) = A R.
11 r d q q t s Construção de N : Q = Q {q } = F, se q = q e a = =, se q = q e a q = q (novo estado) F = { q } q, ou Logo, pela onstrução, L(N ) = A R, e omo N é uma NFA, por definição, A R é regular.
Marcos Castilho. DInf/UFPR. 5 de abril de 2018
5 de abril de 2018 Autômatos com Pilha Não-Determinísticos Um Autômato com Pilha Não-Determinístico (APN) é uma sêxtupla (Q, Σ, Γ, δ, Q 0, F ), onde: Q, Σ, Γ, F são como nos APD s; δ : Q (Σ {λ}) (Γ {λ})
Terceira Lista de Exercícios 2004/2...
UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2
Segunda Lista de Exercícios 2004/2...
+ + UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Segunda Lista de Exercícios
Expressões Regulares e Gramáticas Regulares
Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos TEXTO 2 Expressões Regulares e Gramáticas Regulares Prof. Luiz A M Palazzo Março de 2007 Definição de Expressão
Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves
Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que
Polos Olímpicos de Treinamento. Aula 1. Curso de Álgebra - Nível 3 Prof. Antonio Caminha. Desigualdades 1
Polos Olímpios de Treinamento Curso de Álgebra - Nível 3 Prof Antonio Caminha Aula Desigualdades Nesta aula, aprenderemos e exeritaremos a desigualdade entre as médias aritmétia e geométria e a desigualdade
A reta numérica. Matemática Básica. A reta numérica. Expansões decimais: exemplo 1. Folha 1. Humberto José Bortolossi. Parte 6
Folha 1 Matemátia Básia Humberto José Bortolossi Departamento de Matemátia Apliada Universidade Federal Fluminense A reta numéria Parte 6 Parte 6 Matemátia Básia 1 Parte 6 Matemátia Básia 2 A reta numéria
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares baseado em material produzido pelo prof Paulo B auth Menezes e pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja
AFNs, Operações Regulares e Expressões Regulares
AFNs, Operações Regulares e Expressões Regulares AFNs. OperaçõesRegulares. Esquematicamente. O circulo vermelho representa o estado inicial q 0, a porção verde representa o conjunto de estados de aceitação
Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 4. Autômatos Finitos
Curso: Ciência da Computação Turma: 6ª Série Aula 4 Autômatos Finitos Autômatos Finitos Não Determinísticos Um autômato finito não-determinístico (AFND, ou NFA do inglês) tem o poder de estar em vários
Aula 7: Autômatos com Pilha
Teoria da Computação Segundo Semestre, 2014 Aula 7: Autômatos com Pilha DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos adicionar um memória do tipo pilha ao nossos autômatos para que seja possível aceitar
Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens:
UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM167 Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exercícios 2005/1 Exercício
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação - 1 0 Semestre 007 Professora : Sandra Aparecida de Amo Solução da Lista de Exercícios n o 1 Exercícios de Revisão
Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.
Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos
Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ
Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função
Propriedades de Fecho de Linguagens Regulares.
Propriedades de Fecho de Linguagens Regulares. Gerando Linguagens Regulares Recorde a seguinte teorema: THM: Linguagens regulares são aquelas que podem ser geradas a partir de linguagens finitas pela aplicação
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
Sistemas de Estados Finitos AF Determinísticos. (H&U, 1979) e (H;M;U, 2001)
a n Sistemas de Estados Finitos AF Determinísticos (H&U, 1979) e (H;M;U, 2001) 1 Sistemas de Estados Finitos Uma máquina de estados finitos é um modelo matemático de um sistema com entradas e saídas discretas.
a n Sistemas de Estados Finitos AF Determinísticos
a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira As Linguagens e os formalismos representacionais
Curso de Data Mining
Aula 7 - Os algoritmos SPIRIT Curso de Data Mining Sandra de Amo O esquema geral dos algoritmos SPIRIT é o seguinte: ETAPA 1 : Etapa do relaxamento R Calula-se o onjunto L das sequênias frequentes que
Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015
bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 1. Linguagens Regulares Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected] www.each.usp.br/lauretto
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
Descobrindo medidas desconhecidas (II)
A UU L AL A Desobrindo medidas desonheidas (II) Q uem trabalha no ramo da meânia sabe que existem empresas espeializadas em reforma de máquinas. As pessoas que mantêm esse tipo de atividade preisam ter
CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 1
Prof. Élio Mega ONSTRUÇÕES GEOMÉTRIS E DEMONSTRÇÕES nível 1 partir do século V a, os matemáticos gregos desenvolveram uma parte da Matemática, intimamente ligada à Geometria, conhecida como onstruções
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos
1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação SCC-205 TEORIA DA COMPUTAÇÃO E LINGUAGENS FORMAIS Turma 1 2º. Semestre de 2012 Prof. João Luís
Aula 9: Máquinas de Turing
Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular
As Equações de Maxwell e a Onda Eletromagnética
As Equações de Maxwell e a Onda Eletromagnétia Evandro Bastos dos antos 27 de Maio de 2017 1 Introdução Até agora vimos aqui quatro leis do no eletromagnetismo. A lei de Gauss na eletrostátia, E ˆnda =
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Cálculo IV EP1 Aluno
Fundação Centro de Ciênias e Eduação Superior a istânia do Estado do Rio de Janeiro Centro de Eduação Superior a istânia do Estado do Rio de Janeiro Cálulo IV EP Aluno Objetivos Aula Integrais uplas Compreender
BCC242. Auômato Finito Determinístico
BCC242 Auômato Finito Determinístico Máquinas de Estados Finitos As máquinas de estados finitos são máquinas abstratas que capturam partes essenciais de algumas máquinas concretas. Tipos Tradutores máquinas
LFA Aula 07. Equivalência entre AFD e AFND. Equivalência entre ER s e AF s Equivalência entre GR s e AF s. Linguagens Formais e Autômatos
LFA Aula 07 Equivalência entre AFD e AFND AFND: uma aplicação busca em textos Equivalência entre ER s e AF s Equivalência entre GR s e AF s Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa
LFA Aula 05. AFND: com e sem movimentos 05/12/2016. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 05 AFND: com e sem movimentos vazios 05/12/2016 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula passada... Reconhecedores genéricos Autômatos finitos
Exercicios. 7.2 Quais das seguintes afirmações são verdadeiras? Justifica. (d) abcd L((a(cd) b) )
Exercicios 7.1 Escreve expressões regulares para cada uma das seguintes linguagens de Σ = {a, b}: (a) palavras com não mais do que três as (b) palavras com um número de as divisível por três (c) palavras
Autômatos Finitos Não Determinís5cos (AFN)
Linguagens Formais e Autômatos Autômatos Finitos Não Determinís5cos (AFN) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Introdução
Autômatos finitos não-determinísticos
Autômatos finitos não-determinísticos IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 30 Frase do dia The
Transformação de AP para GLC
UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA Transformação de AP para GLC Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Prof. Yandre Maldonado - 2 A técnica que será
CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 2
Prof. Élio Mega ONSTRUÇÕES GEOMÉTRIS E DEMONSTRÇÕES nível 2 partir do século V a, os matemáticos gregos desenvolveram uma parte da Matemática, intimamente ligada à Geometria, conhecida como onstruções
INE5317 Linguagens Formais e Compiladores AULA 6: Autômatos Finitos Com S aída
INE5317 Linguagens Formais e Compiladores AULA 6: Autômatos Finitos Com S aída baseado em material produzido pelo prof Paulo B auth Menezes e pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira
Teoria da Computação
Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: [email protected] Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz
Aula 5: Autômatos Finitos Remoção de Não-Determinismo
Teori d Computção Primeiro Semestre, 25 DAINF-UTFPR Aul 5: Autômtos Finitos 3 Prof. Rirdo Dutr d Silv 5. Remoção de Não-Determinismo As lsses de utômtos definids nteriormente são tods equivlentes. Vmos
Linguagens e Programação Automátos Finitos. Paulo Proença
Linguagens e Programação Automátos Finitos Autómatos finitos Formalismo, que permite representar de uma forma clara, um qualquer processo composto por um conjunto de estados e transições entre esses estados.
Eletromagnetismo Potenciais Eletromagnéticos: a Solução Geral
Eletromagnetismo Poteniais Eletromagnétios: a Solução Geral Eletromagnetismo» Poteniais Eletromagnétios: a Solução Geral 1 Os Poteniais Vetor e Elétrio As leis dinâmias da físia são voltadas para a desrição
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Conversão de Expressões Regulares (ER) para Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Introdução A construção sistemática de um Autômato Finito para
Problema 4.40 do livro do Symon
Problema 4.4 do livro do Symon O problema 4.4 do livro do Symon é uma variação do que vimos na postagem Dois osiladores harmônios aoplados pois onsta de três massas presas a duas molas ao longo de um eixo
Uma árvore orientada é um digrafo conexo que não possui circuitos ou semi-circuitos.
11 - Árvores Vamos representar as situações aaixo através de rafos. a)joo da vela ) Árvore Genealóia x x x... x x x... o o o a) Vérties: os estados do joo arestas: existe uma aresta entre um estado do
Aula 3: Autômatos Finitos
Teoria da Computação Segundo Semestre, 24 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos
Teoria de Linguagens 1 o semestre de 2018 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 17/4/2018 Valor: 10 pontos
Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 8 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 7/4/8 Valor: pontos. Uma versão do problema
Analisadores Sintáticos LR
FACULDADE ANGLO AMERICANO FOZ DO IGUAÇU Curso de Ciência da Computação 7º Periodo Disciplina: Compiladores Prof. Erinaldo Sanches Nascimento Analisadores Sintáticos LR SLR LR Canônicos LALR Analisadores
MAC-4722 Linguagens, Autômatos e Computabilidade Lista L3
MAC-4722 Linguagens, Autômatos e Computabilidade Lista L3 Athos Coimbra Ribeiro NUSP: ****** 3 de Abril de 26 Problema.46 (itens a,c, e d) Solução a) L = { n m n m, n } Usamos o lema do bombeamento para
Expressões Regulares. Linguagens Formais e Autômatos. Andrei Rimsa Álvares
Linguagens Formais e Autômatos Expressões Regulares Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Expressões Regulares Até agora foram vistas
Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção
Shift e reduce Shift: move o foco uma posição à direita A B C x y z A B C x y z é uma ação shift Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção Se A x y é uma produção, então
Exercícios Associados à Aula 02 (14/08/2013)
Exercícios Associados à Aula 02 (14/08/2013) Os exercícios da disciplina devem ser feitos pelos alunos à medida que as aulas vão sendo dadas. Dúvidas devem ser dirigidas à professora, por email ou em sala
Gabarito da lista de Exercícios sobre Conjuntos
Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Conjuntos 1. Determine quais
O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que
O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e
Lista de Exercícios CT-200 Primeiro Bimestre Carlos Henrique Quartucci Forster Estagiário: Wesley Telles. Revisão de Teoria de Conjuntos
Lista de Exercícios CT-200 Primeiro Bimestre 2010 Carlos Henrique Quartucci Forster Estagiário: Wesley Telles Revisão de Teoria de Conjuntos 1. Sejam A = {1,2 } e B = { x, y, z}. Quais os elementos dos
Teoria de Linguagens 2 o semestre de 2017 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 19/9/2017 Valor: 10 pontos
Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 7 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 9/9/7 Valor: pontos. Uma versão do problema
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento
Para Computação. Aula de Monitoria - Miniprova
Para Computação Aula de Monitoria - Miniprova 1 2013.1 Roteiro Provas e Proposições Conjuntos Provas e Proposições Proposição - Sentença que ou é verdadeira ou é falsa. ex: Hoje é sábado. -> É uma proposição.
Física I Lista 2: resolver até
Universidade de São Paulo Instituto de Físia de São Carlos Físia I Lista : resolver até 18.3.013 Nome: Matriula: Questão 16: Tensor de Levi-Civita Sejam dados os vetores a, b,, d R 3. A definição do símbolo
13 Fórmula de Taylor
13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =
Melhores momentos AULA PASSADA. Complexidade Computacional p. 136
Melhores momentos AULA PASSADA Complexidade Computacional p. 136 Configurações controle q 7 cabeça 1 0 1 1 0 1 1 1 fita de leitura e escrita Configuração 1 0 1q 7 1 0 1 1 1 Complexidade Computacional p.
Modelos de Computação Folha de trabalho n. 10
Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada
Aula 10: Decidibilidade
Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas
Planejamento em Inteligência Artificial Capítulo 4 Planejamento como busca no Espaço de Estados
Planejamento em Inteligênia Artifiial Capítulo 4 Planejamento omo busa no Espaço de Estados Leliane Nunes de Barros Motivação Planejamento é um problema de busa Busa em espaço de estados» Cada nó representa
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
Comece apresentando as partes do triângulo retângulo usadas na trigonometria.
ós na ala de Aula - Matemátia 6º ao 9º ano - unidade 7 As atividades propostas nas aulas a seguir têm omo objetivo proporionar ao aluno ondições de ompreender, de forma prátia, as razões trigonométrias
Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE
Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N
Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados
Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2019.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Resolva as seguintes recorrências: (a) a n+2 5a n+1 + 4a n = 0, a 0 = 1, a 1 = 3. (b)
Identidade de modelos na estimativa do volume de árvores de Pinus caribaea var. hondurensis
Identidade de modelos na estimativa do volume de árvores de Pinus aribaea var. hondurensis Edson Lahini Adriano Ribeiro de Mendonça Leonardo Cassani Laerda Gilson Fernandes da Silva Introdução Nos inventários
