Linguagens Formais e Autômatos
|
|
|
- Brenda Cabreira Bergmann
- 9 Há anos
- Visualizações:
Transcrição
1 Linguagens Formais e Autômatos Conversão de Expressões Regulares (ER) para Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc.
2 Introdução A construção sistemática de um Autômato Finito para reconhecer strings de uma linguagem regular é realizada em três etapas: Construção de um autômato finito que representa diretamente os elementos de uma expressão regular. Pela característica dessa construção, esse primeiro autômato é não determinístico. Algoritmo de Thompson. Conversão do autômato finito não determinístico para um autômato finito determinístico equivalente, ou seja, que reconheça strings da mesma linguagem. Método da Construção de subconjuntos. Reduzir, se possível, o número de estados do autômato. Para tanto, o procedimento nessa etapa procura identificar estados que sejam redundantes e, se os encontra, os substitui por um único estado. Minimização de estados do autômato.
3 Algoritmo de Thompson (1/4) O algoritmo de Thompson define uma sequência de passos para, a partir de uma expressão regular, obter um autômato finito com movimentos vazios que reconheça sentenças da correspondente linguagem regular. ER = q 0 ER = q f ER = x q 0 x q f
4 Algoritmo de Thompson (2/4) ER = r + s r 0 r f q 0 q f s 0 s f
5 Algoritmo de Thompson (3/4) ER = rs r 0 r f s 0 s f
6 Algoritmo de Thompson (4/4) ER = r* q 0 r 0 r f q f
7 Método da Construção de Subconjuntos (1/4) Autômatos finitos com movimentos vazios (AF ) e autômatos finitos não determinísticos (AFN) não são muito práticos para realizar o reconhecimento de strings. Para realizar o reconhecimento automático da string de forma mais direta, é mais interessante utilizar um autômato finito determinístico (AFD). Existe um procedimento sistemático para transformar um AF num AFD que aceita a mesma linguagem: O procedimento apresentado frequentemente é denominado método da construção de subconjuntos.
8 Método da Construção de Subconjuntos (2/4) O princípio associado a esse método é criar novos estados, no AFD, que estejam associados a todas as possibilidades de estados originais em um dado momento da análise da sentença no processo de reconhecimento. Para cada estado original, essas possibilidades incluem o estado do AF e todos os estados que podem ser atingidos a partir dele com transições pela string vazia. Esse conjunto de estados do AF é definido pela operação * (lêse épsilon-clausura): A aplicação da * a um conjunto de estados resulta no conjunto que inclui, além dos próprios estados, cada um dos demais estados do autômato que podem ser alcançados a partir desses com transições pela string vazia.
9 Método da Construção de Subconjuntos (3/4) A aplicação do método da construção de subconjuntos começa pela computação da * do conjunto que contém apenas o estado inicial do AF. O conjunto de estados resultante representa um único estado no novo AFD. Como esse estado inclui o estado inicial do autômato original, será também o estado inicial do novo autômato. Do mesmo modo, se o estado final do autômato original for elemento desse conjunto, o novo estado será também um estado final no novo autômato. Cada novo estado que é gerado dessa maneira é incluído numa lista de estados a analisar.
10 Método da Construção de Subconjuntos (4/4) O procedimento prossegue com a análise de estados ainda não analisados: O objetivo dessa análise é verificar, para cada símbolo do alfabeto, se há transição possível a partir do estado sob análise e, se houver transição, para qual estado ele leva. A transição por um símbolo do alfabeto será possível se houver, no conjunto de estados originais associado ao estado analisado, pelo menos um elemento que tenha a transição pelo mesmo símbolo no autômato original. Se houver, o novo estado resultante da transição será a * do conjunto de estados que resulta da transição por esse símbolo no AF.
11 Expressão Regular (ER): (0 + 1)*0 Passo a Passo (1/3) Autômato Finito com Movimentos Vazios (AF ): ({0, 1}, {q 1, q 2,..., q 9, q 10 },, q 1, {q 10 })
12 Passo a Passo (2/3) * {q 1 } = {q 1, q 2, q 3, q 4, q 8, q 9 } (s 1 ) s 1 q 1 q 2 q 3 q 4 q 8 q q q q * {q 5, q 10 } = {q 2, q 3, q 4, q 5, q 7, q 8, q 9, q 10 } (s 2 ) s 2 q 2 q 3 q 4 q 5 q 7 q q q q 9 q 10 - q * {q 6 } = {q 2, q 3, q 4, q 6, q 7, q 8, q 9 } (s 3 ) s 3 q 2 q 3 q 4 q 5 q 7 q q q q 9 q 10 -
13 Passo a Passo (3/3) Autômato Finito Determinístico (AFD): ({0, 1}, {s 1, s 2, s 3 },, s 1, {s 2 }) s 1 s 2 s 3 0 s 2 s 2 s 2 1 s 3 s 3 s 3
14 Minimização de Estados do Autômato (1/4) O procedimento é baseado na construção iterativa de partições do conjunto K de estados do autômato. A cada iteração, o objetivo é identificar se há um comportamento diferenciado entre os estados que fazem parte de uma partição, ou seja, é preciso analisar o que ocorre nas transições associadas a estados dessa partição. Se há essa diferença de comportamento, então os estados não são redundantes e novas partições são criadas a partir dessa. Caso contrário, se todos os estados numa partição têm exatamente o mesmo comportamento, então os estados são redundantes e podem ser combinados, num autômato minimizado, em um único estado. Se uma partição tem um único estado, então aquele estado não era redundante no autômato original.
15 Minimização de Estados do Autômato (2/4) O primeiro particionamento do conjunto de estados do autômato reflete a diferença entre estados que são finais e estados que não são finais. Se F representa o conjunto de estados finais do autômato, então essa primeira iteração cria uma partição P1 = {C 1, C 2 } com dois subconjuntos, um com os estados finais, C 1 = F, e outro com os demais estados, C 2 = K F. Se uma partição P i contém entre seus elementos um subconjunto não-unitário, então esse subconjunto deve ser analisado para descobrir se seus estados são ou não redundantes.
16 Minimização de Estados do Autômato (3/4) Seja esse subconjunto C i : Para cada estado de C i, é preciso verificar para qual subconjunto da partição P i as transições pelos símbolos do alfabeto levam. Se dois ou mais estados têm transições levando, a partir de cada símbolo, a subconjuntos distintos, então seus comportamentos são distintos e esses estados deverão, na próxima partição P i+1, estar em subconjuntos distintos. Caso contrário, se não houver nenhuma diferença de comportamento entre os estados do subconjunto C i, então seus elementos são redundantes e podem ser representados por um único estado no autômato minimizado.
17 Minimização de Estados do Autômato (4/4) O refinamento da partição do conjunto de estados deve continuar até que não haja mais possibilidades de particionar nenhum subconjunto da partição, seja porque o subconjunto é redundante, seja porque é unitário. O autômato que resulta desse procedimento de minimização terá um estado associado a cada subconjunto da última partição que foi obtida.
18 Passo a Passo (1/2) Autômato Finito Determinístico (AFD): ({0, 1}, {s 1, s 2, s 3 },, s 1, {s 2 }) s 1 s 2 s 3 0 s 2 s 2 s 2 1 s 3 s 3 s 3 P 1 = {C 1, C 2 }, com C 1 = {s 2 } e C 2 = {s 1, s 3 } C 2 s 1 s 3 0 C 1 C 1 1 C 2 C 2
19 Passo a Passo (2/2) Autômato Finito Determinístico (AFD) Minimizado: ({0, 1}, {C 1, C 2 },, C 2, {C 1 }) C 1 C 2 0 C 1 C 1 1 C 2 C C 2 C 2 1 0
Linguagens e Programação Automátos Finitos. Paulo Proença
Linguagens e Programação Automátos Finitos Autómatos finitos Formalismo, que permite representar de uma forma clara, um qualquer processo composto por um conjunto de estados e transições entre esses estados.
Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves
Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 08 Minimização de AFDs [email protected] Últimas aulas... Linguagens Formais vs Linguagens Naturais Últimas aulas... Linguagens
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira As Linguagens e os formalismos representacionais
Autômatos Finitos Não Determinís5cos (AFN)
Linguagens Formais e Autômatos Autômatos Finitos Não Determinís5cos (AFN) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Introdução
INCLUSÃO DO ALGORITMO DE TRANSFORMAÇÃO DE UM AUTÔMATO FINITO EM EXPRESSÃO REGULAR NO AMBIENTE EDITOR DE AUTÔMATOS FINITOS
INCLUSÃO DO ALGORITMO DE TRANSFORMAÇÃO DE UM AUTÔMATO FINITO EM EXPRESSÃO REGULAR NO AMBIENTE EDITOR DE AUTÔMATOS FINITOS Acadêmico: Fernando Rafael Piccini Orientador: José Roque Voltolini da Silva Roteiro
Algoritmo de Minimização de AFD
a * Algoritmo de Minimização de AFD (Menezes, 2002) e no Livro Animado do próprio autor: ttp://teia.inf.ufrgs.br/cgi-bin/moore.pl?curso=livroanimado&estado=81 1 Autômato Finito Mínimo Um Autômato Mínimo
Licenciatura em Engenharia Informática DEI/ISEP Linguagens de Programação 2006/07
Licenciatura em Engenharia Informática DEI/ISEP Linguagens de Programação 2006/07 Ficha 3 Autómatos Finitos Objectivos: Introdução ao conceito de Autómato Finito e notações utilizadas na sua representação;
LFA Aula 07. Equivalência entre AFD e AFND. Equivalência entre ER s e AF s Equivalência entre GR s e AF s. Linguagens Formais e Autômatos
LFA Aula 07 Equivalência entre AFD e AFND AFND: uma aplicação busca em textos Equivalência entre ER s e AF s Equivalência entre GR s e AF s Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa
Linguagens Formais e Autômatos. Simplificação de Gramáticas Livre do Contexto (GLC)
Linguagens Formais e Autômatos Simplificação de Gramáticas Livre do Contexto (GLC) Cristiano Lehrer, M.Sc. Gramática Simplificada Gramática simplificada é uma gramática livre do contexto que não apresenta
Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 4. Autômatos Finitos
Curso: Ciência da Computação Turma: 6ª Série Aula 4 Autômatos Finitos Autômatos Finitos Não Determinísticos Um autômato finito não-determinístico (AFND, ou NFA do inglês) tem o poder de estar em vários
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
Linguagens Formais e Autômatos. Autômatos Finitos Determinísticos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Linguagens Regulares A teoria da computação começa com uma pergunta: O que é um computador? É, talvez, uma
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares baseado em material produzido pelo prof Paulo B auth Menezes e pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja
LFA Aula 05. AFND: com e sem movimentos 05/12/2016. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 05 AFND: com e sem movimentos vazios 05/12/2016 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula passada... Reconhecedores genéricos Autômatos finitos
Compiladores - Autômatos
Compiladores - Autômatos Fabio Mascarenhas 2015.1 http://www.dcc.ufrj.br/~fabiom/comp Especificação x Implementação Usamos expressões regulares para dar a especificação léxica da linguagem Mas como podemos
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Estados Equivalentes. Exemplo R: Sim, b e f. Note que se estamos em b ou f então:
Minimização de AFD Estados Equivalentes. Exemplo Considere os estados de aceitação c e g. Eles são ambos estados que, uma vez atingidos, nunca se sai deles, desde que se leia 0 ou 1. Q: Precisamos desses
Como construir um compilador utilizando ferramentas Java
Como construir um compilador utilizando ferramentas Java p. 1/2 Como construir um compilador utilizando ferramentas Java Aula 4 Análise Léxica Prof. Márcio Delamaro [email protected] Como construir
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos
a * Minimização de AFD AFD equivalente, com o menor número de estados possível
a * Minimização de AFD AFD equivalente, com o menor número de estados possível 1 Minimização de um AF (Menezes, 2002) Def: Um autômato mínimo de uma LR é um AFD com um número de estados tal que qualquer
COMPILADORES. Revisão Linguagens formais Parte 01. Geovane Griesang
Universidade de Santa Cruz do Sul UNISC Departamento de informática COMPILADORES Revisão Linguagens formais Parte 01 [email protected] Legenda: = sigma (somatório) = delta ε = épsilon λ = lambda
Teoria de Linguagens 1 o semestre de 2018 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 17/4/2018 Valor: 10 pontos
Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 8 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 7/4/8 Valor: pontos. Uma versão do problema
TRANSFORMAÇÃO DE GRAMÁTICAS LIVRES DO CONTEXTO PARA EXPRESSÕES REGULARES ESTENDIDAS
TRANSFORMAÇÃO DE GRAMÁTICAS LIVRES DO CONTEXTO PARA EXPRESSÕES REGULARES ESTENDIDAS Acadêmico: Cleison Vander Ambrosi Orientador: José Roque Voltolini da Silva Roteiro da Apresentação Introdução Motivação
Capítulo 2: Máquinas de Estados Finitos. Modelagem do problema. Quebra-cabeças. Newton José Vieira, Isabel Gomes Barbosa. 19 de agosto de 2010
Sumário Newton José Vieira Isabel Gomes Barbosa Departamento de Ciência da Computação Universidade Federal de Minas Gerais 9 de agosto de 2 Quebra-cabeças Modelagem do problema O Leão, o coelho e o repolho
Compiladores. Análise lexical. Plano da aula. Motivação para análise lexical. Vocabulário básico. Estrutura de um compilador
Estrutura de um compilador programa fonte Compiladores Análise lexical () Expressões Regulares analisador léxico analisador sintático analisador semântico análise gerador de código intermediário otimizador
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 09/09/2013 Panorama do Restante da Disciplina 1 Próximo Tópicos da Matéria Linguagens Autômatos Regulares Autômatos Finitos Máquinas de Moore e Mealy Livres
AF Não-determinísticos Equivalência entre AFND e AFD
AF Não-determinísticos Equivalência entre AFND e AFD 1 AF NÃO-Determinístico (AFND) Consideremos uma modificação no modelo do AFD para permitir zero, uma ou mais transições de um estado sobre o MESMO símbolo
AFNs, Operações Regulares e Expressões Regulares
AFNs, Operações Regulares e Expressões Regulares AFNs. OperaçõesRegulares. Esquematicamente. O circulo vermelho representa o estado inicial q 0, a porção verde representa o conjunto de estados de aceitação
Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.
Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos
Apostila 02. Objetivos: Estudar os autômatos finitos Estudar as expressões regulares Estudar as gramáticas regulares Estudar as linguagens regulares
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Expressões Regulares e Gramáticas Regulares
Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos TEXTO 2 Expressões Regulares e Gramáticas Regulares Prof. Luiz A M Palazzo Março de 2007 Definição de Expressão
Autômatos Finitos e Não-determinismo
Autômatos Finitos e Não-determinismo Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Autômatos Finitos e Não-determinismo
Propriedades de Fecho de Linguagens Regulares.
Propriedades de Fecho de Linguagens Regulares. Gerando Linguagens Regulares Recorde a seguinte teorema: THM: Linguagens regulares são aquelas que podem ser geradas a partir de linguagens finitas pela aplicação
Folha 2 Autómatos e respectivas linguagens
Folha 2 Autómatos e respectivas linguagens 1. Considere a linguagem L formada por todas as sequências sobre o alfabeto { 0, 1, 2 } cujo somatório seja divisível por 3. Construa um autómato finito A que
SCC Capítulo 1 Linguagens Regulares e Autômatos Finitos
SCC-505 - Capítulo 1 Linguagens Regulares e Autômatos Finitos João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo
Linguagens Livres de Contexto
Universidade Católica de Pelotas Centro Politécnico Bacharelado em Ciência da Computação 364018 Linguagens Formais e Autômatos TEXTO 4 Linguagens Livres de Contexto Prof. Luiz A M Palazzo Maio de 2011
Teoria de Linguagens 2 o semestre de 2017 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 19/9/2017 Valor: 10 pontos
Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 7 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 9/9/7 Valor: pontos. Uma versão do problema
Expressões Regulares. Linguagens Formais e Autômatos. Andrei Rimsa Álvares
Linguagens Formais e Autômatos Expressões Regulares Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Expressões Regulares Até agora foram vistas
Autômatos finitos não-determinísticos
Autômatos finitos não-determinísticos IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 30 Frase do dia The
Linguagens Livres de Contexto
Linguagens Livres de Contexto 1 Roteiro Gramáticas livres de contexto Representação de linguagens livres de contexto Formas normais para gramáticas livres de contexto Gramáticas ambíguas Autômatos de Pilha
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação SCC-205 TEORIA DA COMPUTAÇÃO E LINGUAGENS FORMAIS Turma 1 2º. Semestre de 2012 Prof. João Luís
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Doutorando em Ciência da Computação Estagiário em docência II Departamento de Ciência da Computação
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 2. Linguagens Livres-do-Contexto Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected]
a n Sistemas de Estados Finitos AF Determinísticos
a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
BCC242. Auômato Finito Determinístico
BCC242 Auômato Finito Determinístico Máquinas de Estados Finitos As máquinas de estados finitos são máquinas abstratas que capturam partes essenciais de algumas máquinas concretas. Tipos Tradutores máquinas
Linguagens e Autômatos
167657 - Controle para Automação Curso de Graduação em Engenharia de Controle e Automação Departamento de Engenharia Elétrica Universidade de Brasília Linguagens e Autômatos Geovany A. Borges [email protected]
A. (Autómatos finitos determinísticos e não determinísticos AFD e AFND)
DEP. INFORMÁTICA - UNIVERSIDADE DA BEIRA INTERIOR Teoria da Computação Eng. Informática 1º Semestre Exame 1ª chamada - Resolução 2h + 30min 31/Jan/2011 Pergunta A.1 A.2 A.3 B.1 B.2 B.3a B.3b C.1 C.2 D.1
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP 1 ACP Assim como LR tem um autômato equivalente (AF) as LLC tem também
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 1. Linguagens Regulares Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected] www.each.usp.br/lauretto
Autômatos com Pilha. Douglas O. Cardoso docardoso.github.io
Autômatos com Pilha [email protected] docardoso.github.io Autômatos com Pilha 1/18 Roteiro 1 Autômatos com Pilha 2 APDs 3 APNs Autômatos com Pilha 2/18 Roteiro 1 Autômatos com Pilha 2 APDs 3
LINGUAGENS FORMAIS Modelos Determinísticos e Não Determinísticos. Usam-se modelos matemáticos para representar eventos (fenômenos) do mundo real.
LINGUAGENS FORMAIS Modelos Determinísticos e Não Determinísticos Modelos Matemáticos Usam-se modelos matemáticos para representar eventos (fenômenos) do mundo real. Ressalta-se contudo que é muito importante
AF Não-determinísticos Equivalência entre AFND e AFD AFs e GRs Implementação de AFs
AF Não-determinísticos Equivalência entre AFND e AFD AFs e GRs Implementação de AFs 1 AF NÃO-Determinístico (AFND) Consideremos uma modificação no modelo do AFD para permitir zero, uma ou mais transições
Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção
Shift e reduce Shift: move o foco uma posição à direita A B C x y z A B C x y z é uma ação shift Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção Se A x y é uma produção, então
LFA Aula 08. Minimização de AFD Autômatos Finitos com saídas 25/01/2017. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 08 Minimização de AFD Autômatos Finitos com saídas 25/01/2017 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula de hoje Minimização de autômatos finitos
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 2. Linguagens Livres-do-Contexto Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected]
INE5317 Linguagens Formais e Compiladores AULA 6: Autômatos Finitos Com S aída
INE5317 Linguagens Formais e Compiladores AULA 6: Autômatos Finitos Com S aída baseado em material produzido pelo prof Paulo B auth Menezes e pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira
Linguagens Livres do Contexto. Adaptado de H. Brandão
Linguagens Livres do Contexto Adaptado de H. Brandão Linguagens Livres do Contexto Para as LLC, temos as Gramáticas Livres do Contexto; Linguagens Livres do Contexto Para as LLC, temos as Gramáticas Livres
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 13 Autômato com Pilha [email protected] Última aula Linguagens Livres do Contexto P(S*) Recursivamente enumeráveis Recursivas
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Segunda e Quinta:
Autômatos Finitos Determinís3cos (AFD)
Linguagens Formais e Autômatos Autômatos Finitos Determinís3cos (AFD) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Introdução Exemplos Sumário
Autómatos Finitos Determinísticos (AFD)
Folha Prática Autómatos Finitos 1 Autómatos Finitos Determinísticos (AFD) 1. Determine e implemente computacionalmente um AFD que aceita todas as cadeias de cada uma das seguintes linguagens sobre o alfabeto
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Segunda Lista de Exercícios - Aula sobre dúvidas Sérgio Mariano Dias 1 1 Mestrando em Ciência da Computação Departamento de Ciência da Computação Universidade Federal
Gramática Livre de Contexto
Gramática Livre de Contexto Prof. Yandre Maldonado - 1 Árvore de derivação Ambigüidade Simplificação de Gramática Forma Normal de Chomsky (FNC) Forma Normal de Greibach (FNG) Prof. Yandre Maldonado e Gomes
Construção de Compiladores Aula 16 - Análise Sintática
Construção de Compiladores Aula 16 - Análise Sintática Bruno Müller Junior Departamento de Informática UFPR 25 de Setembro de 2014 1 Introdução Hierarquia de Chomsky Reconhecedores Linguagens Livres de
Aula 3: Autômatos Finitos
Teoria da Computação Segundo Semestre, 24 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
Roteiro da Aula 3. Sintaxe. 2 Exemplos. 4 Propriedades de Fechamento. Teoria da. 116360 Aula 3. Roteiro
636 da Finitos Nãoterminísticos Finitos Não-terminísticos Sintaxe Semântica 2 3 4 5 636 Finitos Nãoterminísticos Sintaxe Semântica Não-terminismo Determinístico Exatamente uma trajetória sobre uma w Σ.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.
Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma
Máquinas de Turing - Computabilidade
BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma
Disciplina: LINGUAGENS FORMAIS, AUTÔMATOS E COMPUTABILIDADE Prof. Jefferson Morais
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE COMPUTAÇÃO CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO Disciplina: LINGUAGENS FORMAIS, AUTÔMATOS E COMPUTABILIDADE Prof.
Conceitos Básicos. Vocabulário Cadeias Linguagens Problema
Conceitos Básicos Vocabulário Cadeias Linguagens Problema Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto. Ex: {A,B,C,.Z} alfabeto latino (maiúsculas)
Conversão de Autômatos Finitos Não Determinísticos (AFND) para Autômatos Finitos Determinísticos (AFD)
onversão de Autômatos Finitos Não Determinísticos (AFND) para Autômatos Finitos Determinísticos (AFD) Prof. Juan Moises Mauricio Villanueva [email protected] www.cear.ufpb.br 1 Autômatos Finitos Não
Teoria da Computação. 2006/2007 Trabalho prático nº 1. Trabalho realizado por: Pedro Oliveira ( ) Rui Costa ( ) Turma: TP1
2006/2007 Trabalho prático nº 1 Trabalho realizado por: Pedro Oliveira (501062444) Rui Costa (501062452) Turma: TP1 1 - Introdução O objectivo deste trabalho era implementar um simulador de Autómatos Finitos
Aula 3: Autômatos Finitos
Teoria da Computação Primeiro Semestre, 25 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS
NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo
IV Gramáticas Livres de Contexto
IV Gramáticas Livres de Contexto Introdução Definições de GLC 1 G = (Vn, Vt, P, S) onde P = {A α A Vn α (Vn Vt) + } 2 GLC ε - LIVRE : S ε pode pertencer a P, desde que: S seja o símbolo inicial de G S
Exercicios. 7.2 Quais das seguintes afirmações são verdadeiras? Justifica. (d) abcd L((a(cd) b) )
Exercicios 7.1 Escreve expressões regulares para cada uma das seguintes linguagens de Σ = {a, b}: (a) palavras com não mais do que três as (b) palavras com um número de as divisível por três (c) palavras
Compiladores - Análise Ascendente
Compiladores - Análise Ascendente Fabio Mascarenhas - 2013.1 http://www.dcc.ufrj.br/~fabiom/comp Análise Descendente vs. Ascendente As técnicas de análise que vimos até agora (recursiva com retrocesso,
Compiladores - Análise Ascendente
Compiladores - Análise Ascendente Fabio Mascarenhas - 2013.2 http://www.dcc.ufrj.br/~fabiom/comp Análise Descendente vs. Ascendente As técnicas de análise que vimos até agora (recursiva com retrocesso,
