AF Não-determinísticos Equivalência entre AFND e AFD
|
|
|
- Geraldo de Barros
- 6 Há anos
- Visualizações:
Transcrição
1 AF Não-determinísticos Equivalência entre AFND e AFD 1
2 AF NÃO-Determinístico (AFND) Consideremos uma modificação no modelo do AFD para permitir zero, uma ou mais transições de um estado sobre o MESMO símbolo de entrada. Ou visto de outra forma: a função toma um estado e uma entrada e devolve zero, um ou mais estados. Esse modelo é chamado AFND. 2
3 Por que isso é interessante? Pois possibilita tentar alternativas distintas Se cada estado representa uma opção, ir para mais de um estado representa tentar opções diferentes de caminho para a solução 3
4 AFND Uma cadeia de entrada a 1 a 2...a n é aceita/reconhecida por um AFND se existe AO MENOS UMA sequência de transições que leva do estado inicial para algum estado final. Ele funciona como se houvesse a multiplicação da unidade de controle, uma para cada alternativa, processando independentemente, sem compartilhar recursos com as demais, aceitando a cadeia se ao menos uma delas parar num estado final. Pensem: Será que o não-determinismo aumenta o poder de reconhecimento de linguagens de um AF? 4
5 0, 1 Exemplo q0 q1 q2 Esse autômato aceita cadeias de 0 s e 1 s que terminam em 01 (0+1)*01. Analisem a aceitação de Quando está em qo e o símbolo lido é 0 ele tem a opção de: continuar em qo no caso do fim da cadeia não estar próximo OU ir para q1 porque aposta que o fim está chegando. E na verdade ele executa as duas opções! Por isso costumamos pensar que ele advinha qual é a alternativa correta entre muitas. 5
6 Exemplo 2 L(M) = (0+1)* (00+11) (0+1)* ou seja, x {0,1}* x tenha dois 0 s consecutivos OU dois 1 s consecutivos 6
7 Ex 2 L(M) = (0+1)* (00+11) (0+1)* M = ({q0,q1,q2,q3,q4},{0,1},,q0,{q2,q4}) 7
8 Definição Formal de um AFND Denotamos um AFND pela 5-tupla (Q,,, qo,f) onde Q,, qo e F são os mesmos de um AFD e : Q X 2 Q, conjunto potência de Q, isto é, todos os subconjuntos de Q L(M) = {w (qo,w) F } No exemplo 2: Estado Entrada 0 1 qo {qo,q3} {qo,q1} q1 {q2} q2 {q2} {q2} q3 {q4} q4 {q4} {q4} 8
9 Exemplo 3 Construir um AFND que aceita cadeias {1,2,3}* tal que o último símbolo na cadeia tenha aparecido anteriormente. Por exemplo, 121 é aceita; não é aceita. Dica: resolvam para os seguintes vocabulários mais simples antes 1) Construir um AFND que aceita cadeias {1}* tal que o último símbolo na cadeia tenha aparecido anteriormente 1*11*1 2) Construir um AFND que aceita cadeias {1,2}* tal que o último símbolo na cadeia tenha aparecido anteriormente ((1+2)*1(1+2)*1)+ ((1+2)*2(1+2)*2) 9
10 1) Construir um AFND que aceita cadeias {1}* tal que o último símbolo na cadeia tenha aparecido anteriormente 10
11 2) Construir um AFND que aceita cadeias {1,2}* tal que o último símbolo na cadeia tenha aparecido anteriormente 11
12 Estendendo o vocabulário para {1, 2, 3}: 12
13 Equivalência entre AFD e AFND Teorema: Se L é reconhecida por um AFND, então ela é reconhecida por um AFD. Esse teorema responde a primeira pergunta desses slides. Vamos propor um método para construir um AFD a partir do AFND. Daí se pode provar que as linguagens reconhecidas por ambos são iguais (veja essa prova na bibliografia). Esse método é chamado de construção de subconjuntos 13
14 Exemplo: Seja M = ({q0,q1},{0,1},, q0,{q1}) Es/En 0 1 q0 {q0,q1} {q1} q1 {q0,q1} 14
15 Nós podemos construir um AFD M = (Q, {0,1},, {qo}, F ) aceitando L(M) pela construção chamada de construção de subconjuntos (dos estados de AFND). Ela é tal que é o mesmo do AFND e o estado inicial é o conjunto contendo somente o estado inicial do AFND. Q consiste de todos os subconjuntos de {qo,q1}: eo e1 e2 e3 {qo}, {q1}, {qo,q1}, e. ({q 1... q n }, a) = i=1 n (qi, a); F' = {p p Q' e p contém ao menos 1 elemento de F } 15
16 Assim, no exemplo: ({qo},0) ={qo,q1} ({qo},1) = {q1} ({q1},0) = ({q1},1) = {qo,q1} ({qo,q1},0) = {qo,q1} Pois ({qo,q1},0) = (qo,0) (q1,0) = {qo,q1} = {qo,q1} ({qo,q1},1) = {qo,q1} Pois ({qo,q1},1) = (qo,1) (q1,1) = {q1} {qo,q1} = {qo,q1} (,0) = (,1) = F = {{q1},{qo,q1}} isto é, estados onde F antigo estava presente 0 1 {qo} {qo,q1} {q1} {q1} {qo,q1} {qo,q1} {qo,q1} {qo,q1} 16
17 M = ({eo,e1,e2}, {0,1},, eo, {e1,e2}). L(M ) = 0(0+1)* (0+1)* 17
18 Estados Acessíveis e Não Acessíveis Embora muitas vezes seja mais fácil construir um AFND para uma LR, o AFD tem na prática quase o mesmo número de estados que o AFND, embora ele tenha mais transições. No pior caso, o AFD pode ter 2 n estados enquanto que o AFND para a mesma linguagem tem somente n estados. Ex. seja o AFND que aceita todas as cadeias em {0,1} que terminam em 01. 0,1 qo 0 1 q1 q2 18
19 AFND AFD qo {qo, q1} {qo} q1 {q2} {qo} {qo,q1} {qo} q2 *{q1} {q2} *{q2} {qo, q1} {qo,q1} {qo,q2} * {qo,q2} {qo,q1} {qo} *{q1,q2} {q2} *{qo,q1,q2} {q0,q1} {qo,q2} 19
20 AFND Renomeando os estados: AFD qo {qo, q1} {qo} A A A q1 {q2} B E B q2 * C A D *D A A Repare que os únicos estados acessíveis a partir de B são: B, E e F. Os demais são inacessíveis e não precisam constar da tabela. E E F *F E B *G A D *H E F 20
21 AFD resultante com n=3 estados 1 {qo} {qo,q1} {qo,q2} 0 1 Há casos, no entanto, em que o AFD correspondente não pode ter menos estados do que 2 n, sendo n o número de estados do AFND correspondente. 21
22 Verifique para o seguinte AFND: 0,1 qo 1 0,1 q1 q2 0,1 0,1 0,1... q n - 1 qn Aceita cadeias cujo n-ésimo símbolo, a partir da direita, é 1. 22
23 Cuidado com os estados de aceitação! Muitas vezes, ao construir AFD, impedimos que ele aceite cadeias válidas. Por outro lado, ao construir AFND, as vezes fazemos com que eles aceitem cadeias que não deveriam aceitar. 23
24 Exemplo Seja um AFD A que aceita cadeias sobre {0,1}* de comprimento par q0 0, 1 q1 L(A)= {(0+1) 2n n=0,1,...} Seja um AFD B que aceita cadeias sobre {0,1}* que não contêm 0 s q0 0,1 0 qr 0,1 L(B)= 1* 1 24
25 Coloque A e B juntos, formando um AFND AB 1 0 qr 0,1 q0 0, 1 0,1 q1 Poderíamos esperar que AB aceitasse a linguagem união das duas anteriores. Mas vemos que ela aceita não apenas essa união, mas qualquer cadeia exceto aquelas com número ímpar de 0 s e nenhum 1. L(AB)={0,1}* - {0 2n+1 n 0} 25
26 Estados de não-aceitação em AFD A definição estrita de um AFD EXIGE que todo estado tenha uma transição para cada símbolo de entrada. Se seguirmos esta definição muitos exemplos vistos na seção de AFD não eram AFD no senso estrito. Porém, temos a facilidade de criar um estado de nãoaceitação (erro) para o qual podem ir todas as entradas não necessárias na definição de uma linguagem. 26
27 AFD com estado de não-aceitação M = ({q0,q1, erro}, {A..Z,a..z,0..9,_}, q0,, {q1}) AF que reconhece identificadores em Pascal: : D erro Letra seguida de Letra ou Dígito: L (L+D)* 27
28 Um AF não é um programa......mas serve como um bom modelo. Vejamos como podemos implementar um AFD: de forma direta: escrevendo um código que simule as transições. controlado por tabela: simulador universal de AFD (veja Teoria dos Autômatos, Autômatos Finitos, Implementação de Autômatos Finitos em ) 28
29 Resumo Parcial AFD: conjunto finito de estados e conjunto finito de símbolos de entrada. Uma função determina como o estado se altera toda vez que um símbolo é processado. Linguagem de um AF: Um AF aceita cadeias. Uma cadeia é reconhecida se, começando no estado inicial, as transições levam a um estado de aceitação. AFND: difere do AFD pelo fato de que pode ter qualquer número de transições (inclusive zero) para os estados seguintes, a partir de um dado estado e de um dado símbolo de entrada. Construção de subconjuntos: tratando conjuntos de estados de um AFND como estados de um AFD, é possível converter qualquer AFND em um AFD que aceite a mesma linguagem. 29
AF Não-determinísticos Equivalência entre AFND e AFD AFs e GRs Implementação de AFs
AF Não-determinísticos Equivalência entre AFND e AFD AFs e GRs Implementação de AFs 1 AF NÃO-Determinístico (AFND) Consideremos uma modificação no modelo do AFD para permitir zero, uma ou mais transições
a n Sistemas de Estados Finitos AF Determinísticos
a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um
AF Não-determinísticos Equivalência entre AFND e AFD
AF Não-determinísticos Equivalência entre AFND e AFD 1 AF NÃO-Determinístico (AFND) Consideremos uma modificação no modelo do AFD para permitir zero, uma ou mais transições de um estado sobre o MESMO símbolo
Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 4. Autômatos Finitos
Curso: Ciência da Computação Turma: 6ª Série Aula 4 Autômatos Finitos Autômatos Finitos Não Determinísticos Um autômato finito não-determinístico (AFND, ou NFA do inglês) tem o poder de estar em vários
LFA Aula 07. Equivalência entre AFD e AFND. Equivalência entre ER s e AF s Equivalência entre GR s e AF s. Linguagens Formais e Autômatos
LFA Aula 07 Equivalência entre AFD e AFND AFND: uma aplicação busca em textos Equivalência entre ER s e AF s Equivalência entre GR s e AF s Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa
LFA Aula 05. AFND: com e sem movimentos 05/12/2016. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 05 AFND: com e sem movimentos vazios 05/12/2016 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula passada... Reconhecedores genéricos Autômatos finitos
Lema do Bombeamento Operações Fechadas sobre LR s Aplicações
a n Lema do Bombeamento Operações Fechadas sobre LR s Aplicações (H&U, 969),(H&U, 979), (H;M;U, 2) e (Menezes, 22) Lema do Bombeamento para LR Como decidir que uma linguagem é ou não regular? Não bastaria
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos
INE5317 Linguagens Formais e Compiladores AULA 5: Autômatos Finitos Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: www.inf.ufsc.br/~silveira As Linguagens e os formalismos representacionais
Linguagens Formais e Autômatos 02/2016. LFA Aula 04 16/11/2016. Celso Olivete Júnior.
LFA Aula 04 Autômatos Finitos 16/11/2016 Celso Olivete Júnior [email protected] 1 Classificação das Linguagens segundo Hierarquia de Chomsky Máquina de Turing Máquina de Turing com fita limitada Autômato
Autómatos Finitos Determinísticos (AFD)
Folha Prática Autómatos Finitos 1 Autómatos Finitos Determinísticos (AFD) 1. Determine e implemente computacionalmente um AFD que aceita todas as cadeias de cada uma das seguintes linguagens sobre o alfabeto
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 1. Linguagens Regulares Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected] www.each.usp.br/lauretto
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares
INE5317 Linguagens Formais e Compiladores AULA 6: Propriedades das Linguagens Regulares baseado em material produzido pelo prof Paulo B auth Menezes e pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja
Autômatos com Pilha: Reconhecedores de LLCs
Autômatos com Pilha: Reconhecedores de LLCs 1 Autômatos com Pilha (AP) Definições alternativas para Linguagens Livres de Contexto Extensão de AFND com uma pilha, que pode ser lida, aumentada e diminuída
a * Expressões Regulares (ER) Conversão de AF para ER no JFLAP Equivalências entre AFD, AFND, AF-, ER, GR
a * Expressões Regulares (ER) Conversão de AF para ER no JFLAP Equivalências entre AFD, AFND, AF-, ER, GR 1 Expressões Regulares (ER) Uma ER sobre um alfabeto é definida como: a) é uma ER e denota a linguagem
Conversão de Autômatos Finitos Não Determinísticos (AFND) para Autômatos Finitos Determinísticos (AFD)
onversão de Autômatos Finitos Não Determinísticos (AFND) para Autômatos Finitos Determinísticos (AFD) Prof. Juan Moises Mauricio Villanueva [email protected] www.cear.ufpb.br 1 Autômatos Finitos Não
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Conversão de Expressões Regulares (ER) para Autômatos Finitos Determinísticos (AFD) Cristiano Lehrer, M.Sc. Introdução A construção sistemática de um Autômato Finito para
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
Operações Fechadas sobre LR s Aplicações
a n Operações Fechadas sobre LR s Aplicações (H&U, 969),(H&U, 979), (H;M;U, 200) e (Menezes, 2002) (Sipser,997) Operações que preservam a propriedade de ser uma LR Existem muitas operações que, quando
Como construir um compilador utilizando ferramentas Java
Como construir um compilador utilizando ferramentas Java p. 1/2 Como construir um compilador utilizando ferramentas Java Aula 4 Análise Léxica Prof. Márcio Delamaro [email protected] Como construir
COMPILADORES. Revisão Linguagens formais Parte 01. Geovane Griesang
Universidade de Santa Cruz do Sul UNISC Departamento de informática COMPILADORES Revisão Linguagens formais Parte 01 [email protected] Legenda: = sigma (somatório) = delta ε = épsilon λ = lambda
a * Expressões Regulares (ER) AF e ER Equivalências entre AFD, AFND, AF-, ER
a * Expressões Regulares (ER) AF e ER Equivalências entre AFD, AFND, AF-, ER 1 Expressões Regulares (ER) Uma ER sobre um alfabeto é definida como: a) é uma ER e denota a linguagem vazia b) é uma ER e denota
Algoritmo de Minimização de AFD
a * Algoritmo de Minimização de AFD (Menezes, 2002) e no Livro Animado do próprio autor: ttp://teia.inf.ufrgs.br/cgi-bin/moore.pl?curso=livroanimado&estado=81 1 Autômato Finito Mínimo Um Autômato Mínimo
1 Expressões Regulares e Linguagens
1 1 Expressões Regulares e Linguagens Linguagem de Programação o Pesquisa em Textos o Componentes de Compiladores Intimamente Relacionadas com AFNDs São capazes de definir todas e somente as linguagens
Expressões Regulares. Linguagens Formais e Autômatos. Andrei Rimsa Álvares
Linguagens Formais e Autômatos Expressões Regulares Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hcp://dcc.ufmg.br/~nvieira) Expressões Regulares Até agora foram vistas
LFA Aula 08. Minimização de AFD Autômatos Finitos com saídas 25/01/2017. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 08 Minimização de AFD Autômatos Finitos com saídas 25/01/2017 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula de hoje Minimização de autômatos finitos
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Linguagens livres de contexto e autômatos de pilha
Capítulo 6: Linguagens livres de contexto e autômatos de pilha José Lucas Rangel, maio 1999 6.1 - Introdução. Os aceitadores, ou reconhecedores, das linguagens livres de contexto são os chamados autômatos
Licenciatura em Engenharia Informática DEI/ISEP Linguagens de Programação 2006/07
Licenciatura em Engenharia Informática DEI/ISEP Linguagens de Programação 2006/07 Ficha 3 Autómatos Finitos Objectivos: Introdução ao conceito de Autómato Finito e notações utilizadas na sua representação;
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP
a n Autômatos com Pilha: Definição Informal e Definição Formal Linguagem Aceita por um ACP ACPDet X ACPND Notação gráfica para ACP 1 ACP Assim como LR tem um autômato equivalente (AF) as LLC tem também
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação - 1 0 Semestre 007 Professora : Sandra Aparecida de Amo Solução da Lista de Exercícios n o 1 Exercícios de Revisão
Autômatos Finitos Não Determinís5cos (AFN)
Linguagens Formais e Autômatos Autômatos Finitos Não Determinís5cos (AFN) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hdp://dcc.ufmg.br/~nvieira) Sumário Introdução
Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves
Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que
Expressões regulares
Expressões regulares IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 38 Frase do dia A vida é uma luta inteira
Compiladores. Análise lexical. Plano da aula. Motivação para análise lexical. Vocabulário básico. Estrutura de um compilador
Estrutura de um compilador programa fonte Compiladores Análise lexical () Expressões Regulares analisador léxico analisador sintático analisador semântico análise gerador de código intermediário otimizador
Expressões Regulares e Gramáticas Regulares
Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos TEXTO 2 Expressões Regulares e Gramáticas Regulares Prof. Luiz A M Palazzo Março de 2007 Definição de Expressão
Conceitos básicos de Teoria da Computação
Folha Prática Conceitos básicos de 1 Conceitos básicos de Métodos de Prova 1. Provar por indução matemática que para todo o número natural n: a) 1 + 2 + 2 2 + + 2 n = 2 n+1 1, para n 0 b) 1 2 + 2 2 + 3
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 8 - Indecidibilidade Exercicio 1-5.5 do Livro
A. (Autómatos finitos determinísticos e não determinísticos AFD e AFND)
DEP. INFORMÁTICA - UNIVERSIDADE DA BEIRA INTERIOR Teoria da Computação Eng. Informática 1º Semestre Exame 1ª chamada - Resolução 2h + 30min 31/Jan/2011 Pergunta A.1 A.2 A.3 B.1 B.2 B.3a B.3b C.1 C.2 D.1
Máquina de Turing. Controle finito
Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos
Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.
Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos
Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)
Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q
Linguagens Regulares, Operações Regulares
Linguagens Regulares, Operações Regulares 1 Definição de Linguagem Regular Relembre a definição de linguagem regular: DEF: A linguagem aceita por um AF M é o conjunto de todos os strings que são aceitos
Aula 3: Autômatos Finitos
Teoria da Computação Segundo Semestre, 24 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
Universidade Federal de Alfenas
Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 08 Minimização de AFDs [email protected] Últimas aulas... Linguagens Formais vs Linguagens Naturais Últimas aulas... Linguagens
Decidibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)
Decidibilidade Mário S Alvim (msalvim@dccufmgbr) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S Alvim (msalvim@dccufmgbr) Decidibilidade DCC-UFMG (2018/02) 1 / 45 Decidibilidade:
a * Minimização de AFD AFD equivalente, com o menor número de estados possível
a * Minimização de AFD AFD equivalente, com o menor número de estados possível 1 Minimização de um AF (Menezes, 2002) Def: Um autômato mínimo de uma LR é um AFD com um número de estados tal que qualquer
Teoria da Computação
Introdução Março - 2009 1 Noções e Terminologia Matemática Conjuntos Um conjunto é um grupo de objetos, chamados elementos ou membros, representado como uma unidade. O conjunto { 3, 41, 57} possui os elementos
AFNs, Operações Regulares e Expressões Regulares
AFNs, Operações Regulares e Expressões Regulares AFNs. OperaçõesRegulares. Esquematicamente. O circulo vermelho representa o estado inicial q 0, a porção verde representa o conjunto de estados de aceitação
Linguagens Livres de Contexto
Universidade Católica de Pelotas Centro Politécnico Bacharelado em Ciência da Computação 364018 Linguagens Formais e Autômatos TEXTO 4 Linguagens Livres de Contexto Prof. Luiz A M Palazzo Maio de 2011
Compiladores - Autômatos
Compiladores - Autômatos Fabio Mascarenhas 2015.1 http://www.dcc.ufrj.br/~fabiom/comp Especificação x Implementação Usamos expressões regulares para dar a especificação léxica da linguagem Mas como podemos
Aula 3: Autômatos Finitos
Teoria da Computação Primeiro Semestre, 25 Aula 3: Autômatos Finitos DAINF-UTFPR Prof. Ricardo Dutra da Silva Um procedimento ue determina se uma string de entrada pertence à uma linguagem é um reconhecedor
LINGUAGEM LIVRE DE CONTEXTO GRAMÁTICA LIVRE DE CONTEXTO
LINGUAGEM LIVRE DE CONTEXTO As Linguagens Livres de Contexto é um reconhecedor de linguagens, capaz de aceitar palavras corretas (cadeia, sentenças) da linguagem. Por exemplo, os autômatos. Um gerador
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
Apostila 02. Objetivos: Estudar os autômatos finitos Estudar as expressões regulares Estudar as gramáticas regulares Estudar as linguagens regulares
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
MAC-4722 Linguagens, Autômatos e Computabilidade Lista L3
MAC-4722 Linguagens, Autômatos e Computabilidade Lista L3 Athos Coimbra Ribeiro NUSP: ****** 3 de Abril de 26 Problema.46 (itens a,c, e d) Solução a) L = { n m n m, n } Usamos o lema do bombeamento para
Autômatos Finitos e Não-determinismo
Autômatos Finitos e Não-determinismo Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Autômatos Finitos e Não-determinismo
Gramática regular. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz Universidade de São Paulo
Gramática regular IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 41 Frase do dia Através de três métodos
Fundamentos da Teoria da Computação
Fundamentos da Teoria da Computação Primeira Lista de Exercícios - Aula sobre dúvidas da lista Sérgio Mariano Dias 1 1 UFMG/ICEx/DCC Entrega da 1 a lista: 31/03/2009 Sérgio Mariano Dias (UFMG) Fundamentos
Conceitos Básicos. Vocabulário Cadeias Linguagens Problema
Conceitos Básicos Vocabulário Cadeias Linguagens Problema Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto. Ex: {A,B,C,.Z} alfabeto latino (maiúsculas)
Aula 10: Decidibilidade
Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo
Folha 2 Autómatos e respectivas linguagens
Folha 2 Autómatos e respectivas linguagens 1. Considere a linguagem L formada por todas as sequências sobre o alfabeto { 0, 1, 2 } cujo somatório seja divisível por 3. Construa um autómato finito A que
Sistemas de Estados Finitos AF Determinísticos. (H&U, 1979) e (H;M;U, 2001)
a n Sistemas de Estados Finitos AF Determinísticos (H&U, 1979) e (H;M;U, 2001) 1 Sistemas de Estados Finitos Uma máquina de estados finitos é um modelo matemático de um sistema com entradas e saídas discretas.
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 09/09/2013 Panorama do Restante da Disciplina 1 Próximo Tópicos da Matéria Linguagens Autômatos Regulares Autômatos Finitos Máquinas de Moore e Mealy Livres
Linguagens e Programação Automátos Finitos. Paulo Proença
Linguagens e Programação Automátos Finitos Autómatos finitos Formalismo, que permite representar de uma forma clara, um qualquer processo composto por um conjunto de estados e transições entre esses estados.
Aula 10: Decidibilidade
Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas
Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Lista de exercícios 1 Disciplina: Linguagens Formais e Autômatos Professora: Juliana Pinheiro
Autômato com pilha. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz
Autômato com pilha IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Departmento de Computação e Matemática FFCLRP Universidade de São Paulo E.E.S Ruiz (DCM USP)
a n Autômatos com Pilha: Definição Linguagem Aceita por um AP Notação gráfica para AP APD X APND
a n Autômatos com Pilha: Definição Linguagem Aceita por um AP Notação gráfica para AP APD X APND 1 Autômatos com Pilha (AP) Definições alternativas para Linguagens Livres de Contexto Extensão de AFND-ε
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Introdução Problema: definir um conjunto de cadeias de símbolos; Prof. Yandre Maldonado - 2 Exemplo: conjunto
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Problema: definir um conjunto de cadeias de símbolos; Prof. Yandre Maldonado - 2 Exemplo: conjunto M dos
Marcos Castilho. DInf/UFPR. 5 de abril de 2018
5 de abril de 2018 Autômatos com Pilha Não-Determinísticos Um Autômato com Pilha Não-Determinístico (APN) é uma sêxtupla (Q, Σ, Γ, δ, Q 0, F ), onde: Q, Σ, Γ, F são como nos APD s; δ : Q (Σ {λ}) (Γ {λ})
Aula 9: Máquinas de Turing
Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular
LR's: Lema do Bombeamento e Propriedades de Fechamento
Linguagens Formais e Autômatos LR's: Lema do Bombeamento e Propriedades de Fechamento Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (hfp://dcc.ufmg.br/~nvieira) Introdução
Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior.
LFA Aula 02 Linguagens regulares - introdução 28/09/2015 Celso Olivete Júnior [email protected] 1 Na aula passada... Visão geral Linguagens regulares expressões regulares autômatos finitos gramáticas
Lista de Exercícios CT-200 Primeiro Bimestre Carlos Henrique Quartucci Forster Estagiário: Wesley Telles. Revisão de Teoria de Conjuntos
Lista de Exercícios CT-200 Primeiro Bimestre 2010 Carlos Henrique Quartucci Forster Estagiário: Wesley Telles Revisão de Teoria de Conjuntos 1. Sejam A = {1,2 } e B = { x, y, z}. Quais os elementos dos
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
Autômatos de Pilha (AP)
Linguagens Formais e Autômatos Autômatos de Pilha (AP) Andrei Rimsa Álvares Material extraído do livro e slides do Prof. Newton Vieira (h@p://dcc.ufmg.br/~nvieira) Sumário Introdução Autômatos de pilha
SCC-ICMC-USP. Trabalho em Grupo 1 SCC-0205
Trabalho em Grupo 1 SCC-0205 2 o. Semestre de 2010 Professor: João Luís G. Rosa - e-mail: [email protected] Monitor PAE: Fernando Alva - e-mail: [email protected] versão 1-23/8/2010 1 Objetivo Desenvolver
O que é Linguagem Regular. Um teorema sobre linguagens regulares. Uma aplicação do Lema do Bombeamento. Exemplo de uso do lema do bombeamento
O que é Linguagem Regular Um teorema sobre linguagens regulares Linguagem regular Uma linguagem é dita ser uma linguagem regular se existe um autômato finito que a reconhece. Dada uma linguagem L: É possível
Compiladores I Prof. Ricardo Santos (cap 3 Análise Léxica: Introdução, Revisão LFA)
Compiladores I Prof. Ricardo Santos (cap 3 Análise Léxica: Introdução, Revisão LFA) Análise Léxica A primeira fase da compilação Recebe os caracteres de entrada do programa e os converte em um fluxo de
