INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

Tamanho: px
Começar a partir da página:

Download "INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO"

Transcrição

1 INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO: Cd rgr d difrncição tm m rgr corrspondnt d intgrção Por mplo, Rgr d stitição pr intgrção corrspond à Rgr d Cdi pr difrncição A rgr q corrspond à Rgr do Proto pr difrncição é chmd d intgrção por prts MÉTODO DA UBTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO Algms vzs, é possívl dtrminr intgrl d m dd fnção, plicndo m ds fórmls ásics dpois d sr fit m mdnç d vriávl N prátic, dvmos ntão dfinir m fnção g() convnint, d tl form q intgrl otid sj mis simpls EXEMPLO: Clclr s intgris: ) + d stitímos clclmos Drivd d: + d d stitindo, tmos: + d ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

2 Aplicndo rgr d intgrção: + c + c 9 stitindo novmnt: ( + ) + c 9 + c ) d + ² stitímos clclmos Drivd d: + ² d d stitindo simplificndo, tmos: d + ² Consltndo tl d intgrção: ln + C stitindo novmnt: ln + ² + C ) sn ² cos d stitímos clclmos Drivd d: sn cosd d cos stitindo simplificndo, tmos: sn ² cos d ²cos cos ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

3 Aplicndo rgr d intgrção: ³ + C stitindo novmnt: sn³ + C ) sn ( + 7) d stitímos clclmos Drivd d: + 7 d stitindo, tmos: sn ( + 7 ) d sn Consltndo tl d intgrção: cos + c cos( + 7) + c d ) ( ) 8 stitímos clclmos Drivd d: d d stitindo simplificndo, tmos: 8 d ( + ) Aplicndo rgr d intgrção: c + c 7 7 ( ) stitindo novmnt: stitindo novmnt: + c ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

4 ATIVIDADE PRÁTICA: Clclr s intgris io tilizndo o método d sstitição: cos( 7) ) sn ( 7) d stitir: 7 Rspost: + c stitir: Rspost: ( ) + c ) d ) d + stitir: ² + Rspost: + + c ) sn cos d stitir: cos Rspost: ( cos ) + c ) d stitir: ² Rspost: ( ) + c 8 stitir: ² Rspost: ( ) + c 9 6) d 7) ( + ) ( + ) d stitir: ²+ Rspost: ( + ) + c sn stitir: sn Rspost: + c 8) sn cos d stitir: cos Rspost: c + cos sn 9) d cos stitir: Rspost: sn + c ) cos( )d ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

5 MÉTODO DA INTEGRAÇÃO POR PARTE É m método q prmit prssr intgrl d m proto d fnçõs m otr intgrl A intgrção por prts pod sr vist como m vrsão intgrd d rgr do proto dv v v Fórml d Intgrção Por Prts EXEMPLO: dv ) Clclr Intgrl sn d Por prts: d dv v v Drivr sn d ( cos ) cos d sn d cos + cos d sn d cos + sn + c dv snd v cos Intgrr ) Clclr Intgrl d dv d k Por prts: k rgr no formlário : d + c d v k dv v v d d d + d ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

6 d + + C d + C o d + C ) Clclr Intgrl sn d ª Intgrção por prts: dv v v d sn d ( cos) cos d ( cos ) sn d cos + d ª Intgrção por prts: d dv sn d v cos dv cos d v sn v v snd cos + sn d sn d + sn d [ sn sn ] d cos + sn d cos + sn cos + sn cos sn sn d + + C o ( cos + sn) + C sn d sn d sn Aplicr nov Intgrção por Prts Pssr ss intgrl pr o º mmro d qção somr os trmos smlhnts ProfMsCrlos Hnriq Emil: crloshjc@hoocomr 6

7 ATIVIDADE PRÁTICA: Clclr s intgris io tilizndo o método d intgrção por prts: ) d Prts: dv? v? d Rspost: + C ) d Prts: dv? v? d Rspost: + + C ln ) ln d Prts:? v dv? d Rspost: ln + C ( Prts: + dv snd? v? ) + ) sn d Rspost: sn ( + ) cos + C ) snd Prts:? dv snd v? Rspost: cos + sn + cos + C 6) snd Prts:? dv snd v? Rspost: ( cos + sn ) + C 7) rctg d Prts:? v rctg dv? d Rspost: rctg ln + + C Prts: dv sn d? v? 8) snd Rspost: cos + sn + C 9) cos d Prts:? dv cos d v? Rspost: ( sn + cos ) + C ProfMsCrlos Hnriq Emil: crloshjc@hoocomr 7

8 INTEGRAL DEFINIDA (TEOREMA FUNDAMENTO DO CÁLCULO TFC ): A intgrl d m fnção foi crid originlmnt pr dtrminr ár so m crv no plno crtsino tmém srg ntrlmnt m dzns d prolms d Físic, como por mplo, n dtrminção d posição m todos os instnts d m ojto, s for conhcid s vlocidd instntân m todos os instnts j m fnção f() dfinid contín nm intrvlo rl [,] A intgrl dfinid d f(), d té, é m númro rl, é indicd por: f ( ) d F ( ) F ( ) ond: é o limit infrior d intgrção; é o limit sprior d intgrção; f() é o intgrndo Fórml d Intgrl Dfinid f ( ) : - ár ntr o io crv f(), no intrvlo é rprsntd pl intgrl dfinid: f ( ) d F ( ) F ( ) f ( ) g ( ) : - ár ntr s crvs f() g(), no intrvlo é rprsntd pl intgrl dfinid: [ f ( ) g( ) ] d F ( ) F ( ) g() ProfMsCrlos Hnriq Emil: crloshjc@hoocomr 8

9 INTERPRETAÇÃO GEOMÉTRICA (CÁLCULO DE ÁREA POR INTEGRAÇÃO): ) f() Ár f ( ) d ) Ár f ( ) d o f() f ( ) d c) f() Ár f ( ) d + o + + ProfMsCrlos Hnriq Emil: crloshjc@hoocomr 9

10 EXEMPLO: ) Clclr Intgrl Dfinid ( ) () 9 ) Clclr Intgrl Dfinid sn t π d º Intgrl π cos º Intgrl 8 t dt º stitição do limit sprior mnos o limit infrior F() F() º stitição do limit sprior mnos o limit infrior F() F() sn π sn ( ) ) Clclr Intgrl Dfinid ( + ) d + º Intgrl º stitição do limit sprior mnos o limit infrior F() F() () () () () + + ) Clclr Intgrl Dfinid + d + 6+ stitímos clclmos drivd d: ² + d + d ln d Informção: ln stitindo novmnt: ln( + ) ln( + ) ln( + ) ln() ln() ln ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

11 ATIVIDADE PRÁTICA: Clclr s intgris dfinids io: ) ( 6 ) d Rspost: 8 ) ( )( ) d ) Rspost: 6 ( + ) d Rspost: ) ( + ) d Rspost: ( + ) ) + + d stitir: ³ + ² + Rspost:,7 d 6) ( ) stitir: ² Rspost:,7 π 7) sn cos d stitir: sn Rspost: π 8) π π d sn Rspost: ln d 9) ( + ) stitir: + Rspost: /6 ) d Rspost: 8 ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

12 ATIVIDADE PRÁTICA: Clclr s árs somrds io: ) ) ) + Rspost: o ln ln Rspost: 6 Rspost: π ) sn ) cos 6) π π π π π Rspost: Rspost: Rspost: 7) Clclr ár d sprfíci limitd plo io dos pl crv d qção ², ntr os pontos: Rspost: 8) Clclr ár d sprfíci limitd plo io dos pl crv d qção 7 ², ntr os pontos: Rspost: /6 ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

13 Clcl ár d rgião so o gráfico d fnção f nos csos: 9) f ( ), Rspost: 6/ ) f ( ), Rspost: / ) f ( ), Rspost: 6/ ) f ( ), Rspost: ) f ( ), Rspost: 6/ ) f ( ), Rspost: ) f ( ), Rspost: ½ 6) f ( ), Rspost: ½ 7) f ( ) +, Rspost: / 8) f ( ), Rspost: 9) Clclr ár d rgião comprndid (dlimitd) ntr s crvs ² ² + Rspost: 8/ ) ndo f() g() ², clcl ár d rgião dlimitd plos gráficos d f g Rspost: / Rfrêncis Biliográfics BOULO, PAULO, Cálclo Difrncil Intgrl Vol Editor Prson LEITHOLD, L, O Mtmátic Aplicd à Economi Administrção ão Plo: Hrr, 988 TEWART, JAME, Cálclo Vol I ª Ed ão Plo: Pionir Thomson Lrning, WOKOWKI, EARL W, Cálclo com Gomtri Anlític Vol Editor Mkron Books THOMA, GEORGE B, Cálclo Vol Editor Prson ProfMsCrlos Hnriq Emil: crloshjc@hoocomr

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS PROFESSOR: MARCOS AGUIAR CÁLCULO I. FUNÇÕES

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO Cpítlo Técnics d Inrção - TÉCNICAS DE INTEGRAÇÃO. INTEGRAÇÃO POR PARTES Um técnic d inrção mito útil é inrção por prts, q dpnd d fórml pr difrncil d m prodto. Sjm f g fnçõs difrnciávis d. Então, pl rgr

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

f x y x y 3 x y y(3,2) f (, ) lim y f x y e x y f x y f x y (, ) x f (, ) (, ) x y x K L P( K, L) . Calcule usando: (v) (b) (x)

f x y x y 3 x y y(3,2) f (, ) lim y f x y e x y f x y f x y (, ) x f (, ) (, ) x y x K L P( K, L) . Calcule usando: (v) (b) (x) ªList d Cálclo Dirncil Intgrl II Fnçõs d váris vriávis Pro. Dr. Cládio S. Srtori Cálclo Dirncil Intgrl II Ercícios List Prt Drivds Prciis ts rlcionds. Prt Intgris dinids indinids.. Considr (,) (, ). Clcl

Leia mais

Dualidade. Fernando Nogueira Dualidade 1

Dualidade. Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo prolm d P.L. pod sr ssttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Prolm Prml M Sjto j n j n c j j j j j j {... n} {... m} Prolm Dl Sjto W m m j c {... m}

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR.

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR. Capítlo V: Drivação 9 Corolário (drivada da nção invrsa): Sja ma nção dirnciávl injctiva dinida nm intrvalo I IR Sja I tal q '( ), ntão ( é drivávl m y ) ' ( ) ( y ) '( ) Ercício: Dtrmin a drivada d ()

Leia mais

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Aplicação da rgra

Leia mais

Derivada fracionária no sentido de Caputo-Hadamard

Derivada fracionária no sentido de Caputo-Hadamard Trblho prsntdo no CNMAC, Grmdo - RS, 2016. Procding Sris of th Brzilin Socity of Computtionl nd Applid Mthmtics Drivd frcionári no sntido d Cputo-Hdmrd Dnil dos Sntos d Olivir 1 Edmundo Cpls d Olivir 2

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

Exercícios Resolvidos. Assunto: Integral Dupla. Comentários Iniciais:

Exercícios Resolvidos. Assunto: Integral Dupla. Comentários Iniciais: Escol d Engnhri ndustril tlúrgic d olt dond Profssor: Slt Sou d Olivir Buffoni Ercícios solvidos ssunto: ntgrl Dupl Comntários niciis: É com imnso prr qu trgo lguns rcícios rsolvidos sobr intgris dupls

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo problm d P.L. pod sr sbsttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Problm Prml j n j n c j j j j j j b {... n} {...m} Problm Dl Mn W m m b j c {... m} j

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

Transformada de Fourier

Transformada de Fourier Transformada d orir Séri d orir: Uma fnção priódica pod sr rprsntada pla soma d m conjnto d snos o cosnos d difrnts frqências cada ma mltiplicada por m por m coficint Transformada d orir: Uma fnção não

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

a x Solução a) Usando a Equação de Schrödinger h m

a x Solução a) Usando a Equação de Schrödinger h m www.fsc.com.br Consdr m rtícl d mss m confnd ntr os ontos / /, q od s movr lvrmnt nst rgão o longo do o. Son q s rds q lmtm st rgão sjm comltmnt mntrávs (oço d otncl nfnto ndmnsonl) rtícl stá sbmtd m otncl

Leia mais

3 M. 2 Freqüência: f > 75% Métodos de Cálculo II - Capítulo 1 - Derivadas Dr. Sartori, C. S. 1. Bibliografia. Ementa da Disciplina

3 M. 2 Freqüência: f > 75% Métodos de Cálculo II - Capítulo 1 - Derivadas Dr. Sartori, C. S. 1. Bibliografia. Ementa da Disciplina Métodos d Cálclo II - Cpítlo - Drivds Dr. Srtori, C. S. Emnt d Disciplin A Drivd Dinição intrprtção gométric. Rgrs d drivção. Eqção d rt tngnt norml. Rgr d cdi. Drivção implícit. Estdo d máimos mínimos

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

PME 2556 Dinâmica dos Fluidos Computacional. Aula 5 Solução da Equação da Quantidade de Movimento

PME 2556 Dinâmica dos Fluidos Computacional. Aula 5 Solução da Equação da Quantidade de Movimento ME 2556 Dinâmic dos Flidos Comtcionl Al 5 Solção d Eqção d Qntidd d Movimnto 5.1 Eqção d Qntidd d Movimnto D qção grl d trnsort: S ρ φ n j j da φ = Γ n + j da Sφ d x S j r Qntidd d Movimnto grndz φ é vlocidd

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

APÊNDICE D DISTRIBUIÇÕES DE PROBABILIDADES

APÊNDICE D DISTRIBUIÇÕES DE PROBABILIDADES Apêndic D APÊNDICE D DISTRIBUIÇÕES DE PROBABILIDADES DISTRIBUIÇÕES DISCRETAS Distriuição inomil A distriuição inomil é distriuição d proilidd discrt do númro d sucssos num squênci d n tnttivs dsd qu s

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

arctg x y F q E q v B d F d q E q v B se y r sen sen

arctg x y F q E q v B d F d q E q v B se y r sen sen List Gomti Anlític Cálculo Vtoil Pof. D. Cláudio S. Stoi Poduto misto, Plnos ts, Mtis, Dtminnts Sistms Lins, Coodnds cilíndics sféics, Cônics Poduto misto, Plnos ts. Ach qução do plno contndo o ponto P

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

Integrais triplas AULA

Integrais triplas AULA Intgris tripls META: Aprsntr intgris tripls d funçõs d vlors ris domínio m 3. OBJETIVOS: Ao fim d ul os lunos dvrão sr pzs d: finir intgrl tripl lulr lgums intgris tripls d funçõs d vlors ris domínio m

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dirncil Intgrl Drivds Prossor: Luiz Frnndo Nuns, Dr. 8/Sm_ Cálculo ii Índic Drivds.... Dinição.... Função drivd.... Drivds ds unçõs composts.... Rgrs d drivção.... A Drivd como T

Leia mais

6.1 Definição de Primitiva. Relação entre primitiva e derivadas.

6.1 Definição de Primitiva. Relação entre primitiva e derivadas. apítlo VI Primitivação 6. Dfinição d Primitiva. Rlação ntr primitiva drivadas. Dada ma fnção F já sabmos dtrminar ma nova fnção F q s obtém da antrior através da drivação. Pnsmos no problma ao contrário:

Leia mais

Aplicações da Integral

Aplicações da Integral Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,

Leia mais

Lista de Matemática ITA 2012 Trigonometria

Lista de Matemática ITA 2012 Trigonometria List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

PREFÁCIO BOM TRABALHO!

PREFÁCIO BOM TRABALHO! PREFÁCIO Est volum corrspond o sgundo livro virtul lnçdo plo Sistm d Ensino Intrtivo SEI. O livro trt d um curso d cálculo voltdo pr os vstibulrs militrs o longo d qutro cpítulos. Cd um dos qutro cpítulos

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

MAT Cálculo I - POLI Resolução de Algumas Questões da 2 a Lista de Exercícios

MAT Cálculo I - POLI Resolução de Algumas Questões da 2 a Lista de Exercícios MAT 45 - Cálclo I - POLI - 0 Resolção de Algms Qestões d List de Exercícios -) O ojetio dest qestão é demonstrr como lei d reflexão pln e lei d refrção de Snellis, d Óptic Geométric, podem ser otids como

Leia mais

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o Grupo I Qustõs d rsposta d scolha múltipla { : 0 f }. ( ) D = f D g f ( ) 0 [, + [. Como f tm domínio \{ 5}, é contínua f ( ) gráfico d f não admit assimptotas vrticais. 5 Rsposta: D lim =, pod-s concluir

Leia mais

01.Resolva as seguintes integrais:

01.Resolva as seguintes integrais: INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA MAT A CÁLCULO A a LISTA DE EXERCÍCIOS Atualizada m 7..Rsolva as sguints intgrais: 5.).).).) sn().5) sn cos.) tg 5 sc.7).8).9) ln 5.) arctg.).).).).7)

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros.

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros. Cpítulo I Noçõs Eltrs d Mtátic. Oprçõs co frcçõs, Equçõs Iquçõs Tipos d úros {,,,,,6, } cojuto dos úros turis. 0 { 0} {,,,, 0,,,, } cojuto dos úros itiros., 0 0 p : p, q q cojuto dos úros rciois ou frccioários,

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II Cálclo Diferencial e Integral II Página Universidade de Mogi das Crzes UMC Campos Villa Lobos Cálclo Diferencial e Integral II Parte II Engenharia Civil Engenharia Mecânica marilia@mc.br º semestre de

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES RESOLUÇÃO A1 Primiramnt, dividimos a figura B m dois triângulos B1 B2, um altura d 21 m bas d 3 m outro altura bas mdindo 15 m. Mosaico 1: Tmos qu os dois triângulos

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matmática A Etnsivo V. 6 Rsolva.) a) Aula. ( )

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Curso de Pré Cálculo Dif. Int. I Aula 11 Ministrante Profª. Drª. Danielle Durski Figueiredo Material elaborado pelo Programa de Pré-Cálculo da

Curso de Pré Cálculo Dif. Int. I Aula 11 Ministrante Profª. Drª. Danielle Durski Figueiredo Material elaborado pelo Programa de Pré-Cálculo da Curso d Pré Cálculo Dif. Int. I Aula Ministrant Profª. Drª. Danill Durski Figuirdo Matrial laborado plo Programa d Pré-Cálculo da Macknzi http://www.macknzi.br/filadmin/graduacao/ee/arquivos/calculo_zro/trigonomtria.pdf

Leia mais

CAPÍTULO 12. Exercícios a) z sen xy, x 3t e y t 2. 1.º Processo: z sen (3t 3 ) e daí dz dt. 2.º Processo: z x. dz dt. dx dt z. dy dt. .

CAPÍTULO 12. Exercícios a) z sen xy, x 3t e y t 2. 1.º Processo: z sen (3t 3 ) e daí dz dt. 2.º Processo: z x. dz dt. dx dt z. dy dt. . CAPTULO Ercícios a) sn, 3t t º Procsso: sn 3t 3 ) daí d 9t cos 3t 3 ) º Procsso: d d d Tmos d cos ; 3; cos ; d t daí d 3 cos cos ) t, o sja, d 3t cos 3t 3 6t cos 3t 3, portanto, d 9t cos 3t 3 b) 3, sn

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

MÉTODOS DE INTEGRAÇÃO

MÉTODOS DE INTEGRAÇÃO ÁLULO DIFERENIL E INTEGRL MÉTODOS DE INTEGRÇÃO Nem todas as integrais são imediatas segndo o formlário dado, porém algns métodos simples ajdam a obter as primitivas das fnções qe não têm integração imediata.

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial Cálclo vectoril - ELECTROMGNETISMO o Noção de cmpo esclr e de cmpo vectoril Os vlores de lgms grndes físics vrim com posição no espço, podendo esss grndes ser epresss por m fnção contín ds coordends espciis.

Leia mais

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

CAPÍTULO 3 - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS

CAPÍTULO 3 - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS CAPÍTULO - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS. Introdução A dinição d unção d um vriávl indpndnt pod sr dd por: é um unção d vriávl ou sj é um unção d vriávl dpndnt s cd vlor d corrspond

Leia mais