ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial"

Transcrição

1 Cálclo vectoril - ELECTROMGNETISMO o Noção de cmpo esclr e de cmpo vectoril Os vlores de lgms grndes físics vrim com posição no espço, podendo esss grndes ser epresss por m fnção contín ds coordends espciis. Tod região onde m grnde físic é ssim definid di-se m cmpo. Cmpo esclr o Um cmpo di-se esclr se grnde físic qe o define pder ser representd em cd ponto do espço trvés de m vlor esclr. o Os cmpos esclres são normlmente representdos trvés de m série de linhs o sperfícies qe nem pontos com o mesmo vlor de cmpo. o São eemplos de cmpos esclres distribição de tempertr nm sl e distribição do potencil eléctrico em torno de m crg pontl. Cmpo vectoril o Um cmpo di-se vectoril se grnde físic qe o define tem m mgnitde e m direcção sendo representd em cd ponto por m vector. fnção qe define este cmpo é m fnção vectoril. o São eemplos de cmpos vectoriis distribição d velocidde do vento nm dd on e distribição do cmpo eléctrico em torno de m crg pontl.

2 Cálclo vectoril - o Integris com fnções vectoriis ELECTROMGNETISMO Integrl de linh de m fnção esclr C Vdl V é m fnção esclr e dl represent m incremento diferencil do comprimento e C é o cminho de integrção. P P Vdl integrção efectd do ponto P té o ponto P. C Vdl integrção efectd o longo de m cminho fechdo. Em coordends crtesins podemos escrever: (, )[ d d d] Vdl V, C C o Como os vectores de bse nitários, e são constntes tnto em mgnitde como n direcção, estes podem ser colocdos for do sinl de integrção. (,, ) d V (,, ) d V (, ) Vdl V C C C, C o Os três integris são integris esclres normis e podem ser clcldos pr m fnção V(,, ) sobre m cminho C. d

3 ELECTROMGNETISMO Cálclo vectoril - o Integris com fnções vectoriis Integrl de linh de m fnção esclr Eemplo Clcle o integrl P r dr, onde, desde o ponto de origem té o ponto P(, ): r P ) o longo do cminho directo OP b) o longo do cminho OP P c) o longo de OP P P ) P r r dr r dr r r r (coordends polres) o o ( cos 45 sin 45 )

4 ELECTROMGNETISMO Cálclo vectoril - 4 o Integris com fnções vectoriis Integrl de linh de m fnção esclr Eemplo b) o longo de OP P ( ) ( ) ( ) P P P P P d d dr dr r ( ) d d 4 c) o longo de OP P ( ) ( ) 4 P d d dr O vlor do integrl depende do cminho de integrção.

5 ELECTROMGNETISMO Cálclo vectoril - 5 o Integris com fnções vectoriis Integrl de linh de m fnção vectoril C F. dl Represent o integrl do cmpo vectoril F sobre o cminho de integrção C, F.dl represent o prodto interno de F e dl. Vmos considerr m cminho do ponto P té o ponto P sobre m cmpo de forç rdil F qe ct n direcção rdil. o Em qlqer ponto do cminho o vlor de F.dl é ddo por Fcosqdl F L dl onde F L é componente de F sobre o cminho de integrção.

6 ELECTROMGNETISMO Cálclo vectoril - 6 o Integris com fnções vectoriis Integrl de linh de m fnção vectoril o componente dr sobre direcção r será drcosqdl F. dl F cosθdl F dl L Fdr o O prodto de m forç F por m distânci dr represent m mento incrementl dw no trblho feito pel forç n deslocção do objecto n distânci cosqdldr. dw F. dl F cosθdl o Se o cminho for dividido em segmentos prlelos e perpendiclres F, s contribições só ocorrem pr os segmentos prlelos F (q o ) não hvendo relição de trblho nos segmentos perpendiclres F (q 9 o ). o Somndo-se s contribições dos segmentos prlelos F obtemos o trblho totl W entre os dois etremos do cminho de integrção. P W fim F. dl P início

7 Cálclo vectoril - 7 o Integris com fnções vectoriis ELECTROMGNETISMO Integrl de linh de m fnção vectoril o Este integrl de linh indic o trblho relido por F no objecto (energi fornecid o objecto) deslocdo sobre o cminho de integrção. o Pr o cminho definido temos: r r W F cosθ dl r Fdr r o Se considerrmos o cminho contrário de r pr P obtemos: W r r Fdr r Fdr r o Pr m cmpo vectoril como F, o integrl de linh só depende do ponto inicil e do ponto finl. Se integrrmos F sob m cminho fechdo, o resltdo será ero. C F. dl o Um cmpo com ests crcterístics é chmdo conservtivo.

8 Cálclo vectoril - 8 o Integris com fnções vectoriis Integrl de sperfície ELECTROMGNETISMO Sponhmos qe temos ág flir com m ritmo niforme B litros por segndo por metro qdrdo (l/sm ) trvés d áre qdrd. O flo de ág trvés d sperfície depende de três fctores: B (ritmo e direcção do flo), d áre e do ânglo qe áre f com B. Podemos definir o flo como: ψ ( l s) B. n cosθ B. / n n vector nitário perpendiclr à sperfície vlor d áre ( m )

9 ELECTROMGNETISMO Cálclo vectoril - 9 o Integris com fnções vectoriis Integrl de sperfície Se o flo não for niforme (B é fnção d posição) precismos de clclr o flo d trvés d sperfície ds: ( l s) d ψ B. nds B. d s / n vector nitário perpendiclr à sperfície ds vlor esclr d sperfície d s vector qe indic o vlor e orientção d sperfície nds

10 Cálclo vectoril - o Integris com fnções vectoriis Integrl de sperfície ELECTROMGNETISMO Somndo tods s contribições obtemos o flo trvés d sperfície : ψ áre B nds. áre B. d s ( l / s) o ág qe fli n direcção tem m flo ddo por B l/sm. Clclr o flo de ág definido por (,,), (,,), (,,) e (,,). ψ Y B. d s B dd áre áre dd 7 ( l / s)

11 Cálclo vectoril - o Grdiente de m cmpo esclr ELECTROMGNETISMO Vmos considerr m fnção esclr qe depende ds coordends espciis V(,, ) qe poderá, por eemplo, represent distribição d tempertr nm edifício. O vlor de V depende d posição do ponto no espço, ms poderá ser constnte o longo de lgms linhs o sperfícies. N figr estão representds ds sperfícies onde o vlor de V é constnte e dv represent m peqen vrição de V. o O ponto P encontr-se n sperfície V. O ponto P é o ponto correspondente n sperfície V dv o longo do vector norml à sperfície dn. o P é m ponto próimo de P o longo de otr direcção dl dn. o Pr mesm vrição dv em V, t de vrição espcil dv/dl é mior o longo de dn porqe dn é distânci mis crt entre s ds sperfícies. o Como o vlor de dv/dl depende d direcção de dl, dv/dl é m derivd direccionl.

12 ELECTROMGNETISMO Cálclo vectoril - o Grdiente de m cmpo esclr Definimos o vector qe represent o vlor e direcção d máim vrição espcil como o grdiente desse cmpo esclr. dn dv V n grd h V h V h V V Em coordends crtesins (,, )(,, ) e h h h. V V V V o V V Definimos o operdor : coordends crtesins h h h coordends ortogonis V V grd

13 Cálclo vectoril - o Divergênci de m cmpo vectoril ELECTROMGNETISMO No estdo dos cmpos vectoriis é conveniente representr s vrições trvés de linhs de flo. Ests linhs o crvs indicm em cd ponto direcção do cmpo vectoril. mgnitde do cmpo é indicd trvés d densidde o comprimento dos vectores. () o cmpo n região é mis intenso do qe n região B porqe eiste m mior densidde de linhs n região ; (b) cmpo rdil cj intensidde dimini à medid qe nos fstmos de q; (c) represent m cmpo niforme.

14 Cálclo vectoril - 4 o Divergênci de m cmpo vectoril ELECTROMGNETISMO O flo de m cmpo vectoril é nálogo o flo de m liqido incomprimível como ág. Pr m volme com m sperfície fechd só hverá m diferenç entre o flo qe entr e si d sperfície se est contiver m fonte de flo. vrição médi do flo por nidde de volme é m medid d intensidde d fonte de flo intern. divergênci de m cmpo vectoril é m esclr qe indic o flo do cmpo por nidde de volme qe si trvés de m sperfície fechd infinitmente peqen qe encerr m ponto. div lim V S. d s V Um resltdo mis tiliável é: div coordends crtesins

15 Cálclo vectoril - 5 o Divergênci de m cmpo vectoril ELECTROMGNETISMO Sbendo qe e qe podemos escrever: div. Em coordends ortogonis (,, ) obtemos: Teorem d divergênci. h h h ( h h ) ( h h ) ( h h ) o O vlor d divergênci dá-nos o vlor do flo qe é gerdo nm volme infinitesiml. O integrl sobre m volme dá-nos o flo qe é gerdo dentro do volme. o O integrl de sperfície sobre m volme delimitdo por m sperfície fechd dá-nos diferenç entre o flo qe si e o flo qe entr n sperfície. Est diferenç é o flo qe é gerdo no interior do volme... d s V S

16 Cálclo vectoril - 6 o Rotcionl de m cmpo vectoril ELECTROMGNETISMO Vimos qe síd de flo trvés de m sperfície fechd qe delimit m volme indic presenç de m fonte no se interior. Est fonte pode ser considerd como m fonte de flo e o vlor d divergênci como m medid d intensidde d fonte. Eiste m otro tipo de fonte, chmd de fonte de vorte, qe cs m circlção do cmpo vectoril à s volt. circlção (médi) de m cmpo vectoril sobre m cminho fechdo é definido como o integrl de linh sobre o cminho: Circlção de sobre o contorno C Se for m forç qe ct no objecto, s circlção represent o trblho feito pel forç n movimentção do objecto m ve o longo do contorno. Poderá eistir circlção nm cmpo vectoril mesmo qe divergênci de sej nl (isto é, não eistem fontes de flo). C.d l

17 ELECTROMGNETISMO Cálclo vectoril - 7 o Rotcionl de m cmpo vectoril De modo definirmos m fnção pontl qe indiqe intensidde d fonte de vorte, devemos considerr C mito peqeno e orientdo de tl modo qe circlção sej máim. [ ] C n s dl s. lim rot O rotcionl de m cmpo vectoril é m vector cj mgnitde é máim circlção de por nidde de áre qndo áre tende pr ero e cj direcção é norml d áre qndo est é orientd de modo qe circlção sej máim. rot Coordends crtesins rot h h h h h h h h h Coordends ortogonis

18 ELECTROMGNETISMO Cálclo vectoril - 8 o Teorem de Stokes o Identiddes nls Teorem de Stokes o O integrl de sperfície do rotcionl de m cmpo vectoril sobre m sperfície fechd é igl o integrl de linh sobre o contorno qe define sperfície. Identiddes nls o Identidde I ( ). d s. dl S C V ( ) O rotcionl do grdiente de m cmpo esclr é nlo. Se m cmpo vectoril é irrotcionl, este pode ser epresso como o grdiente de m cmpo esclr. o Identidde II

19 ELECTROMGNETISMO Cálclo vectoril - 9 o Teorem de Stokes o Identiddes nls ( ). divergênci do rotcionl de m cmpo vectoril é ero. Se m cmpo vectoril não tem divergênci, este pode ser eprimido como o rotcionl de m otro cmpo vectoril. Os cmpos com divergênci nl não têm fontes de flo. O flo qe si de qlqer sperfície fechd é ero e s linhs de flo são fechds.

20 Cálclo vectoril - o Clssificção de cmpos vectoriis ELECTROMGNETISMO Podemos clssificr os cmpos vectoriis de cordo com s divergênci e rotcionl: o Solenoidl e irrotcionl. F F Cmpo electrostático nm região sem crgs. o Solenoidl e rotcionl. F F Um cmpo mgnético estático nm condtor com corrente. o Não solenoidl e irrotcionl. F F Cmpo electrostático nm região com crgs. o Não solenoidl e rotcionl. F F Cmpo eléctrico nm meio com crgs com m cmpo mgnético vrir no tempo.

21 ELECTROMGNETISMO Cálclo vectoril - o Teorem de Helmholt Um cmpo vectoril genérico terá m divergênci e m rotcionl diferentes de ero e pode ser considerdo como som de m cmpo solenoidl com m cmpo irrotcionl. Um cmpo vectoril é determindo menos de m constnte ditiv se s divergênci e rotcionl estão especificdos em qlqer ponto. divergênci mede intensidde de fontes de flo e o rotcionl intensidde de fontes de vorte. Qndo s intensiddes de mbs s fontes estão especificds temos o cmpo vectoril especificdo. Podemos decompor m cmpo vectoril genérico F nm prte irrotcionl F i e nm prte solenoidl F s : F F i F s com onde g e G são spostmente conhecidos, temos então: F i e. F g i F G s. F s. F. F g e F F G i s

22 ELECTROMGNETISMO Cálclo vectoril - o Teorem de Helmholt O teorem de Helmholt grnte qe F pode ser obtido prtir d integrção de g e de G. o Se F i é irrotcionl: F e ( V ) (identidde I) i podemos definir m fnção esclr V de modo qe: o Se F s é solenoidl:. s F i V F e.( ) (identidde II) podemos definir m fnção vectoril de modo qe: F s o Um cmpo vectoril genérico pode ser escrito como som do grdiente de m cmpo esclr e o rotcionl de m cmpo vectoril. F V

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Universidade do Algarve. Departamento de Física. de Electromagnetismo. Compilados por. Robertus Potting, Paulo Seara de Sá e Orlando Camargo Rodríguez

Universidade do Algarve. Departamento de Física. de Electromagnetismo. Compilados por. Robertus Potting, Paulo Seara de Sá e Orlando Camargo Rodríguez Universidde do Algrve Deprtmento de Físic Exercícios de Electromgnetismo Compildos por Robertus Potting, Pulo Ser de Sá e Orlndo Cmrgo Rodríguez Fro, 12 de Setembro de 2005 1 Cálculo Vectoril Elementr

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3 Universidde Federl de Algos Centro de Tecnologi Curso de Engenri Civil Disciplin: Mecânic dos Sólidos 1 Código: ECIV018 Professor: Edurdo Nobre Lges Forçs Distribuíds: Centro de Grvidde, Centro de Mss

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Assíntotas horizontais, verticais e oblíquas

Assíntotas horizontais, verticais e oblíquas Assíntots horizontis, verticis e olíqus Méricles Thdeu Moretti MTM/PPGECT/UFSC INTRODUÇÃO Dizemos que um ret é um ssíntot de um curv qundo um ponto o mover-se o longo d prte etrem d curv se proim dest

Leia mais

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido.

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido. Estátic de Fluidos Um fluido é considerdo estático qundo s rtículs não se deformm, isto é, estão em reouso ou em movimento de coro ríido. Como um fluido não suort tensões cislhntes sem se deformr, em um

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas Cálculo Diferencil e Integrl - Nots de Aul Márci Federson e Gbriel Plns de mrço de 03 Sumário Os Números Reis. Os Números Rcionis................................ Os Números Reis.................................

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras.

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras. UT 01 Vetore Oerve itução eguir: A prtícul vermelh etá e movendo num di quente, onde o termômetro indic tempertur de 41 gru Celiu! GRANDEZA ESCALAR É um grndez fíic completmente crcterizd omente com o

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

NOTAS DE AULA - ÁLGEBRA LINEAR ESPAÇOS VETORIAIS TRANSFORMAÇÕES LINEARES

NOTAS DE AULA - ÁLGEBRA LINEAR ESPAÇOS VETORIAIS TRANSFORMAÇÕES LINEARES NOAS DE AULA - ÁLGEBRA LINEAR ESPAÇOS VEORIAIS RANSFORMAÇÕES LINEARES ISABEL C C LEIE SALVADOR BA 007 Profª Isbel Cristin C Leite Álgebr Liner ESPAÇOS VEORIAIS Definição: Sej m conjnto V não io sobre o

Leia mais

Sobre o teorema de classificação das cônicas pela análise dos invariantes

Sobre o teorema de classificação das cônicas pela análise dos invariantes Revist Ffibe On Line n go 7 ISSN 88-699 wwwffibebr/revistonline Fculddes Integrds Ffibe Bebedouro SP Sobre o teorem de clssificção ds cônics pel nálise dos invrintes (About the conics clssifiction theorem

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

Aplicações da Integral

Aplicações da Integral Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr.

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr. 1 Eletrotécnic Módulo III Prte I Motores CC Prof. 2 3 Máquin CC Crcterístics Básics Muito versáteis (bos crcterístics conjugdo X velocidde) Elevdos conjugdos de prtid Aplicções em sistems de lto desempenho

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

Método dos Elementos Finitos Estruturas Planas Articuladas Exercícios Resolvidos

Método dos Elementos Finitos Estruturas Planas Articuladas Exercícios Resolvidos Método dos Eementos Finitos Estrtrs Pns Articds Exercícios Resovidos. orenço, J. Brros Retório 7-DEC/E-5 Dt: Mrço de 7 N.º de páins: 7 Pvrs chve: MEF, Estrtrs Articds Esco de Enenhri Deprtmento de Enenhri

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como Análise Mtemátic I - 6/7 Y rcsen y - A unção rcos tem como domínio [, ] e como A unção rcsen tem como domínio [, ] contrdomínio,. e como Y rccos y - A unção rccos tem como domínio [, ] contrdomínio [,

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Cálculo Integral em R

Cálculo Integral em R Cálculo Integrl em R (Primitivção e Integrção) Miguel Moreir e Miguel Cruz Conteúdo Primitivção. Noção de primitiv......................... Algums primitivs imedits................... Proprieddes ds primitivs....................4

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I Aprimorndo os Conhecimentos de Mecânic List 7 Grndezs Cinemátics I 1. (PUCCAMP-98) Num birro, onde todos os qurteirões são qudrdos e s rus prlels distm 100m um d outr, um trnseunte fz o percurso de P Q

Leia mais

Característica de Regulação do Gerador de Corrente Contínua com Excitação em Derivação

Característica de Regulação do Gerador de Corrente Contínua com Excitação em Derivação Experiênci I Crcterístic de egulção do Gerdor de Corrente Contínu com Excitção em Derivção 1. Introdução Neste ensio máquin de corrente contínu ANEL trblhrá como gerdor utoexcitdo, não sendo mis necessári

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades?

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades? UNIVERSIDADE DO ESTADO DA BAHIA UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA DCET / CAMPUS I DISCIPLINA: Cálculo II (MAT 089 CH: 75 PROFESSOR: Adrino Ctti SEMESTRE: 0. ALUNO: APOSTILA 0: INTEGRAL INDEFINIDA

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA - DEM DISCIPLINA:

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA - DEM DISCIPLINA: UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA - DEM DISCIPLINA: Elementos de Máquins e Motores (ENG169) TURMA: T01P01 (08:00 às 10:00) PROFESSOR: Pedro Ornels DATA: 06/07/2000 ALUNOS: Alberto Oliveir

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

FÍSICA. d B. (km) = 3,0. 10 5. 64,8. 10 3. = 194,4. 10 2 km

FÍSICA. d B. (km) = 3,0. 10 5. 64,8. 10 3. = 194,4. 10 2 km FÍSICA 1 O Sistem GPS (Globl Positioning System) permite loclizr um receptor especil, em qulquer lugr d Terr, por meio de sinis emitidos por stélites. Num situção prticulr, dois stélites, A e B, estão

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:19. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:19. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Físic Básic Json Alfredo Crlson Glls, professor titulr de físic teóric, Doutor em Físic pel Universidde Ludwig Mximilin de Munique, Alemnh Universidde Federl d Príb (João Pesso,

Leia mais

Rolamentos com uma fileira de esferas de contato oblíquo

Rolamentos com uma fileira de esferas de contato oblíquo Rolmentos com um fileir de esfers de contto oblíquo Rolmentos com um fileir de esfers de contto oblíquo 232 Definições e ptidões 232 Séries 233 Vrintes 233 Tolerâncis e jogos 234 Elementos de cálculo 236

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Física Fascículo 05 Eliana S. de Souza Braga

Física Fascículo 05 Eliana S. de Souza Braga ísic scículo 05 Elin S. de Souz Brg Índice Moimentos circulres esumo Teórico...1 Exercícios... Gbrito...4 Moimentos circulres esumo Teórico Moimento circulr uniforme: Grndez Angulr grndez esclr rio ϕ ω

Leia mais

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600 1 - INTRODUÇÃO Ests instruções têm por objetivo fornecer s orientções pr utilizção do critério pr cálculo d demnd de edifícios residenciis de uso coletivo O referido critério é plicável os órgãos d COPEL

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

Modelação de motores de corrente contínua

Modelação de motores de corrente contínua Controlo de Moviento Modelção de otores de corrente contínu Modelção de áquins CC Introdução Historicente, o otor CC foi utilizdo de odo universl no controlo de velocidde, té o desenvolviento, sustentdo,

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

VOCÊ SABIA QUE? O tabaco causa 25 tipos de doenças

VOCÊ SABIA QUE? O tabaco causa 25 tipos de doenças O tbco cus 5 tipos de doençs Movimento e Repouso Cinemátic rjetóri v Velocidde Esclr Médi em d 6 t 4 vem 15 m / s Movimento rogressivo e Retrógrdo MOVIMENO ROGRESSIVO MOVIMENO RERÓGRADO S + Movimento Retrddo

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Função de onda e Equação de Schrödinger

Função de onda e Equação de Schrödinger Função de ond e Equção de Schrödinger A U L A 4 Met d ul Introduzir função de ond e Equção de Schrödinger. objetivos interpretr fisicmente função de ond; obter informção sobre um sistem microscópico, prtir

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

Capítulo 1 Introdução à Física

Capítulo 1 Introdução à Física Vetor Pré Vestiulr Comunitário Físic 1 Cpítulo 1 Introdução à Físic Antes de começrem com os conceitos práticos d Físic, é imprescindível pr os lunos de Pré-Vestiulr estrem certificdos de que dominm os

Leia mais

Aplicações da Integral Simples

Aplicações da Integral Simples Chpter Aplicções d Integrl Simples. Áre de regiões plnres Sej R região limitd pelo gráfico d função = f(), s rets =, = b e o eio, sendo f() pr todo [, b]. A áre d região R é ddo pel fórmul: A = f()d. =

Leia mais

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...). 9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr

Leia mais

ROBERSON ROBERTO PARIZOTTO

ROBERSON ROBERTO PARIZOTTO ROBERSON ROBERTO PARIZOTTO INSTALAÇÃO E AVALIAÇÃO DE UM SISTEMA DE BOMBEAMENTO D ÁGUA COM AEROGERADOR DE PEQUENO PORTE PARA PROPRIEDADES RURAIS, NA CIDADE DE CASCAVEL-PR CASCAVEL PARANÁ BRASIL JANEIRO

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Plano Curricular Plano Curricular Plano Curricular

Plano Curricular Plano Curricular Plano Curricular Áre de formção 523. Eletrónic e Automção Curso de formção Técnico/ de Eletrónic, Automção e Comndo Nível de qulificção do QNQ 4 Componentes de Socioculturl Durção: 775 hors Científic Durção: 400 hors Plno

Leia mais

ENILSON PALMEIRA CAVALCANTI

ENILSON PALMEIRA CAVALCANTI ENILSON PALMEIRA CAVALCANTI Universidade Federal da Paraíba Centro de Ciências e Tecnologia Departamento de Ciências Atmosféricas Av. Aprígio Veloso, 88 Bodocongó 58.109.970 Campina Grande PB Copyright

Leia mais

9.1 Indutores e Indutância

9.1 Indutores e Indutância Cpítuo 9 Indutânci 9.1 Indutores e Indutânci Neste cpítuo, estudmos os indutores e sus indutâncis, cujs proprieddes decorrem diretmente d ei de indução de Frdy. Cpcitores: Recpitução Lembre-se que, no

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Realce de Imagens Domínio da Frequência. Tsang Ing Ren - tir@cin.ufpe.br UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática

Realce de Imagens Domínio da Frequência. Tsang Ing Ren - tir@cin.ufpe.br UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática Realce de Imagens Domínio da Freqência Tsang Ing Ren - tir@cin.fpe.br UFPE - Universidade Federal de Pernambco CIn - Centro de Informática Tópicos Introdção Série de Forier. Transformada de Forier. Transformada

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de ngenhri létric Aul 5.3 Gerdores de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGRALD, A.., KINGSLY Jr. C. UMANS, S. D. Máquins létrics: com Introdução à letrônic De Potênci.

Leia mais

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO)

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) GESTÃO DE EMPRESAS CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) Exercícios Amortizção de Empréstimos EXERCÍCIOS DE APLICAÇÃO Exercício 1 Um empréstimo vi ser reembolsdo trvés de reembolsos nuis, constntes

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295 Anuiddes equivlentes: $480 + $113 + $149 5 9% 5 VPL A (1, 09) $56, 37 A 5 9% 3,88965 5 9% 5 9% AE = = = = $14, 49 = 3,88965 AE B $140 $620 + $120 + 7 9% 7 VPL B (1, 09) $60, 54 = = = 5, 03295 7 9% 7 9%

Leia mais

BOLETIM TÉCNICO LAMINADOS

BOLETIM TÉCNICO LAMINADOS A BOLETIM TÉCNICO LAMINADOS Últim tulizção Mio/2011 VERSÃO MAIO/2011 ACABAMENTOS NATURAL: O cbmento pdrão d chp possui bi reflectânci e pode presentr vrições de brilho. BRILHANTE: Esse tipo de cbmento

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE CAPITULO I VENDA DE LOTES DE TERRENO PARA FINS INDUSTRIAIS ARTIGO l. A lienção, trvés de vend, reliz-se por negocição direct com os concorrentes sendo o preço d vend fixo, por metro qudrdo, pr um ou mis

Leia mais

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos Nome: n o : Ensino: Médio érie: ª. Turm: Dt: rofessor: Márcio esumo TIGNMETI/GEMETI rcos e ângulos. Elementos: C: centro d circunferênci CB = C = : rio d circunferênci CB ˆ : ângulo centrl B : rco. Medid

Leia mais

Licenciatura em Engenharia Electrónica

Licenciatura em Engenharia Electrónica Licencitur em Engenhri Electrónic Circuitos Electrónicos Básicos Lbortório Montgens mplificdors de fonte comum, port comum e dreno comum IST2012 Objectivos Com este trblho pretendese que os lunos observem

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítuo 5 Vigs sobre bse eástic Este cpítuo vi presentr s bses pr o estudo estático e eástico d fexão simpes de vigs suportds diretmente peo terreno (ue constitui, então, num poio eástico contínuo pr ests

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Comissão Permanente de Concurso Público CONCURSO PÚBLICO 23 / MAIO / 2010

Ministério da Educação Universidade Tecnológica Federal do Paraná Comissão Permanente de Concurso Público CONCURSO PÚBLICO 23 / MAIO / 2010 Ministério d Educção Universidde Tecnológic Federl do Prná Comissão Permnente de Concurso Público PR CONCURSO PÚBLICO 23 / MAIO / 2010 ÁREA / SUBÁREA: ELETROTÉCNICA GABARITO PROJETOS ELÉTRICOS INSTRUÇÕES

Leia mais

CTM Primeira Lista de Exercícios

CTM Primeira Lista de Exercícios CTM Primeir List de Exercícios. Cite crcterístics típics de cd um ds 5 clsses de mteriis presentds no curso. Metis: resistentes, dúcteis, bons condutores térmicos/elétricos Cerâmics: resistentes, frágeis,

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais