Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações
|
|
|
- Cacilda Palha Alencastre
- 9 Há anos
- Visualizações:
Transcrição
1 GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais: Indfinidas Dfinidas Suas Aplicaçõs Problma Utilizando o método d intgração por substituição. Calcul as intgrais indfinidas. a) b) c) ) f) g) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) Problma Encontr o vrdadiro valor d cada intgral dfinida abaixo. a) b) c) Problma A D Silva Companhia dscobriu qu a taxa d variação do custo médio para um produto é, ond é o númro d unidads o custo stá m rais. O custo médio para produzir unidads é d R$,. a) Encontr a função d custo médio para o produto. b) Encontr o custo médio d unidads do produto., por unidad Problma Suponha qu a rcita marginal para um produto é dado por. Encontr a função d rcita total. Problma 5 Os ngnhiros d custo da NASA têm a tarfa d projtar o custo dos principais projtos spaciais. Notou-s qu o custo d dsnvolvr uma projção aumnta com a uma taxa d Ond C stá dado m milhars d dólars m
2 milhõs d dólars. Qual é o custo d dsnvolvr uma projção para um projto cujo custo acab sndo d milhõs d dólars? Problma 6 Encontr a ára da rgião dlimitada plos gráficos d Problma 7 A Minradora Mandacaru produz tonladas por mês d crto minério. Estima-s qu st procsso dur 5 anos a partir d hoj, qu o prço por tonlada do minério daqui a mss, m rais, é dado pla função. Dtrminar a rcita grada pla minradora BRASIL, ao longo dos 5 anos. Problma 8 Considr contínua m. Calcul, sabndo qu Problma 9 Achar a ára limitada plas parábolas. Problma Suponha qu a função d dmanda d um bm para um crto consumidor é. Imagin qu o prço dss bm aumntou d R$, para R$.. A variação no xcdnt do consumidor para ss aumnto d prço é?. Problma A função custo marginal d uma mprsa é. Dtrmin a função custo total s o custo fixo é.. Problma A taxa d crscimnto da população d uma cidad da Amrica do Sul é prvista por, ond é a população no instant, mdidos m anos a partir do prsnt. Suponha qu a população atual sja d.. Qual é a prvisão: a) Da taxa d crscimnto daqui a 5 anos?. b) Da população daqui a 5 anos?. Problma Calcul a ára da rgião limitada plos gráficos d Problma Achar a ára da rgião dlimitada plos gráficos d Problma 5 Calcul a ára da rgião limitada plos gráficos d Problma 6 A dmanda d um produto é. Calcular o xcdnt do consumidor para. Problma 7 A ofrta d um produto é. Calcular o xcdnt do produtor para. Os qu no rgim burguês trabalham não lucram os qu lucram não trabalham. Engls Marx
3 Problma 8 Dadas a dmanda d mrcado a ofrta. Encontr o xcdnt do consumidor o xcdnt do produtor. Problma 9 S a função d custo m rais, para produzir um dtrminado produto é dada por, ond é o númro d unidads. a) Qual é o valor médio d ntr unidads? 85 rais. b) Encontr o custo médio por unidad s form produzidas unidads. rais por unidad. Problma S a função d custo marginal dado por o custo fixo é igual a, dtrminar o custo total como função d. Problma Mostr qu é uma solução d Problma Suponha qu a função dnsidad d probabilidad para a vida d um componnt d um computador sja, ond é o númro d anos qu o componnt stá m uso. Encontr a probabilidad d qu o componnt dur ntr 5 anos?. Problma Um líquido carrga um mdicamnto para dntro d um órgão d d volum a uma taxa d o líquido sai do órgão na msma taxa. S a concntração do mdicamnto no líquido qu ntra é d s rprsnta a quantidad d mdicamnto prsnt no órgão m qualqur instant, ntão usando o fato d qu a taxa d variação da quantidad d mdicamnto no órgão,, é igual à taxa m qu o mdicamnto ntra mnos a taxa m qu l sai. Encontr a quantidad d mdicamntos no órgão como uma função do tmpo m. Problma Os dados d vndas da Macambira Tcnologias mostram qu a taxa d variação da rcita m rias por unidad d placa-mã é, ond rprsnta a quantidad vndida. Encontr a função d rcita total para o produto. Dpois, ncontr rcita total da vnda d. placas-mãs. Problma 5 Consumo poupança Nacionais A função d consumo é um dos ingrdints básicos m uma discussão mais ampla d como uma conomia pod tr alto dsmpnho ou alta inflação prsistnt. Est studo é Os qu no rgim burguês trabalham não lucram os qu lucram não trabalham. Engls Marx
4 frquntmnt chamado Anális Kynsiana, m homnagm a su fundador, John Maynard Kyns. S C rprsnta o consumo nacional (m bilhõs d dólars), ntão a função d consumo nacional tm a forma, ond x é a rnda nacional disponívl (também m bilhõs d dólars). A propnsão marginal ao consumo é a drivada da função d consumo nacional m rlação ao, ou sja,. Encontr uma xprssão para a função d consumo nacional, s a propnsão marginal ao consumo for dada por o consumo for 85 quando a rnda for.. Problma 6 Calcul a ára ntrs as curvas do gráfico ao lado. Problma 7 Calcul as intgrais dfinidas. a) b) Problma 8 Calcul as intgrais dfinidas. a) R: b) x R: 8 c) x R: R: ln() ln() ) x 5 5 ( x ) R: 5/ f) ( x ) x R: / g) (x ) R: / h) x R: 8 5 i) ( x x ) R: / Problma 9 Utilizando o método d intgração por substituição, calcul as intgrais dfinidas. a) x ( x ) R: 5/8 b) x x R: / c) x R: 9 x( x) R: / ) x x R: f) x R: g) ( ) x R: 56 h) ( x)( x ) R: i) (x) R: /8 Os qu no rgim burguês trabalham não lucram os qu lucram não trabalham. Engls Marx
5 Problma Esboc a rgião corrspondnt a cada uma das intgrais dfinidas, dpois calcul as intgrais. a) b) c) a) 8 b) / c) 8/ Problma Encontr a ára da rgião limitada plo gráfico d dos as rtas vrticais.,, o ixo Problma Calcul a intgral dfinida nvolvndo valor absoluto. BIBLIOGRAFIA ANTON, Howard, BIVENS, Irl, DAVIS, Stphn. Cálculo Vol., ª d. Porto Algr: Bookman,. BOULOS, Paulo; ZAGOTTIS, Dcio Lal d. Mcânica cálculo Um curso intgrado Vol.. ª d. São Paulo: Bluchr,. FERREIRA, Rosangla Svircoski Matmática aplicada às ciências agrárias: anális d dados modlos. Viçosa: UFV, 999. LEITHOULD, Louis. O Cálculo com Gomtria Analítica. Vol., ª Ed. São Paulo: Harbra, 99. STEWART, Jams. Cálculo, Vol..7ª d. São Paulo: Cngag Larning,. THOMAS, Gorg Brinton, [t al]. Cálculo, Vol.. ª d. São Paulo: Parson Education do Brasil,. Bom Estudo! Os qu no rgim burguês trabalham não lucram os qu lucram não trabalham. Engls Marx 5
1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.
Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 9 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada m 00. A LISTA DE EXERCÍCIOS Drivadas d Funçõs Compostas 0. Para cada uma das funçõs sguints,
UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia
UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção
CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo
Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m
2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo
Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é
λ, para x 0. Outras Distribuições de Probabilidade Contínuas
abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl
Representação de Números no Computador e Erros
Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................
Derivada Escola Naval
Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =
UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
FUNÇÕES DE UMA VARIÁVEL COMPLEXA
FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor
ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.
Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos
3. Geometria Analítica Plana
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,
Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =
Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,
RI406 - Análise Macroeconômica
Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica
Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24
Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com
TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.
Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas
UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO
UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )
Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de
p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num
Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2
Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )
Conteúdos Exame Final e Avaliação Especial 2017
Componnt Curricular: Matmática Ano: 7º ANO Turma: 17 D. Profssora: Frnanda Schldr Hamrski Contúdos Exam Final Avaliação Espcial 2017 1. Númros Racionais 2. Ára prímtro d figuras planas 3. Ára do círculo
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Algoritmo Simplex Primal.
Ano lctivo: 8/9 Univrsidad da ira Intrior Dpartamnto d Matmática INVESTIGAÇÃO OPERACIONAL Ficha d rcícios nº: Algoritmo Simpl Primal. Cursos: Economia. Considr o sguint conjunto d soluçõs admissívis: {,
Resoluções de Exercícios
Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,
RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180
Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Ficha d rvisão nº 5 ª Part. Para um crto valor d a para um crto valor d b a prssão ( ) gráfico stá parcialmnt rprsntado na
Algumas distribuições de variáveis aleatórias discretas importantes:
Algumas distribuiçõs d variávis alatórias discrtas importants: Distribuição Uniform Discrta Enquadram-s aqui as distribuiçõs m qu os possívis valors da variávl alatória tnham todos a msma probabilidad
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:
Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA
FUNÇÃO REAL DE UMA VARIÁVEL REAL
Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs
1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1
) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f
UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles)
UTFPR Trmodinâmica 1 Análi Enrgética para Sitma Abrto (Volum d Control) Princípio d Trmodinâmica para Engnharia Capítulo 4 Part 1 Objtivo Dnvolvr Ilutrar o uo do princípio d conrvação d maa d nrgia na
TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.
ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas
, ou seja, 8, e 0 são os valores de x tais que x e, Página 120
Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:
AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V
AGRUPAMENTO DE ESCOLAS D. JOÃO V 172431 ESCOLA SECUNDÁRIA c/ 2º 3º CICLOS D. JOÃO V Ensino Rgular Ára Disciplinar d Matmática Planificaçõs 2014/15 Ciclo 5.º ano Manual scolar adotado: Matmática 5.º ano,
Adriano Pedreira Cattai
Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo
/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P
26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.
Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE
Integrais Impróprias
GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Discente CPF Turma A2 Sala
5.10 EXERCÍCIO pg. 215
EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática
Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
FENOMENOS DE TRANSPORTE 2 o Semestre de 2012 Prof. Maurício Fabbri 2ª SÉRIE DE EXERCÍCIOS
FENOMENOS DE TRANSPORTE o Smstr d 0 Prof. Maurício Fabbri ª SÉRIE DE EXERCÍCIOS 0. O coficint d transfrência d calor Transport d calor por convcção O transint ponncial simpls Consrvação da nrgia Lia o
Calor Específico. Q t
Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a
