Transformada de Fourier
|
|
|
- Caio Sales Prado
- 8 Há anos
- Visualizações:
Transcrição
1 Transformada d orir Séri d orir: Uma fnção priódica pod sr rprsntada pla soma d m conjnto d snos o cosnos d difrnts frqências cada ma mltiplicada por m por m coficint Transformada d orir: Uma fnção não priódica pod sr rprsntada por m intgral d m conjnto d snos o cosnos d difrnts frqências mltiplicadas por ma fnção psada Uma fnção prssa nma séri d orir o na transformada d orir pod sr convrtida novamnt para o domínio spacial sm prda d informação o q torna possívl o procssamnto no domínio d orir Dfinição para fnçõs d ma dimnsão D S f for ma fnção contína a sa transformada é dfinida por: I + j f d ond j f A transformada invrsa é dfinida por: I + f A transformada é m gral ma fnção compla: R + ji j é dsignado por spctro d orir o magnitd da transformada: A fas d transformada é dada por: R + I φ tan I R é dsignado por variávl d frqência porq dtrmina a frqência das componnts ortogonais: j cos d jsn Visão por Comptador João Lís Sobral 3
2 Transformada d orir Séri d orir para fnçõs priódicas S v for ma fnção priódica tal q v v ± mt a sa pansão m séri d orir é dada por: + n j n f v C nf para n 3... os coficints C nf da séri são dados por: C nf v T T j nf Como altrnativa pod sr tilizada a forma trigonométrica: d n f + arg + + Cn cos C n n v C Emplo : v 7 + cos + + 4cos 6 9 Emplo : v A -X X T Os coficints da séri para st sinal são: C nf AX T sn nfx nf X Dsnvolvndo a forma trigonométrica para sta fnção: A A A A v + cos f + cos f + cos 3 f Visão por Comptador 3 João Lís Sobral 3
3 Visão por Comptador 4 João Lís Sobral 3 Transformada d orir Transformada discrta d orir DT d fnçõs d ma dimnsão D Para sinais discrtos o intgral transforma-s nm somatório: j f para... - A transformada invrsa é dada por: j f para... - Como cos θ θ θ jsn j [ ] cos jsn f Cada m dos trmos d é dsignado por componnt d frqência DT d fnçõs d das dimnsõs D Para sinais d das dimnsõs D a transformada é m dplo somatório: + N v N vy j y f N v A transformada invrsa é dada por: + N v N vy j v N y f A DT pod sr calclada através d das transformadas -D primiro nas linhas postriormnt aplicando ma sgnda transformada ao rsltado Em gral apnas s visaliza a magnitd o logaritmo dsta da transformada nma scala d tons d cinznto com a componnt d frqência ao cntro O spctro da transformada d orir é simétrico: v v
4 Transformada d orir DT d fnçõs d das dimnsõs D Emplo: Visão por Comptador 5 João Lís Sobral 3
5 Transformada d orir iltragm do domínio das frqências Os filtros no domínio das frqências são aplicados mltiplicando a transformada plos lmntos do filtro ponto a ponto. As baias frqências do spctro são rsponsávis pla variaçõs d tom mais savs. As altas frqências são rsponsávis plos dtalhs da imagm. Os filtros passa-baio atnam as frqências altas do spctro diando passar as frqências baias. Os filtros passa-alto atnam as frqências baias do spctro diando passar as frqências altas. Emplo: Visão por Comptador 6 João Lís Sobral 3
6 iltragm do domínio das frqências iltros d savização passa-baio iltro idal O filtro idal limina todas as frqências spriors a m valor D dsignado por frqência d cort. O filtro idal tnd a originar m fito d anl nas imagns filtradas: Imagm original d 55 raios d cort d pils Visão por Comptador 7 João Lís Sobral 3
7 iltragm do domínio das frqências iltros d savização passa-baio iltros d Bttrworth Introdz m parâmtro ordm do filtro para vitar m cort abrto jnto do raio d cort: H v + [ D v D ] n O filtro d Bttrworth d ordm não introdz o fito d anl no filtro d ordm ss fito não é prcptívl: Visão por Comptador 8 João Lís Sobral 3
8 iltragm do domínio das frqências iltros d ralç passa-alto Podm sr obtidos a partir do filtros passa baio: H passa alto H passa baio iltros idal Bttrworth Gassiano: Visão por Comptador 9 João Lís Sobral 3
9 iltragm do domínio das frqências iltro d passa-alto idal iltro d passa-alto d Bttrworth H v + [ D D v ] n Visão por Comptador 3 João Lís Sobral 3
10 Transformada d orir ast orir Transform T Para imagns com dimnsão potência d ist m algoritmo T q rdz sbstancialmnt a qantidad d cálclos a fctar Propridads da transformada d orir Sparávl m y... A translação da imagm não altra o spctro da imagm Uma rotação da imagm provoca ma rotação smlhant no spctro Distribição: I f y + f y I f y +I f y Escalamnto: I af y ai f y Torma da convolção A convolção no spaço y qival à aplicação d m filtro d frqência corrspondnt à transformada do filtro tilizado f*g G Os filtros idais são mais facilmnt obtidos no domínio das frqências Uma vz obtida a transformada da imagm a aplicação d m filtro no domínio d frqências rqr mnos cálclos q a convolção Visão por Comptador 3 João Lís Sobral 3
11 Transformada d orir Torma da convolção continação prmit intrprtar os filtros no domínio das frqências através da sa transformação m máscara d convolção intrprtar os filtros no domínio spacial através da sa transformação m filtros no domínio das frqências. iltro passa-baio d Bttrworth Visão por Comptador 3 João Lís Sobral 3
Realce de Imagens Domínio da Frequência. Tsang Ing Ren - [email protected] UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática
Realce de Imagens Domínio da Freqência Tsang Ing Ren - [email protected] UFPE - Universidade Federal de Pernambco CIn - Centro de Informática Tópicos Introdção Série de Forier. Transformada de Forier. Transformada
NOTA SOBRE INDETERMINAÇÕES
NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja
PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA
PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico
Simulação de Eventos Discretos
Simlação Entos Discrtos Aplicação à simlação Circitos Lógicos AED - Esma m Simlador Entos Discrtos x x x Actaliza Actaliza Estado Estado x x = = f f (x, (x, ) ) x Inicializa Inicializa LISTA EVENTOS t
Dinâmica Longitudinal do Veículo
Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.
PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem
PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa
Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.
DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo
Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:
Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários
Guias de ondas de seção transversal constante
Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu
1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:
Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (
Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO
8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística
Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como
Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl
Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.
Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos
ANÁLISE CUSTO - VOLUME - RESULTADOS
ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs
Exercícios de Revisão. Primitivas Imediatas
Ercícios d Rvisão rimitivas Imdiatas Algmas Fórmlas Útis... Introdção Tórica... Ercícios Rsolvidos.... otência.... Eponncial.... Logaritmo.... ArcTan/ArcSin...7 Ercícios ropostos...8 Sgstõs para as rsolçõs
AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. [email protected]
AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,
PROGRAMAÇÃO SEMANA DO GUIA DE TURISMO 13 A 15 DE MAIO 2015
PROGRAMAÇÃO SEMANA DO GUIA DE TURISMO 13 A 15 DE MAIO 2015 13 d Maio 2015 Horário Atividad Local Participants Orintaçõs aos Alunos Abrtura do Evnto Srvidors do Câmpus alunos do Comparcr à crimônia d abrtura
Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela
Gabarito - Colégio Naval 05/06 Profssors: Carlos Eduardo (Cadu) André Flip Bruno Pdra Rafal Sabino Gilbrto Gil QUESTÃO Dada a inquação, podmos rscrvê-la, a partir do Torma d Bolzano, concluímos: 5 0 0
SISTEMA DE PONTO FLUTUANTE
Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,
MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*
MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m
AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU
ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício
Florianópolis, 09 de abril de 1998. PORTARIA Nº 0173/GR/98.
UNIVERSIDADE FEDERAL DE SANTA CATARINA GABINETE DO REITOR PORTARIAS Florianópolis, 09 d abril d 1998 PORTARIA Nº 0173/GR/98 O Ritor da Univrsidad Fdral d Santa Catarina, no uso d suas atribuiçõs statutárias
CONTINUIDADE A idéia de uma Função Contínua
CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,
DE EXERCÍCIOS DE VARIÁVEIS COMPLEXAS
Cálculo Avançado A - Variávis Complas LISTA DE EXERCÍCIOS DE VARIÁVEIS COMPLEXAS ) Encontr todas as singularidads das funçõs abaio, aprsntando-as m forma algébrica: a) f ( ) sc() b) j 5 + j f () 5 + 7
Atrito Estático. de deslizamento. Ela é devida à interacção entre as partículas dos dois corpos em contacto.
Atrito Estático Introdução Tórica Smpr qu dois corpos stão m contacto como, por xmplo, um livro m cima d uma msa, xist uma força qu s opõ ao movimnto rlativo dos dois corpos. Suponha qu mpurra um bloco
ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013
ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL MATEMÁTICA Exrcícios d Exams Tsts Intrmédios 11º Ano Ano Ltivo d 2012/2013 Trigonomtria 1 Na figura stá rprsntado o quadrado é a amplitud m radianos do ângulo Mostr
QUALIDADE DE SOFTWARE AULA N.6
QUALIDADE DE SOFTWARE AULA N.6 Curso: SISTEMAS DE INFORMAÇÃO Discipli: Qualida Softwar Profa. : Kátia Lops Silva Slis adpatados do Prof. Ricardo Almida Falbo Tópicos Espciais Qualida Softwar 007/ Dpartamnto
DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ
DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES ETREMOS DA MÁIMA DE 24 HORAS DE BELÉM DO PARÁ Mauro Mndonça da Silva Mstrando UFAL Mació - AL -mail: [email protected] Ant Rika Tshima Gonçalvs UFPA Blém-PA -mail:
18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo
Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo
Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência
Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial
Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas
Planificação d Ciências Naturais 9.ºAno Altraçõs climáticas Inês Hnriqus Sandra Mnds Tma: Biosfra Aula n.º: 1 Duração: 90 minutos Introdução à unid Altraçõs climáticas. Biosfra, concito importância. Dgração
Exemplo um: Determinar a distribuição da variável Y = 3X, dada a distribuição de X da tabela:
Prof. Lorí Viali, Dr. UFRGS Istituto d Matmática - D partam to d Estatística Sja X uma variávl alatória discrta com fp p(x i ). Sja Y f(x). S X for moótoa, tão i f(x i ), od x i são os valors d X, com
66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)
Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs
Catálogo de Perfis Padronizados
Extrusão Gral Catálogo d Prfis P Shaping a lightr futur Frramntaria Estoqu d tarugos rfis Introdução SP no Mundo Fundada m 1963 na Suécia, a Sapa iniciou suas atividads a partir do zro s transformou, m
Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim
Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador
EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM
Caítulo II EQUAÇÕES DIFERENCIAIS LINEARES DE ª ORDEM Caítulo II Equaçõs Difrnciais Linars d ª Ordm Caítulo II Até agora já conhcmos uma séri d quaçõs difrnciais linars d rimira ordm Dfinirmos considrarmos
CAPÍTULO 9 COORDENADAS POLARES
Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El
Departamento de Engenharia Elétrica CONTROLE DIGITAL
Dpartamnto d Engnharia Elétrica CONTROLE DIGITAL PROF. DR. EDVALDO ASSUNÇÃO Univrsidad Estadual Paulista UNESP Faculdad d Engnharia d Ilha Soltira FEIS Dpartamnto d Engnharia Elétrica DEE -03- Sumário
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508 000 São Paulo SP, Brasil
Quim. Nova, Vol. XY, No. 00, 1-5, 00_ doi numbr ESPECTRO ELETRÔNICO DA MOLÉCULA I : UMA BREVE INTRODUÇÃO À PROGRAMAÇÃO CIENTÍFICA Antonio G. Sampaio d Olivira Filho a, * Ana Paula d Lima Batista b a Dpartamnto
TENSORES 1.1 INTRODUÇÃO
nsors ENSORES. INRODUÇÃO Os lmntos sóldos utlzados m Engnhara Mcânca das Estruturas dsnolm-s num spaço trdmnsonal no qu rspta à sua Gomtra, sndo ncssáro posconar pontos, curas, suprfícs obctos no spaço
NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA
NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests
Planejamento de capacidade
Administração da Produção Opraçõs II Planjamnto d capacidad Planjamnto d capacidad Planjamnto d capacidad é uma atividad crítica dsnvolvida parallamnt ao planjamnto d matriais a) Capacidad insuficint lva
~ ~ ESTADO DO CEARÁ SECRETARIA DA FAZENDA CONSELHO DE RECURSOS TRIBUTÁRIOS
.".,....,. RESOLUÇÃO N 2007 1a CÂMARA DE JULGAMENTO 51 a SESSÃO ORDINÁRIA EM: 20.03.2007 PROCESSO N. 2/5023/2005 AUTO DE INFRAÇÃO N 2/200520854 RECORRENTE: ERALDO MARINHO DA SILVA. RECORRIDO: CÉLULA DE
APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT
Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;
Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz
ao erminante Área e em R 2 O qe é? Qais são sas propriedades? Como se calcla (Qal é a fórmla o algoritmo para o cálclo)? Para qe sere? A = matriz. P paralelogramo com arestas e. + A é a área (com sinal)
3 Aritmética Computacional
33 3 Aritmética Computacional 3. Introdução Quando s utiliza um qualqur instrumnto d trabalho para ralizar uma tarfa dv-s tr um conhcimnto profundo do su modo d funcionamnto, das suas capacidads das suas
Válvula Condicionadora de Vapor Tipo DUP. e válvula de controle de água de resfriamento
Válvula Condicionadora d Vapor Tipo DUP válvula d control d água d rsfriamnto Aplicação: Válvula Condicionadora d Vapor para Cntrais Elétricas Procssos Industriais combinada numa unidad com válvula d control
EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES
- - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no
SIMPLES NACIONAL - TABELAS DE TRIBUTAÇÃO DOS ANEXOS DA LC 123/2006 JÁ ATUALIZADA PELA LC 147/2014
SIMPLES NACIONAL - TABELAS DE TRIBUTAÇÃO DOS ANEXOS DA LC 123/2006 JÁ ATUALIZADA PELA LC 147/2014 ANEXO I DA LEI COMPLEMENTAR N o 123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012) Alíquotas Partilha
Estudo da Transmissão de Sinal em um Cabo co-axial
Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO
CARVALHO HOSKEN S/A carvalhohosken.com.br CARVALHO HOSKEN S.A. ENGENHARIA E CONSTRUÇÕES CNPJ: 33.342.023/0001-33
Balanço Social Em 31 d dzmbro d 2015 2014 1 - Bas d Cálculo 2015 Valor (Mil rais) 2014 Valor (Mil rais) Rcita líquida (RL) 190.202 292.969 Rsultado opracional (RO) 111.720 (16.955) Rsultado Financiro (29.648)
Resolução. Admitindo x = x. I) Ax = b
Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)
Caderno de Apoio 11.º ANO
METAS CURRICULARES PARA O ENSINO SECUNDÁRIO MATEMÁTICA A Cadrno d Apoio 11º ANO António Bivar Carlos Grosso Filip Olivira Luísa Loura Maria Clmntina Timóto INTRODUÇÃO Est Cadrno d Apoio constitui um complmnto
Senado Federal maio/2008
Audiência Pública PL 213/2007 Difrnciação d Prços nas Vndas com Cartõs d Crédito José Antonio Marciano Brasília Snado Fdral maio/2008 1 Rgra d Não Sobr-pr prço - Dfinição Rgra contratual imposta plas socidads
EDIÇÃO 78 DEZEMBRO 2014 P O R T U G A L. Seminário Securitas NAV Dow Portugal Portal do Cliente
SEC U R I TA S EDIÇÃO 78 DEZEMBRO 2014 P O R T U G A L Sminário Scuritas NAV Dow Portugal Portal do Clint EDITORIAL Conhcimnto Inovação fazm a difrnça! Firmino Fonsca Dirctor d Markting A Scuritas ralizou
Física Geral I F -128. Aula 6 Força e movimento II
Física Gral I F -18 Aula 6 Força movimnto II Forças Fundamntais da Naturza Gravitacional Matéria ( 1/r ) Eltromagné7ca ( 1/r ) Cargas Elétricas, átomos, sólidos Nuclar Fraca Dcaimnto Radioa7vo bta Nuclar
Lista de Exercícios 4 Cálculo I
Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its
Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.
Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga
Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.
1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares
Governo do Estado do Rio de Janeiro Secretaria de Estado de Ciência, Tecnologia e Inovação Fundação de Apoio a Escola Técnica
PROCESSO SELETIVO DE CANDIDATOS PARA INGRESSO NO CURSO TÉCNICO DE NÍVEL MÉDIO NA FORMA DE ORGANIZAÇÃO: SUBSEQUENTE AO ENSINO MÉDIO NA ESCOLA TÉCNICA ESTADUAL DE TEATRO MARTINS PENA. EDITAL 2016.1-07 O
Arquitectura de Computadores II. Exercícios sobre pipelining
Arqitectra de Comptadores II LESI - 3º Ano Eercícios sobre pipelining Departamento do Informática Universidade do inho Abril 22 Considere o modelo de ma arqitectra IPS com o pipeline da figra em aneo,
Para verificar a atualização desta norma, como revogações ou alterações, acesse o Visalegis.
18/05/12 Anvisa - Lgislação - Portarias Lgislação Para vrificar a atualização dsta norma, como rvogaçõs ou altraçõs, acss o Visalgis. Portaria n º 27, d 13 d janiro d 1998 A Scrtária d Vigilância Sanitária,
Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1
Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Rgim Diro/Noctro Disciplia d COMPLEMENTOS DE MATEMÁTICA Ao lctio d 7/8 - º Smstr Cosidr a ção ( ) 4 o poto
O Método dos Elementos Finitos Aplicado ao Problema de Condução de Calor
UNIVERSIDADE FEDERAL DO PARÁ CENRO ECNOLÓGICO DEPARAMENO DE ENGENHARIA CIVIL NÚCLEO DE INSRUMENAÇÃO E COMPUAÇÃO APLICADA À ENGENHARIA O Método dos Elmntos Finitos Aplicado ao Problma d Condução d Calor
Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T:
Escola Básica Scdária Dr Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nom Nº T: Classificação O Prof (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla slcio a rsposta
Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco
Mcânica dos Matiais Instabilidad d Colunas 10 Tadução adaptação: Victo Fanco Rf.: Mchanics of Matials, B, Johnston & DWolf McGaw-Hill. Mchanics of Matials, R. Hibbl, asons Education. Estabilidad d Estutuas
6ª LISTA DE EXERCÍCIOS - DINÂMICA
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10
O ofício de formar professores de línguas: dilemas e possibilidades de atuação
O ofício d formar profssors d línguas: dilmas possibilidads d atuação Frnanda Landucci Ortal - Univrsidad d São Paulo Rsumo. A O objtivo dst trabalho é aprsntar rflxõs sobr os Rlatos d Problmas d Ensino
4. Curvas planas. T = κn, N = κt, B = 0.
4. CURVAS PLANAS 35 4. Curvas planas Nesta secção veremos que no caso planar é possível refinar a definição de curvatura, de modo a dar-lhe uma interpretação geométrica interessante. Provaremos ainda o
Cálculo Cálculo D Cálculo D Cálculo D D Cálculo Cálculo D
álculo álculo álculo D D álculo álculo D álculo D Márcia osals ibiro Simch Grmán Márcia amón osals anahualpa ibirosuazo Simch Grmán Silvia amón Pritsch anahualpa Wndt Pinto Suazo Silvia Pritsch Wndt Pinto
6. Moeda, Preços e Taxa de Câmbio no Longo Prazo
6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,
A DERIVADA DE UM INTEGRAL
A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
Módulo II Resistores, Capacitores e Circuitos
Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm
Projeto de Magnéticos
rojto d Magnéticos rojto d circuitos magnéticos ltrônicos rojto d Magnéticos 1. ntrodução s caractrísticas idais d um componnt magnético são: rsistência nula, capacitância parasita nula, dnsidad d campo
4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)
4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua
ENGENHARIA DE MANUTENÇÃO. Marcelo Sucena
ENGENHARIA DE MANUTENÇÃO Marclo Sucna http://www.sucna.ng.br [email protected] / [email protected] ABR/2008 MÓDULO 1 A VISÃO SISTÊMICA DO TRANSPORTE s A anális dos subsistmas sus componnts é tão
F o l e s S a n f o n a d o s
Fols Sanfonados Protção individualmnt sob mdida sanfonada por sanfonada A protção prfita para o homm para a máquina. A Hnnig projta produz fols sanfonados para máquinasfrramnta há mais d 50 anos. Hoj a
MAURICIO EDGAR STIVANELLO DESENVOLVIMENTO DE UMA BIBLIOTECA PARA SISTEMAS DE VISÃO ESTEREOSCÓPICA PARA ROBÓTICA MÓVEL
MAURICIO EDGAR STIVANELLO DESENVOLVIMENTO DE UMA BIBLIOTECA PARA SISTEMAS DE VISÃO ESTEREOSCÓPICA PARA ROBÓTICA MÓVEL FLORIANÓPOLIS 2008 UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO
ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK.
ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK. N. M. RIBEIRO FILHO 1 ; R. C. SANTOS 3 ; O. L. S. d ALSINA ; M. F. D. MEDEIROS
Arquitectura de Computadores II. Revisão e implementação do datapath do MIPS
Arqitectra de omptadores II LESI - 3º Ano Revisão e implementação do datapath do IPS João Lís Ferreira Sobral epartamento do Informática Universidade do inho Janeiro 22 Revisão do datapath (P) do IPS Visão
ESTATÍTICA I. Professora: Diana Andrade-Pilling. [email protected]
ESTATÍTICA I Profssora: Diana Andrad-Pilling [email protected] INTRODUÇÃO Esta apostila dstina-s ao curso d Estatística I, aplicado na Univrsidad do Val do Paraíba (UNIVAP), para os cursos d Engnharia Aronáutica,
3 Proposição de fórmula
3 Proposição fórmula A substituição os inos plos juros sobr capital próprio po sr um important instrumnto planjamnto tributário, sno uma rução lgal a tributação sobr o lucro. Nos últimos anos, a utilização
VRM Video Recording Manager
Vídeo VRM Video Recording Manager VRM Video Recording Manager www.boschsecrity.com/pt Armazenamento distribído e distribição da carga configrável Conjnto de discos iscsi de reserva para obter ma maior
EDITAL N.º 24/2016 EDITAL PROCESSO SELETIVO ESPECÍFICO PARA INGRESSO DE FRONTEIRIÇOS 2016
EDITAL N.º 24/2016 EDITAL PROCESSO SELETIVO ESPECÍFICO PARA INGRESSO DE FRONTEIRIÇOS 2016 O REITOR DA UNIVERSIDADE FEDERAL DO PAMPA, no uso d suas atribuiçõs lgais statutárias, torna público st Edital
