A DERIVADA DE UM INTEGRAL
|
|
|
- Lara Aquino Canedo
- 10 Há anos
- Visualizações:
Transcrição
1 A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo, surgir alguma ificula no curso a sua aprnizagm. Es o, assn na ourina ssncial snvolvio aravés um conjuno vaso mplos significaivos, visa, prcisamn, ajuar os suans univrsiários cursos licnciaura ivrsos a ulrapassar os obsáculos rfrios, assim consguino ominar um ma qu é ão simpls quão imporan. Com gran frquência, surg a ncssia calcular a rivaa o ingral cra função m rminao inrvalo on a função ingrana sja conínua ingrávl à Rimann. E é com igual frquência, porvnura aé maior, qu s nconra uma sranha ificula os jovns suans univrsiários no raamno s ma. Com a finalia forncr aos rfrios jovns um o qu mosr, com rigor simplicia, o qu sá m jogo ns omínio como o ma é raao, procu-s à laboração sa noa brv, qu s ilusra com um conjuno mplos consirao razoávl para qu a comprnsão plna o ma a rspiva ominância possam r lugar. A rsposa a sa prnsão é aa, ssncialmn, plo conhcio TEOREMA FUNDAMENTAL DO CÁLCULO INTEGRAL. Sja f uma função ingrávl à Rimann no inrvalo [a,b] R. Nsas circunsâncias, a função, F: [ a, b] R, finia por: F f é conínua m [a,b], sno ifrnciávl m qualqur pono [a,b], no-s: EXEMPLO. Prn achar-s, para a função: a ' F f. F + + o valor F ' () sm calcular o ingral m suo sabno qu a função ingrana sá finia m [,7]. Ora, acoro com o nunciao o orma anrior, o valor procurao val: F ' ()
2 COROLÁRIO. S f é uma função ingrávl à Rimann m [a,b] R, conínua, não, F [ a b] finia por: F f é conínua m [a,b], sno ifrnciávl m qualqur pono [a,b], no-s: EXEMPLO. Prn achar-s, para a função: a F ' f. F + + :, R, o valor F ', sm calcular o ingral m suo sabno qu a função ingrana sá finia m [,7]. Ora, acoro com o nunciao o corolário anrior, o valor procurao val: F ' + + EXEMPLO. Prn achar-s, para a função: F sn o valor F ', sm calcular o ingral m suo sabno qu a função ingrana sá finia m [,9]. Ora, no m cona qu s m: F sn o corolário anrior prmi rminar: F ' sn. COROLÁRIO. S f é uma função ingrávl à Rimann m [a,b] R, conínua, não, F [ a b] finia por: g F f g é conínua m [a,b], sno ifrnciávl m qualqur pono [a,b], no-s: s i :, R,
3 s qu as rivaas g s [ ] [ ] ' ' ' F g f g g f g g EXEMPLO. Prn achar-s, para a função: i s s i i isam nos ponos o inrvalo [a,b]. F a rspiva rivaa m orm a, sm calcular o ingral. Ora, nos rmos o anrior corolário, m-s, ns caso: plo qu virá: EXEMPLO. Prn achar-s, para a função: g g s F '. i F log + a rspiva rivaa m orm a, usano o anrior corolário. Tr-s-á, não: EXEMPLO. Prn achar-s, para a função: F ' log log + + F + a rspiva rivaa m orm a, usano o anrior corolário. Tr-s-á, ns caso: F ' EXEMPLO. Prn achar-s, para a função: + sn + a rspiva rivaa m orm a, usano o anrior corolário. Tr-s-á aqui: EXEMPLO. Rsolvr a quação: sn cos.
4 ( ) ( y ) y ln. 6 Tm-s, ns caso: ln ln sh ' ' qu é uma quação ranscnn. Rcorrno a uma calculaora, po obr-s facilmn uma solução aproimaa. EXEMPLO. Achar a prssão a rivaa abaio, sm fcuar a ingração: ln. Tm-s, pois, nos rmos a ourina inicialmn posa: ' ' ln( ) ln ( ) ln ( ) sh. EXEMPLO. Drmin a prssão a rivaa m orm a para a função: Virá, não: + F +. + [ ] [ ] F ' ' ' EXEMPLO. Rsolvr a quação: No caso a prsn quação, m-s: E m-s, por igual: ou sja: + [ ] y y y + + ln. + ( + + ' )' + [ ] y y y + ln y + ln( )
5 y + ln y+ ln. y [ y y ] [ ] Em fac ss rsulaos no m cona a quação inicialmn aa, virá: + + qu é, como s vê, uma quação ranscnn. Diano mão méoos numéricos usano uma calculaora suficinmn pon, obr-s-á uma solução aproimaa. EXEMPLO. Prn mosrar-s qu: + +. Para provar o qu s prn, basa rivar ambos os mmbros sa iguala m orm a, vino: ' + + o qu prova o qu s prnia. EXEMPLO. Prn mosrar-s qu s m: log Usano a ourina ans aprsnaa, virá: ' ( ) log log ( ) o qu rspon ao qu s prnia. EXEMPLO. Sja a função f :R R, conínua prióica príoo T. Prn mosrar-s qu a função: 5 + T F f
6 é uma função consan m R. Claro sá qu, s assim for, a sua rivaa rá s sr nula. Achano ssa rivaa, virá: F ' f ( + T) f. Ora, ao qu a função inicialmn aa é prióica príoo T, rá sr: plo qu: f ( + T) f F ' o qu prova qu Fé uma função consan m R. EXEMPLO. Ach o omínio, su a monoonia calcul os rmos a função: F ln. Aqui, o omínio a função é [,+ [. A primira rivaa a função aa é: F ' ln qu é smpr posiiva m ],+ [ sno nula no pono, plo qu a função aa é sriamn crscn. Dao qu: 6 F ' ln s pono é um minimizan a função aa, on ocorr o mínimo, local absoluo: F() ln(). EXEMPLO. Ach o omínio, su a monoonia calcul os rmos a função: virá: O omínio a função, claro sá, é R. Dao qu: F. F ' F '.
7 Uma vz qu m ],[ a anrior rivaa é ngaiva, a função é crscn nss inrvalo. Em conraparia, no inrvalo ],+ [ a rivaa é posiiva, pla a função aa é crscn nss inrvalo. Assim, no pono zro ocorr um mínimo local absoluo, com o valor: F. EXEMPLO. Ach o omínio, su a monoonia calcul os rmos a função: O omínio sa função é R. Ns caso m-s: F +. F ' + qu é smpr ngaiva m R. Ou sja, a função aa é crscn m R. Não ism, pois, rmos para sa função. EXEMPLO. Ach o omínio, su a monoonia calcul os rmos a função: F. ln Para sa função o omínio é R {}. Tm-s, para sa função: F ' qu é ngaiva m R posiiva m R +. É, pois, crscn no primiro inrvalo crscn no sguno, não isino rmos no omínio a função. EXEMPLO. Daa a função: prn rminar-s: A função aa po scrvr-s na forma: plo qu s rá: sn() F F '. sn() F 7
8 ' sn( ) sn F. EXEMPLO. Para a função qu s mosra sguia, finia m R por: + F cos prn rminar-s o su valor no pono zro, bm como o a sua primira rivaa aí. Ora, fácil é consaar qu s m: + F cos sno qu s m: ( ) + + ' ' ' cos cos F + cos + sn. Assim, o valor a primira rivaa no pono zro val: F '. EXEMPLO. Sja, agora, o cálculo o limi abaio: lim sn sn Para s procr ao lvanamno sa inrminação, ia-s mão a Rgra Hospial, vino: sn lim sn( ) lim Espra-s qu o anrior conjuno mplos aju a mosrar a imporância rivar um ingral sm r a ncssia prviamn o calcular, siuação qu s aprsna, como s iss ao início, com alguma frquência na via práica corrn muios omínios. 8
NOTA SOBRE INDETERMINAÇÕES
NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3
FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,
CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA
CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA ) Drmin as Primiivas das funçõs abaio: a) b) ( ) ) ( ) d) ln ) 6ln 6 f) (sn( ) os( )) os( ) sn( ) g) h) / arg ( ) i) j) k) (sn(
4. Análise de Sistemas de Controle por Espaço de Estados
Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico
Integral Indefinido - Continuação
- ontinuação Técnicas Intgração (Primitivação) OBJETIVO: Aprsntar técnicas para trminar a função F() conhcia como primitiva tal qu F () f() ou: f() F() As principais técnicas primitivação FUNÇÕES DE UMA
ANÁLISE DE ESTRUTURAS II
DECivil ANÁLISE DE ESRUURAS II INRODUÇÃO AO MÉODO DOS ELEMENOS FINIOS NA ANÁLISE DE PROBLEMAS PLANOS DE ELASICIDADE Orlano J B A Prira 5 Alfabo Grgo Alfa Α α Ba Β β Gama Γ γ Dla δ Épsilon Ε ε Za Ζ ζ Ea
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas
Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência
Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial
CARGA E DESCARGA DE CAPACITORES
ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga
Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim
Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador
4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)
4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua
Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2
Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )
RESPOSTA TEMPORAL. 1. Motivação. 2. Solução homogênea. Calcular a resposta temporal de sistemas dinâmicos LIT na forma SS.
Euaro Lobo Luoa Cabral RESPOST TEMPORL. Moiação Calcular a rpoa mporal ima inâmico LT na forma SS. Rpoa mporal prmi analiar comporamno inâmico o ima no omínio o mpo. Dua oluçõ: Solução homogêna rpoa à
Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como
Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl
Desta propriedade, caminhando no sentido inverso, retira-se a regra de primitivação por partes, que se apresenta no seguinte. f g = fg fg.
HÉLIO BERNARDO LOPES Resumo. Epõem-se neste teto os fundamentos do método de primitivação por partes, que se estuda nas disciplinas de Análise Matemática de muitos dos cursos de licenciatura de natureza
5.10 EXERCÍCIO pg. 215
EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção
Análise Matemática III
João Paulo Pais d Almida Ilda Marisa d Sá Ris Ana Esr da Viga Rodrigus Víor Luis Prira d Sousa Anális Mamáica III Dparamno d Mamáica Escola Suprior d Tcnologia d Gsão Insiuo Poliécnico d Bragança Smbro
Sistemas e Sinais (LEIC) Resposta em Frequência
Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória
UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO
UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo
ANO LECTIVO 2001/2002
ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna
J, o termo de tendência é positivo, ( J - J
6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.
Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE
Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada
Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é
DE EXERCÍCIOS DE VARIÁVEIS COMPLEXAS
Cálculo Avançado A - Variávis Complas LISTA DE EXERCÍCIOS DE VARIÁVEIS COMPLEXAS ) Encontr todas as singularidads das funçõs abaio, aprsntando-as m forma algébrica: a) f ( ) sc() b) j 5 + j f () 5 + 7
FUNÇÕES DE UMA VARIÁVEL COMPLEXA
FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor
Sinais e Sistemas Lineares
ES 43 Sinais Sismas Sinais Sismas Linars Prof. Aluizio Fauso Ribiro Araújo Dpo. of Sismas d Compuação Cnro d Informáica - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Sinais Tamanho d um Sinal Opraçõs
Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.
Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos
r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .
Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a
CONTINUIDADE A idéia de uma Função Contínua
CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,
Derivada Escola Naval
Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =
12 Integral Indefinida
Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar
TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.
ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas
CAPÍTULO 4 Exercícios Propostos
53. Calcular o valor dos juros pagos por um fiaciamto d capital d giro d $1.500 por cico dias cotratado à taxa d 3% a.m., capitalizada diariamt. Dados: P = $1.500, j = 3% a.m.. k =, m = 5 dias, J =? k
( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR.
Capítlo V: Drivação 9 Corolário (drivada da nção invrsa): Sja ma nção dirnciávl injctiva dinida nm intrvalo I IR Sja I tal q '( ), ntão ( é drivávl m y ) ' ( ) ( y ) '( ) Ercício: Dtrmin a drivada d ()
Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de
p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num
ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES
LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não
1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?
Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos
, ou seja, 8, e 0 são os valores de x tais que x e, Página 120
Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:
MACROECONOMIA. Capítulo 1 - Introdução aos Modelos Macroeconômicos 1. Ciclo e Crescimento Econômico 2. Inflação e Nível de Atividade Econômica
MACROECONOMIA Capíulo 1 - Inrodução aos Modlos Macroconômicos 1. Ciclo Crscimno Econômico 2. Inflação Nívl d Aividad Econômica Frnando d Holanda Barbosa Capíulo 2 - As Curvas IS LM: A Dmanda Agrgada 1.
Matemática C Extensivo V. 7
Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0
Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.
AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor
2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo
Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é
Análise no Domínio do Tempo de Sistemas Contínuos
ES 43 Sinais Sismas Anális no omínio do Tmpo d Sismas Conínuos Prof. Aluizio Fauso Ribiro Araújo po. of Sismas d Compuação Cnro d Informáia - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Inrodução
Análises de sistemas no domínio da frequência
prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico
Exercícios de Cálculo Numérico - Erros
Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo
2ª fase. 19 de Julho de 2010
Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas
Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática
Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam
Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.
Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva
Aula - 2 Movimento em uma dimensão
Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade
