log5 log 5 x log 2x log x 2
|
|
|
- Fátima Graça Valverde
- 9 Há anos
- Visualizações:
Transcrição
1 mta unção rítmic. Indiqu o vlor d: ln ln Dtrmin o vlor d , Rsolv cd um ds quçõs: ln ln Considr unção rprsntd gricmnt n igur: Os gráicos sguints rprsntm gricmnt s unçõs: h i j g A B C D 4.. Associ cd gráico à rsptiv unção. 4.. Indiqu o domínio d cd um ds unçõs. / 8
2 mta unção rítmic 5. Considr unção dinid por ln. A prtir do gráico d, rprsnt gricmnt indiqu o domínio o contrdomínio d unção g, dinid por: 5.. g ln 5.. g ln 5.. g ln 6. Dtrmin o domínio d unção, dinid por: ln ln ln ln ln. 7. Considr unção 7.. Mostr qu é injtiv. 7.. Crtriz unção invrs d. 8. Crtriz unção invrs d cd ums ds unçõs dinids por: ln Escrv cd um ds prssõs sguints n orm d um único ritmo ,5, ln5 ln / 8
3 mta unção rítmic. Sjm b númros ris positivos tis qu b. Dtrmin o vlor d:.. b.. b.. b. Mostr qu, pr b,, s iguldds são vrddirs b.4. b b ln ln b b 5 b.5. ln ln. Rsolv s quçõs Rsolv s inquçõs Indiqu o vlor d p pr o qul s vriic iguldd p 6 4. (A) (B) (C) 4 (D) 4 5. A prssão simpliicd d ln, com \ é: (A) (B) (C) (D) Nnhum ds ntriors / 8
4 mta unção rítmic 6. N igur stão prts ds rprsntçõs gráics ds unçõs,5 g. Dtrmin: 6.. lim g g 6.. lim g 6.. lim g 7. Clcul os sguints limits: 7.. lim 7.. lim ln 7.4. ln 5 lim 7.5. lim ln 7.. lim ln 7.6. lim 4 45, é usd como modlo pr clculr o vlor d um ndr 5 num prédio d um cidd, m milhrs d uros, durnt nos pós su compr. 8. A unção c 8.. Dtrmin o vlor inicil do ndr. 8.. Qul é prcntgm d dsvlorizção do ndr o no? 8.. Qul o custo do ndr nos dpois d compr? 9. Admit qu às 9 hors oi dministrdo um dont um ármco ond unção c t,5 t nos prmit vlição concntrção do mdicmnto por cd litro d sngu, ns 4 hors imditmnt sguir à tom. Pr o trtmnto tr o ito dsjdo é ncssário tomr um º ármco no instnt m qu concntrção do primiro ting o vlor máimo, sndo tmbém ncssário grntir qu, pós dministrção do º ármco, concntrção do º por litro d sngu s mntnh suprior,5 mg, durnt plo mnos três hors. Sb-s qu o dont tomou o º ármco às hors minutos. Num composição mtmátic, pliqu d orm clr o cumprimnto, ou não, por prt do dont ds indicçõs médics s stão runids s condiçõs pr qu o trtmnto tnh o ito dsjdo. 4 / 8
5 mta unção rítmic nt r. A órmul C C prmit dtrminr o cpitl (C) cumuldo o im d t nos, n ond C rprsnt o cpitl inicil invstido à t nul d r % com cpitlizção n vzs por no. Quntos nos srão ncssários tr no bnco uros pr qu s obtnhm 5 uros s t nul nominl or d % com cpitlizçõs qudrimstris?. Qunto tmpo dvmos tr no bnco uros d modo obtrmos o dobro, s invstindo à t d 8% com cpitlizçõs smstris?. Num crt cultur d bctéris, o númro d bctéris istnts dpois d t hors é ddo,6 pl prssão Q Q, m qu Q rprsnt o númro inicil d bctéris.. t.. S inicilmnt istirm 75 bctéris, pssdos 4 minutos qunts bctéris istirão?.. Qunto tmpo é ncssário pr qu 4 bctéris s trnsormm m 4?.. Qunto tmpo é ncssário pr qu o númro d bctéris dupliqu, prsnt o rsultdo rrdonddo às unidds?,n. Considr órmul P.. Eprim n m unção d P... Clcul n, considrndo P No rrncil d igur ncontr-s rprsntd curv d qução ln ABCD é um trpézio rtângulo, sndo. A, B 6,. Mostr qu ár do trpézio é ln Num priênci lbortoril pr obtr clorto d sódio, colocou-s num tin um crt quntidd d águ do mr pôs-s um ont d clor. Após t hors do início d priênci, quntidd d águ, m ml, istnt n tin é dd pl prssão: Qt t 5.. Qu quntidd d águ s utilizou n priênci? 5.. Comnt irmção Ao im d dus hors, 5% d águ com qu s tinh inicido priênci tinh pssdo o stdo gsoso. 5 / 8
6 mta unção rítmic 5.. Considr unção E dinid por Et Qt rprsnt unção E?. No contto d tividd, o qu 5.4. Dtrmin nliticmnt, durnt qunto tmpo dcorru priênci, sbndo qu st trmin qundo totlidd d águ s vporr. 6. Sb-s qu mgnitud M d um sismo, n scl d Richtr, é dd pl prssão: M E,4, sndo E nrgi librtd, m rgs. No di 7 d gosto d 999, um sismo n Turqui tingiu gru 7,4 n scl d Richtr. Poucs hors dpois do sismo, com mtd d mplitud dst, ocorru um outro sismo m Lim, cpitl do Pru. Enqunto no sismo d Turqui houv crc d 4 mortos, no sismo d Lim não houv vítims. Tnt justiicr st cto, tndo como bs rzão ntr s nrgis librtds plos dois sismos. 7. Considr s unçõs g h, dinids por: h g 7.. Crtriz unção invrs d h. 7.. No rrncil d igur stá prt d rprsntção gráic d unção, invrs d g, o ponto A, ponto d intrsção do gráico com o io ds bcisss. Dtrmin: 7... As coordnds do ponto A sm rcorrr à unção. A 7... As coordnds do ponto A trvés d prssão qu din unção. 7.. Rsolv, m, inqução g Estud o sinl d unção h. Bom trblho!! 6 / 8
7 mta unção rítmic Soluçõs , ln.. 5..,.4. ln g A, h D, i B, j, D, 4.. Dg 5. D i h, Dj 5.., D, D' 5.. D, D' 5.. D, D' 6. C 6.., 6.., \ 9 6.., 6.4., 5, 6.5., 6.6., ,, 6.8., ln D, ln ; D 8.. ; D 8.. ; D \ 8.4. D, \ , ln ,4.4.,...,..,,..,.4., 7 / 8
8 mta unção rítmic.5.,,.6.,, B 5. B 9, 4,, Quntidd d águ qu s vpor o im d t hors hors h ln 7.. D, h 7..., 7..., 7.., 7.4. Positiv: ln,, ln Ngtiv: ,67% ,4 nos. 9 nos bctéris.. 6 hors.. hors... p n ln.., ml 5.. Airmção ls. Ao im d dus hors isti n tinh 5 ml d águ, proimdmnt. 8 / 8
Cálculo Diferencial II Lista de Exercícios 1
Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto
= 1, independente do valor de x, logo seria uma função afim e não exponencial.
6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0
Adição dos antecedentes com os consequentes das duas razões
Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como
Lista de Matemática ITA 2012 Trigonometria
List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão
Geometria Espacial (Exercícios de Fixação)
Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo
MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*
MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)
A Função Densidade de Probabilidade
Prof. Lorí Vili, Dr. [email protected] http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd
Matemática 3.º ano. Curso Profissional de Técnico de Informática de Gestão. Módulo 7 Funções de Crescimento 27 Horas
Curso Profissionl d Técnico d Informátic d Gstão Mtmátic.º no Módulo 7 Funçõs d Crscimnto 7 Hors E s c o l T c n o l ó g i c P r o f i s s i o n l d S i c ó ÍNDICE P A R T E I... INTRODUÇ ÃO... COMPETÊNCI
10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.
0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,
Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.
GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá
Professora: Profª Roberta Nara Sodré de Souza
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função
Letra Letra Algarismo Algarismo Algarismo Letra Letra. Possibilidades
REOLUÇÃO A AVALIAÇÃO UNIDADE III - COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO PEQUIA: PROF. ADRIANO CARIBÉ WALTER PORTO. - - UNEP-Adptd) Está prvisto qu, prtir d º d jniro d 7, ntrrá
Expressão Semi-Empírica da Energia de Ligação
Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1
Tst Intmédio d Mtmátic A Vsão Tst Intmédio Mtmátic A Vsão Dução do Tst: 9 minutos.5..º Ano d Escolidd Dcto-Li n.º 7/ d d mço????????????? RESOLUÇÃO GRUPO I. Rspost (B) A função f é contínu logo é contínu
Exame de Proficiência de Pré-Cálculo
+//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti
5.10 EXERCÍCIO pg. 215
EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção
Lista de Exercícios 9 Grafos
UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst
Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i
Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos
MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:
MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de
Derivada Escola Naval
Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =
RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180
Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto
1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial
º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0
, ou seja, 8, e 0 são os valores de x tais que x e, Página 120
Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:
ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO
ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
(Nova) Matemática, Licenciatura / Engenharia de Produção
Recredencimento Portri EC 7, de 5.. - D.O.U.... (ov) temátic, Licencitur / Engenhri de Produção ódulo de Pesquis: Prátics de ensino em mtemátic, contetos e metodois Disciplin: Fundmentos de temátic II
Quantidade de oxigênio no sistema
EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão
UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: [email protected] PROPOSTA DE RESOLUÇÃO
CAPÍTULO 9 COORDENADAS POLARES
Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El
09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X
LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet
Proª Cristine Guedes 1 DERIVADA Cristineguedes.pro.br/ceet Ret Tngente Como determinr inclinção d ret tngente curv y no ponto P,? 0 0 Proª Cristine Guedes Pr responder ess pergunt considermos um ponto
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ
Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r
1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R
píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Algoritmo Simplex Primal.
Ano lctivo: 8/9 Univrsidad da ira Intrior Dpartamnto d Matmática INVESTIGAÇÃO OPERACIONAL Ficha d rcícios nº: Algoritmo Simpl Primal. Cursos: Economia. Considr o sguint conjunto d soluçõs admissívis: {,
UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4
UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,
3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos
3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição
CAPÍTULO 3 - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS
CAPÍTULO - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS. Introdução A dinição d unção d um vriávl indpndnt pod sr dd por: é um unção d vriávl ou sj é um unção d vriávl dpndnt s cd vlor d corrspond
Solução: log. 04. Se Z C, então z. 3 z. Solução: Se z C, então z 3 z z z z é igual a: Sabemos que: Portanto
Qustõs Objtivs. Ds firmçõs: I., y R \ Q, com y, ntão + y R \ Q; II. Q y R \ Q, ntão y R \ Q; III. jm, b, c R, com < b < c. f: [, c] [, b] é sobrjtor, ntão f não é injtor, é (são) vrddir(s) n log log n
64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2
Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid
MATRIZES E DETERMINANTES LISTA 5
RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m
Aula de solução de problemas: cinemática em 1 e 2 dimensões
Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:
INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,
CPV O cursinho que mais aprova na GV
O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo
x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,
- Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor
Representação de Números no Computador e Erros
Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................
Diferenciação Numérica
Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e
ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.
LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 9 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada m 00. A LISTA DE EXERCÍCIOS Drivadas d Funçõs Compostas 0. Para cada uma das funçõs sguints,
, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]
Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej
2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo
Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é
INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO
INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:
CAPÍTULO 6: UMIDADE DO AR
CAPÍTULO 6: UMIDADE DO AR 6.1 PRESSÃO PARCIAL E A LEI DE DALTON O r é um mistur d gss, como foi visto m uls ntriors, o r s comport como um gás idl. Lmbrndo do concito d um gás idl (sus moléculs não ocupm
